The bubble wall velocity in cosmological phase transitions

Numerical Simulations of Early Universe Sources of Gravitational Waves

Based on

Ekstedt, Gould, Hirvonen, Laurent, Niemi, Schicho, JvdV https://arxiv.org/abs/2411.04970 Ekstedt, Gould, Hirvonen, Laurent, Niemi, Schicho, JvdV In progress

With what velocity do these bubbles expand?

Bubble wall velocity v_w

- The bubble wall is the region where the field(s) interpolate between the high- and low-temperature vacuum
- Vacuum energy release provides outward force; plasma causes friction
- When the forces balance, bubbles reach a terminal expansion velocity: $v_{\scriptscriptstyle W}$
- ... or they keep accelerating until they collide (but not in this talk)

FOPT phenomenology depends on v_w

Baryon asymmetry

Dark matter production

Slow bubbles: Filtered dark matter Baker, Kopp, Long 2019, Chway, Jung, Shin 2019, Marfatia, Tseng 2020

Figures from: Baker, Kopp, Long 2019

Dark matter production

Fast bubbles: Azatov, Vanvlasselaer, Yin 2021; Baldes, Gouttenoire, Sala 2022, ...

Figure from: Baldes, Gouttenoire, Sala 2022

Gravitational wave spectrum

Figure from: Giese, Konstandin, Schmitz, JvdV 2020

Gravitational wave spectrum

(a) Fixed: $\alpha = 0.2$, $r_* = 0.1$, $T_n = 100$ GeV.

Figure from: Gowling, Hindmarsh 2021

Challenge

• Usually v_w can be determined for one bubble in isolation

Challenge

- Usually v_w can be determined for one bubble in isolation
- However...
 - Computation of the wall velocity is numerically challenging
 - Many phenomenological predictions do not include a model-dependent computation of v_w , resulting in significant uncertainties

 $v_w = 1$

• What is the theoretical error in v_w ?

Computation of the wall velocity

Weakly coupled bubble wall-plasma system

- Energy release provides outward pressure
- Plasma particles provide friction by reflections and by gaining mass by entering the bubble
- Hydrodynamic backreaction effects
- Wall velocity follows from $|P_{\rm outward}| = |P_{\rm inward}|$

Some assumptions

- We can compute the wall velocity when the bubble still expands in isolation $t_{\rm formation} \ll t_{\rm const\,\nu_w} \ll t_{\rm collision}$
- The bubbles are much smaller than horizon size, ($R_{\rm bubble}H\ll 1$), so we assume Minkowski spacetime
- The theory is weakly-coupled
- There is a terminal wall velocity, i.e. the wall does not run away (not always true for very strong phase transitions)

Energy-momentum tensor

Scalar field: $T_{\phi}^{\mu\nu} = (\partial^{\mu}\phi)(\partial^{\nu}\phi) - g^{\mu\nu} \left(\frac{1}{2}(\partial\phi)^2 - V(\phi)\right)$

Fluid:
$$T_f^{\mu\nu} = (e_f + p_f) u^\mu u^\nu - p_f g^{\mu\nu}$$
, or $T_f^{\mu\nu} = \sum_i \frac{d^3k}{(2\pi)^3 E_i} k^\mu k^\nu f_i(k,x)$

Zero-temperature

potential

Scalar field equation of motion

See e.g. Prokopec Moore 1995

Scalar field equation of motion

Friction force
Dominant contribution
from heavy particles
(e.g. top)

$$\partial^{2}\phi + \frac{\partial V_{\text{eff}}(\overrightarrow{\phi}, T)}{\partial \phi} + \sum_{a} \frac{\partial m_{a}^{2}}{\partial \phi} \int_{\overrightarrow{p}} \frac{1}{2E} \delta f^{a}(p^{\mu}, \xi) = 0$$

Driving force and hydrodynamic backreaction

Also for vanishing δf^a , the wall can stop to accelerate

Ignatius, Kajantie, Kurki-Suonio, Laine 1993; Konstandin, No 2011; Barroso Mancha, Prokopec, Swiezewska 2020; Balaji, Spannowski, Tamarit 2020; Ai, Garbrecht, Tamarit 2021; Ai, Laurent, JvdV 2023; Ai, Laurent, JvdV 2024

- Hydrodynamic effects also provide a backreaction force in local thermal equilibrium (LTE) ($\delta f^a = 0$)
- This approximation provides an upper bound on the wall velocity*
- Entropy conservation provides a third hydrodynamic matching condition: the wall velocity can be determined from hydrodynamics only

*Fine-print

- Numerical simulations for the xSM show that the LTE solution might not be reached in time-dependent simulations <u>Krajewski</u>, <u>Lewicki</u>, <u>Zych 2024</u>
- <u>Eriksson, Laine 2025</u> demonstrate that the bound is unsaturated due to entropygenerating contributions of the scalar field
- As we will see later, the LTE result can be much larger than the full result

Scalar field equation of motion

The scalar field equation of motion depends on the temperature profile

Temperature and fluid profile

Energy-momentum tensor of the (perfect) fluid and scalar field

Temperature and fluid profile

Energy-momentum conservation for a planar wall, moving in the z-direction

$$T_{\mu\nu} = w u_{\mu} u_{\nu} - p g_{\mu\nu} + \partial_{\mu} \phi \partial_{\nu} \phi - g_{\mu\nu} \left(\frac{1}{2} \partial_{\sigma} \phi \partial^{\sigma} \phi \right)$$

$$T^{30} = w\gamma_{\text{pl}}^2 v_{\text{pl}} + T_{\text{out}}^{30} = c_1$$

$$T^{33} = \frac{1}{2} (\partial_z \phi)^2 - V_{\text{eff}}(\phi, T) + w\gamma_{\text{pl}}^2 v_{\text{pl}}^2 + T_{\text{out}}^{33} = c_2$$

Contribution from outof-equilibrium particles

Temperature and fluid profile

Energy-momentum conservation for a planar wall, moving in the z-direction

$$T_{\mu\nu} = wu_{\mu}u_{\nu} - pg_{\mu\nu} + \partial_{\mu}\phi\partial_{\nu}\phi - g_{\mu\nu}\left(\frac{1}{2}\partial_{\sigma}\phi\partial^{\sigma}\phi\right)$$

$$T^{30} = w\gamma_{\rm pl}^2 v_{\rm pl} + T_{\rm out}^{30} = c_1$$

$$T^{33} = \frac{1}{2} (\partial_z \phi)^2 - V_{\rm eff}(\phi, T) + w\gamma_{\rm pl}^2 v_{\rm pl}^2 + T_{\rm out}^{33} = c_2$$

Constants obtained from hydrodynamic solution

Boundary conditions from hydrodynamics

Bubble wall scale: scalar field of motion (and Boltzmann equations)

Units and scale are arbitrary

Boundary conditions from hydrodynamics

On hydrodynamic scales, the wall corresponds to a discontinuity in T, ν

- Until now we assumed that we already knew the out-of-equilibrium contribution
- In practice one could solve for ϕ, v, T first, and compute δf^a assuming that background solution
- Then plug the solution of δf^a into the equations for ϕ, v, T until it converges

Boltzmann equation

Boltzmann equation

Boltzmann equation

The Boltzmann equations can be simplified by linearizing in the perturbation from equilibrium and using that $\mathscr{C}[f_{\rm eq}]=0$

Putting the Boltzmann equation in a solvable form

Taking moments Prokopec Moore 1995; Dorsch, Huber, Konstandin 2021; Dorsch, Konstandin, Perboni, Pinto 2024

$$f = f_{eq}(E + \delta),$$

$$\delta = -\left[\mu + \mu_{bg} + \frac{E}{T}(\delta T + \delta T_{bg}) + p_z(v + v_{bg})\right]$$

$$-f'_{\text{eq}}\left(\frac{p_z}{E}\left[\partial_z(\mu + \mu_{\text{bg}}) + \frac{E}{T}\partial_z(\delta T + \delta T_{\text{bg}}) + p_z\partial_z(v + v_{\text{bg}})\right] + \partial_t(\mu + \mu_{\text{bg}}) + \frac{E}{T}\partial_t(\delta T + \delta T_{\text{bg}}) + p_z\partial_t(v + v_{\text{bg}})\right) + C(\mu, \delta T, v) = -f'_{\text{eq}}\frac{\partial_t m^2}{2E}$$

Putting the Boltzmann equation in a solvable form

Taking moments Prokopec Moore 1995; Dorsch, Huber, Konstandin 2021; Dorsch, Konstandin, Perboni, Pinto 2024

$$-f'_{\text{eq}}\left(\frac{p_z}{E}[\partial_z(\mu + \mu_{\text{bg}}) + \frac{E}{T}\partial_z(\delta T + \delta T_{\text{bg}}) + p_z\partial_z(v + v_{\text{bg}})] + \partial_t(\mu + \mu_{\text{bg}}) + \frac{E}{T}\partial_t(\delta T + \delta T_{\text{bg}}) + p_z\partial_t(v + v_{\text{bg}})\right) + C(\mu, \delta T, v) = -f'_{\text{eq}}\frac{\partial_t m^2}{2E}$$

Taking moments
$$\int d^3p/(2\pi)^3$$
, $\int Ed^3p/(2\pi)^3$, $\int p_z d^3p/(2\pi)^3$

$$c_{2}\partial_{t}(\mu + \mu_{bg}) + c_{3}\partial_{t}(\delta T + \delta T_{bg}) + \frac{c_{3}T}{3}\partial_{z}(v + v_{bg}) + \int \frac{d^{3}p}{(2\pi)^{3}T^{2}}C[f] = \frac{c_{1}}{2T}\partial_{t}m^{2}$$

$$c_{3}\partial_{t}(\mu + \mu_{bg}) + c_{4}\partial_{t}(\delta T + \delta T_{bg}) + \frac{c_{4}T}{3}\partial_{z}(v + v_{bg}) + \int \frac{Ed^{3}p}{(2\pi)^{3}T^{3}}C[f] = \frac{c_{2}}{2T}\partial_{t}m^{2}$$

$$\frac{c_{3}}{3}\partial_{z}(\mu + \mu_{bg}) + \frac{c_{4}}{3}\partial_{t}(\delta T + \delta T_{bg}) + \frac{c_{4}T}{3}\partial_{t}(v + v_{bg}) + \int \frac{p_{z}d^{3}p}{(2\pi)^{3}T^{3}}C[f] = 0$$

$$c_i T^{i+1} \equiv \int E^{i-2} (-f'_{eq}) \frac{d^3 p}{(2\pi)^3}$$

Putting the Boltzmann equation in a solvable form

Taking moments Prokopec Moore 1995; Dorsch, Huber, Konstandin 2021; Dorsch, Konstandin, Perboni, Pinto 2024

Advantages

- Numerically relatively easily manageable

Collision terms become very simple; E.g.
$$\int \frac{d^3p}{(2\pi)^3T^2} C[f] = \mu \Gamma_{\mu 1f} + \delta T \Gamma_{T1f}$$
 for top quarks, with
$$\Gamma_{\mu 1f} = 0.00899T, \qquad \Gamma_{T1f} = 0.01752T$$

Different moments correspond to conservation of particle number, energy and momentum

Disadvantages

- Not clear if three moments is sufficient for convergence
- Mixing between different out-ofequilibrium particles is neglected

Expand δf^a in polynomials Laurent, Cline 2022; WallGo

$$\left(p^{\mu}\partial_{\mu} + \frac{1}{2}\overrightarrow{\nabla}m_{a}^{2}\cdot\nabla_{\vec{p}}\right)f^{a}(\vec{p},x^{\mu}) = -\mathscr{C}_{a}[\vec{f}]$$

$$f^{a}(\vec{p},\xi) = f_{\text{eq}}^{a}(\vec{p},\xi) + \delta f^{a}(\vec{p},\xi), \qquad f_{\text{eq}}^{a} = \frac{1}{\exp[p_{\mu}u_{\text{pl}}^{\mu}(\xi)/T(\xi)] \pm 1} \bigg|_{E_{a} = \vec{p}^{2} + m_{a}^{2}}$$

$$\left(-p_{\mu}\bar{u}^{\mu}_{w}\partial_{\xi} - \frac{1}{2}\partial_{\xi}(m_{a}^{2})\bar{u}^{\mu}_{w}\partial_{p^{\mu}}\right)\delta f^{a} = -\mathcal{C}_{ab}^{\text{lin}}[\delta f^{b}] + \mathcal{S}_{a}, \qquad \mathcal{S}_{a} = \left(p_{\mu}\bar{u}^{\mu}_{w}\partial_{\xi} + \frac{1}{2}\partial_{\xi}(m_{a}^{2})\bar{u}^{\mu}_{w}\partial_{p^{\mu}}\right)f^{a}_{\text{eq}}$$

Mixing between different out-of-eq particles 37

Expand δf^a in polynomials Laurent, Cline 2022; WallGo

Algebraic equation

$$\sum_{i,j,k} \left\{ \partial_{\xi} \chi \left[\mathscr{P}_{w} \partial_{\chi} - \frac{\gamma_{w}}{2} \partial_{\chi} (m^{2}) (\partial_{p_{z}} \rho_{z}) \partial_{\rho_{z}} \right] \bar{T}_{i}(\chi) \bar{T}_{j}(\rho_{z}) \tilde{T}_{k}(\rho_{\parallel}) \delta f_{ijk}^{a} + \bar{T}_{i}(\chi) \mathscr{C}_{ab}^{\text{lin}} \left[\bar{T}_{j}(\rho_{z}) \tilde{T}_{k}(\rho_{\parallel}) \right] \delta f_{ijk}^{b} \right\} = \mathscr{S}_{a}(\chi, \rho_{z}, \rho_{\parallel})$$

Expand δf^a in polynomials Laurent, Cline 2022; WallGo

Algebraic equation

$$\sum_{i,j,k} \left\{ \partial_{\xi} \chi \left[\mathscr{P}_{w} \partial_{\chi} - \frac{\gamma_{w}}{2} \partial_{\chi}(m^{2})(\partial_{p_{z}} \rho_{z}) \partial_{\rho_{z}} \right] \bar{T}_{i}(\chi) \bar{T}_{j}(\rho_{z}) \tilde{T}_{k}(\rho_{\parallel}) \delta f_{ijk}^{a} + \bar{T}_{i}(\chi) \mathscr{C}_{ab}^{\text{lin}} \left[\bar{T}_{j}(\rho_{z}) \tilde{T}_{k}(\rho_{\parallel}) \right] \delta f_{ijk}^{b} \right\} = \mathscr{S}_{a}(\chi, \rho_{z}, \rho_{\parallel})$$

Introduce a grid to convert it to a matrix equation

Expand δf^a in polynomials Laurent, Cline 2022; WallGo

$$\begin{aligned} \mathcal{C}_{ab}^{\text{lin}}[\bar{T}_{j}(\rho_{z})\tilde{T}_{k}(\rho_{\parallel})] &= \frac{1}{4} \sum_{cde} \int_{\vec{p}_{2},\vec{p}_{3},\vec{p}_{4}} \frac{1}{2E_{2}2E_{3}2E_{4}} (2\pi)^{4} \delta^{4}(P_{1} + P_{2} - P_{3} - P_{4}) \times \\ &|M_{ac \to de}(P_{1}, P_{2}; P_{3}, P_{4})|^{2} f^{a} f^{c} f^{d} f^{e} \left(\delta_{ab} F_{a}^{c} + \delta_{cb} F_{c}^{a} - \delta_{db} F_{d}^{e} - \delta_{eb} F_{e}^{d}\right) \bar{T}_{j}(\rho_{z}) \tilde{T}_{k}(\rho_{\parallel}) \end{aligned}$$

$$F_b^a = \frac{e^{E_a/T}}{(f^b)^2}$$

Nine-dimensional integral for $n_p^2(N-1)^4$ components;

Four integrations are trivial because of the $\delta\text{-function}$

Expand δf^a in polynomials Laurent, Cline 2022; WallGo

Advantages

- Controlled convergence in number of polynomials
- Inclusion of mixing terms in collisions

Disadvantages

- Numerically more intensive than moments
- Individual Chebyshev polynomials have no clear physical interpretation

Obtaining v_w

- Now we have solved ϕ, v, T and δf_a for a given value of v_w
- . The pressure on the wall is given by $P = \int dz \frac{d\phi}{dz} \text{EOM}$
- $P(v_w) = 0$ gives us the wall velocity

How fast does the

Ekstedt, Gould, Hirvonen, Laurent, Niemi, Schicho, JvdV: 2411.04970

Publicly availabe code for the computation of the wall velocity with out-of-equilibrium contributions

- Computes (leading log) matrix elements for out-of-equilibrium particles, based on DRalgo (Mathematica) Ekstedt, Schicho, Tenkanen 2022
- Computes the corresponding collision terms in C++
- Solves the equation of motion for the scalar field(s) with a Tanh-Ansatz, fluid equations and Boltzmann equations in the Chebyshev expansion in Python
- The model and the set of out-of-equilibrium particles are user-defined

WA(GO) Convergence of the spectral method

• M, N: number of polynomials in position/momentum direction

Towards an estimate (and reduction) of the theoretical error

Two benchmark models

- Standard Model coupled to a gauge singlet (xSM) with Z_2 -symmetry
- We study the parameter space where the phase transition is twostep: first the singlet gets a vev, then the Higgs
- We are interested in the second step of the phase transitions

- Inert doublet model (IDM): special case of the two Higgs doublet model where new doublet has no vev at zero-temperature
- The phase transition is radiatively generated; only the Higgs gets a vev
- Four new scalar bosons: A, H, H^\pm We take H light, and $m_A = m_{H^\pm} \sim \Lambda_{\rm EW}$

Set of out-of-equilibrium particles and interactions

- Particles get pushed out-of-equilibrium by the passing bubble and by the non-constant temperature and fluid profile
- It is numerically very expensive to solve the Boltzmann equation for all particles
- One therefore tracks only the heaviest particles, and focusses on the strongest interactions in the collision term
- Trade-off between numerical cost and accuracy

Set of out-of-equilibrium particles and interactions

IDM with strong and weak interactions

Set of out-of-equilibrium particles and interactions

xSM with strong (and weak) interactions

Effective potential

• Temperature-dependent loop corrections determine $V_{\rm eff}(\phi,T)$

Effective potential

- Temperature-dependent loop correction determine $V_{\rm eff}(\phi,T)$
- Accurate results require going beyond one-loop
- The effective potential in the scalar field equations of motion is always evaluated at one-loop only

Figure: Gould, Tenkanen 2021

Quantitifying the uncertainty from thermodynamics

Varying the amount of supercooling in the xSM

Quanitifying the uncertainty from thermodynamics

Comparing the potential with and without Daisy resummation in the IDM

Collision terms at leading logarithmic order

Linearized collision term

$$\begin{split} \mathcal{C}_{ab}^{\text{lin}}[\delta f] &= \frac{1}{4} \sum_{cde} \int_{\vec{p}_2,\vec{p}_3,\vec{p}_4} \frac{1}{2E_2 2E_3 2E_4} (2\pi)^4 \delta^4(P_1 + P_2 - P_3 - P_4) \times \\ & |M_{ac \to de}(P_1,P_2;P_3,P_4)|^2 f^a f^c f^d f^e \left(\delta_{ab} F_a^c + \delta_{cb} F_c^a - \delta_{db} F_d^e - \delta_{eb} F_e^d\right) \end{split}$$

• Sum over 2
$$\Leftrightarrow$$
 2 diagrams, e.g
$$|\mathcal{M}|^2 \propto \frac{s^2 + u^2}{t^2}$$

• *u*- and *t*-channel diagrams divergent for small momentum transfer!

Collision terms at leading logarithmic order

Arnold, Moore, Yaffe 2000

- *u* and *t*-channel diagrams divergent for small momentum transfer
- Divergence gets regulated by hard-thermal loop self-energy in the propagator
- Leading log approximation:
 - Keep only the *u* and *t*-channels
 - Regularize the propagator by the (momentum-independent) HTL selfenergy
 - Remaining collision term is proportional to $1/\log g^{-1}$

Beyond leading log?

- A full leading order result requires:
 - Inclusion of s-channel diagrams
 - Inclusion of 2
 →2 and 1
 →2 diagrams
 - Resummation of soft emissions in 1
 → 2 diagrams (LPM resummation)
 - Including the momentum dependence in the HTL self-energy
- Done for transport coefficients in Arnold, Moore, Yaffe 2003; finding $\mathcal{O}(25\%)$ corrections at next-to-leading-log (NLL)
- No NLL computation of the wall velocity has been done

Estimating the error in v_w from leading-log collision terms

 Multiply all collision terms by a factor collisionMultiplier, to mimic corrections from NLL results

Estimating the error in v_w from leading-log collision terms xSM benchmark points

Estimating the error in v_w from leading-log collision terms IDM benchmark points

Summary

- The wall velocity is an important parameter in particle and GW production in first order phase transitions
- (Go: publicly available code for the computation of v_w with out-of-equilibrium effects
- Study of theoretical uncertainties forthcoming

Back-up

Scalar field equation of motion

Balance of forces Balaji, Spannowski, Tamarit 2020; Ai, Garbrecht, Tamarit 2021

$$\int dz \frac{d\phi}{dz} \left(\partial^2 \phi + \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} + \sum_{a} \frac{\partial m_a^2}{\partial \phi} \int_{\vec{p}} \frac{1}{2E} \delta f^a(p^\mu, \xi) \right) = 0$$

$$\int dz \frac{d\phi}{dz} \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} = \int dz \left(\frac{dV_{\text{eff}}}{dz} - \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} \right) = \Delta V_{\text{eff}} - \int dz \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz}$$

Scalar field equation of motion

Balance of forces Balaji, Spannowski, Tamarit 2020; Ai, Garbrecht, Tamarit 2021

$$\int dz \frac{d\phi}{dz} \left(\partial^2 \phi + \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} + \sum_{a} \frac{\partial m_a^2}{\partial \phi} \int_{\vec{p}} \frac{1}{2E} \delta f^a(p^\mu, \xi) \right) = 0$$

$$\int dz \frac{d\phi}{dz} \frac{\partial V_{\text{eff}}(\phi, T)}{\partial \phi} = \int dz \left(\frac{dV_{\text{eff}}}{dz} - \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} \right) = \Delta V_{\text{eff}} - \int dz \frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz}$$

Boundary conditions from hydrodynamics

- Spherically symmetric solutions to $\partial_{\mu}T^{\mu\nu}=0$ for $\partial_{\mu}\phi=0$ and equation of state given by $p_{\rm HT}=-V_{\rm eff}(v_{\rm HT},T)$ and $p_{\rm LT}=-V_{\rm eff}(v_{\rm LT},T)$
- Three types of solutions

Figure from: Espinosa, Konstandin, No, Servant 2010

 $\xi_{\rm w} > c_{\rm s}$

deflagration

 $\xi_{\rm w} < c_{\rm s}$

Hydrodynamic backreaction

• Due to the hydrodynamic backreaction, the pressure of the deflagration and hybrid solution always increase with v_w

67

• For detonations the hydrodynamic backreaction *decreases* with v_w

Boundary conditions from hydrodynamics

- Spherically symmetric solutions to $\partial_{\mu}T^{\mu\nu}=0$ for $\partial_{\mu}\phi=0$ and equation of state given by $p_{\rm HT}=-V_{\rm eff}(v_{\rm HT},T)$ and $p_{\rm LT}=-V_{\rm eff}(v_{\rm LT},T)$
- Three types of solutions
- Fixing the nucleation temperature and v_w determines $T_+, T_-, v_+, v_- \rightarrow c_1, c_2$

Comparison with earlier computation for SM with light Higgs

Moore, Prokopec 1995; Konstandin, Nardini, Rues 2014

- Spectral method (N = 11) versus three moments
- Some differences in matrix elements
- Mixing in the Boltzmann equations (e.g. eq. for $\delta f_{\rm top}$ depends on δf_W)
- Different treatment of hydrodynamics to MP

Comparison for Inert Doublet Model

$oxed{BM}$	$ar{m}_H \; [ext{GeV}]$	$ar{m}_{A}, ar{m}_{H^{\pm}} [ext{GeV}]$	$\lambda_{\scriptscriptstyle L}$	$T_{ m c}~{ m [GeV]}$	$T_{ m n} \ [{ m GeV}]$	v_w [49]	v_w [WallGo]
A	62.66	300	0.0015	118.3	117.1	0.165	0.191 ± 0.024
В	65.00	300	0.0015	118.6	117.5	0.164	0.180 ± 0.025
\mathbf{C}	63.00	295	0.0015	119.4	118.4	0.164	0.182 ± 0.024

Comparison with Jiang, Huang, Wang 2022 shows reasonable agreement