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Gravitational Wave spectrum from stochastic sources

• Tensor perturbations over FLRW
 

• GW equation (radiation domination) 

• Solution 

• GW spectrum at present time 
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Unequal-time correlator (UETC) of the source
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׬
0

∞
Ω𝐺𝑊 𝜏0, 𝑘 d ln 𝑘 ≡ Ω𝐺𝑊 𝑡0 ≅

1

12 𝐻0
2

𝑎∗

𝑎0

4
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GW spectrum

From GW equation’s solution



Constant-in-time model for the UETC of the source

• Assuming a constant-in-time UETC for the source for 

• GW spectrum 
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• Assuming a constant-in-time UETC for the source for 

• GW spectrum 
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• Assuming a constant-in-time UETC for the source for 

• GW spectrum 
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𝐸Π
∗ 𝑘 ∝ Π𝑖𝑗 𝜏∗, 𝑘 Π𝑖𝑗

∗ (𝜏∗, 𝑘)



Constant-in-time model for the UETC of the source

• Assuming a constant-in-time UETC for the source for 

• GW spectrum 
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Averaging over fast frequency oscillations at present time
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𝑘𝜏0 ≫ 1

Ω𝐺𝑊 𝜏0, 𝑘 ≅
3

2
𝒯𝐺𝑊 𝐸Π

∗ 𝑘 Ci 𝑘, 𝜏𝑓 − Ci 𝑘, 𝜏∗
2

+ Si 𝑘, 𝜏𝑓 − Si 𝑘, 𝜏∗
2

In flat spacetime we have instead Ω𝐺𝑊 𝜏0, 𝑘 = 3 𝒯𝐺𝑊𝐸Π
∗ 𝑘 Δ𝑓𝑙𝑎𝑡

2 (𝑘, 𝜏0)

Δ𝑓𝑙𝑎𝑡 𝑘, 𝜏 =
1

𝜏∗
න
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𝑘𝜏∗
sin 𝑘 𝜏 − 𝜏∗ 𝜏 ≤ 𝜏𝑓𝑖𝑛

1

𝑘𝜏∗
[sin 𝑘 𝜏 − 𝜏∗ − sin 𝑘(𝜏 − 𝜏𝑓𝑖𝑛)] 𝜏 > 𝜏𝑓𝑖𝑛

𝑘𝜏0 ≫ 1Averaging over fast frequency oscillations at present time

Ω𝐺𝑊 𝜏0, 𝑘 ≅
3

2
𝒯𝐺𝑊 𝐸Π

∗ 𝑘 𝑘𝜏∗
−2 cos 𝑘𝜏𝑓𝑖𝑛 − cos 𝑘𝜏∗

2
+ sin 𝑘𝜏𝑓𝑖𝑛 − sin 𝑘𝜏∗

2

Constant-in-time model for the UETC of the source
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𝑘 𝜏 − 𝜏∗ = 𝑘𝛿𝜏 < 1

→ Δ2 𝑘, 𝜏 ∝ ln2 1 +
𝛿𝜏

𝜏∗

𝑘𝛿𝜏 > 1

→ Δ2 𝑘, 𝜏 ∝ ln2 1 +
1

𝑘𝜏∗

𝑘𝜏∗ ≫ 1
≈

1

𝑘𝜏∗
2

Constant-in-time model for the UETC of the source

𝛿𝜏/𝜏∗ ≪ 1
≈

𝛿𝜏

𝜏∗

2

(flat) (flat)
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Constant-in-time model for the UETC of the source

Modes 𝑘 > 1/𝛿𝜏𝑓𝑖𝑛 saturated with amplitude ln2[1 + 𝑘𝜏∗
−1]

Modes 𝑘 < 1/𝛿𝜏𝑓𝑖𝑛 stop growing at 𝜏 = 𝜏𝑓𝑖𝑛 and have amplitude ln2[1 + 𝛿𝜏𝑓𝑖𝑛/𝜏∗]



GW spectrum in the constant-in-time model
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Ω𝐺𝑊(𝑘, 𝜏0) ≡ 3 𝒯𝐺𝑊𝐸Π
∗ 𝑘 Δ0

2(𝑘, 𝜏𝑓𝑖𝑛)

Assuming for the UETC 𝐸Π
∗ 𝑘 ~

𝑘3 𝑘 < 𝑘∗

𝑘−𝑏 𝑘 > 𝑘∗ (e. g.  b = 2/3  for Kolmogorov turbulence)

ln Ω𝐺𝑊
𝐸𝑁𝑉(𝑘, 𝜏0)

ln 𝑘ln 1/𝛿𝜏𝑓𝑖𝑛 

~𝑘3

ln 𝑘∗

causality
𝜏∗ = 1/ ℋ∗



GW spectrum in the constant-in-time model
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ln 𝑘ln 1/𝛿𝜏𝑓𝑖𝑛 

~𝑘3

ln 𝑘∗

~𝑘3 ln2[1 + ℋ∗/𝑘]

~𝑘 (𝑘 ≫ ℋ∗)

causality
𝜏∗ = 1/ ℋ∗



GW spectrum in the constant-in-time model
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ln 𝑘ln 1/𝛿𝜏𝑓𝑖𝑛 

~𝑘3

ln 𝑘∗

~𝑘3 ln2[1 + ℋ∗/𝑘]
~𝑘−𝑏 ln2[1 + ℋ∗/𝑘]

~𝑘 ~𝑘−𝑏−2
(𝑘 ≫ ℋ∗) (𝑘 ≫ ℋ∗)

causality
𝜏∗ = 1/ ℋ∗



Applications of the constant-in-time model: 
First-Order Phase Transitions

15

𝑇𝑖𝑗 ⊃ 𝜕𝑖𝜙 𝜕𝑗𝜙 + 𝜔 𝛾2𝑣𝑖𝑣𝑗 − 𝐵𝑖𝐵𝑗

• BUBBLE COLLISIONS

• SOUND WAVES (fluid 
compressional modes induced by 
bubble collisions)

• HD & MHD TURBULENCE (vortical 
motion produced after the 
development of nonlinearities)

𝑉1−𝐿𝑜𝑜𝑝
𝑒𝑓𝑓

𝜙, 𝑇 ≈ 𝐷 𝑇2 − 𝑇0
2 𝜙2 − 𝐸𝑇𝜙3 +

𝜆

4
𝜙4

[Dine et al. hep-ph/9203203]



Velocity Field Contributions

• For a statistically homogeneous and isotropic field

• Assuming a Gaussian velocity field such that we can use Wick’s theorem for the anisotropic stresses UETC

16

𝑣𝑖 𝒌 𝑣𝑗
∗(𝒌′) = 2𝜋 6𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 − ෠𝑘𝑖

෠𝑘𝑗

𝐸𝑁
𝑣 𝑘

4𝜋𝑘3
+ ෠𝑘𝑖

෠𝑘𝑗

𝐸𝐿
𝑣 𝑘

2𝜋𝑘3
+ 𝑖𝜖𝑖𝑗𝑙

෠𝑘𝑙

𝐻𝑣 𝑘

8𝜋𝑘3

vortical compressional helical

𝐸Π 𝑘 = 𝐸Π
𝑣𝑜𝑟𝑡 𝑘 + 𝐸Π

𝑐𝑜𝑚𝑝
𝑘 + 𝐸Π

𝑚𝑖𝑥𝑒𝑑 𝑘 + 𝐸Π
ℎ𝑒𝑙 𝑘

see Madeline’s talk



Velocity Field Contributions: vortical component

17

𝐸𝑁
𝑣 𝑘 ~

𝑘5 (𝑘/𝑘𝑝𝑒𝑎𝑘 → 0) 𝐵𝑎𝑡𝑐ℎ𝑒𝑙𝑜𝑟

𝑘−2/3 (𝑘/𝑘𝑝𝑒𝑎𝑘 → ∞) 𝐾𝑜𝑙𝑚𝑜𝑔𝑜𝑟𝑜𝑣
𝐸Π 𝑘 ~

𝑘3 𝑘/𝑘∗ → 0

𝑘−2/3 𝑘/𝑘∗ → ∞

For a purely vortical velocity field with a Von Kármán spectrum

[Monin & Yaglom – Statistical Fluid Mechanics]



Velocity Field Contributions: vortical component
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𝐸𝑁
𝑣 𝑘 ~

𝑘5 (𝑘/𝑘𝑝𝑒𝑎𝑘 → 0) 𝐵𝑎𝑡𝑐ℎ𝑒𝑙𝑜𝑟

𝑘−2/3 (𝑘/𝑘𝑝𝑒𝑎𝑘 → ∞) 𝐾𝑜𝑙𝑚𝑜𝑔𝑜𝑟𝑜𝑣
𝐸Π 𝑘 ~

𝑘3 𝑘/𝑘∗ → 0

𝑘−2/3 𝑘/𝑘∗ → ∞

For a purely vortical velocity field with a Von Kármán spectrum

GW spectrum envelope for vortical turbulence in the constant-in-time model (flat spacetime)

ln Ω𝐺𝑊(𝑘, 𝜏0)

ln 𝑘ln 1/𝛿𝜏𝑓𝑖𝑛 ln 𝑘∗

~𝑘3

~𝑘

~𝑘−8/3

[Monin & Yaglom – Statistical Fluid Mechanics]

Roper Pol et al. [2201.05630]



Relativistic hydrodynamics simulations

19

Fluid dynamics implementation in CosmoLattice see Kenneth’s talk

𝑇𝜇𝜈
𝑓𝑙𝑢𝑖𝑑

= 𝜌 + 𝑝 𝑢𝜇𝑢𝜈 + 𝑝 𝑔𝜇𝜈

«Relativistic magnetohydrodynamics in the early Universe» Alberto Roper Pol & ASM [2501.05732]

𝜕𝜇𝑇𝜇𝜈 = 0

NON-CONSERVATION FORM

𝜕𝜏 ln ෤𝜌 = −
1+𝑐𝑠

2

1−𝑐𝑠
2𝑢2 [𝛁 ⋅ 𝒖 +

1−𝑐𝑠
2

1+𝑐𝑠
2 𝒖 ⋅ 𝛁 ln ෤𝜌] +

1+𝑢2

1−𝑐𝑠
2𝑢2 1 − 3𝑐𝑠

2 ℋ +
1

1−𝑐𝑠
2𝑢2 [

ሚ𝑓𝑡𝑜𝑡
0

෥𝜌
1 + 𝑢2 − 2 𝒖 ⋅

෨𝒇𝒕𝒐𝒕

෥𝜌
] 

𝜕𝜏𝒖 = − 𝒖 ⋅ 𝛁 𝒖 +
𝑐𝑠

2 𝒖

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln ෤𝜌 +

3𝑐𝑠
2 − 1

𝑐𝑠
2 ℋ −

ሚ𝑓𝑡𝑜𝑡
0

𝑐𝑠
2 ෤𝜌

+
2

1 + 𝑐𝑠
2

𝒖 ⋅ ෨𝒇𝑯

෤𝜌

−
𝑐𝑠

2

1 + 𝑐𝑠
2

𝛁 ln ෤𝜌

𝛾2
+

1

1 + 𝑐𝑠
2

෨𝒇𝒕𝒐𝒕

෤𝜌𝛾2
timestepping scheme 
Runge Kutta order 3 (Williamson 1980) 

CONSERVATION FORM (solving for           )𝑇0𝜇

finite differences derivative scheme order 6

Figueroa et al. [2006.15122]

Dahl et al. [2407.05826]



Simulations of Gravitational Waves from vortical turbulence

20

Subrelativistic case - numerical setup

𝑁 = 512, ෨𝑘𝐼𝑅 = 0.1, ෨𝑘𝑁𝑦 =
෨𝑘𝐼𝑅𝑁

2
= 25.6,

ǁ𝑡𝑓𝑖𝑛 − ǁ𝑡∗ =
1

෨𝑘𝐼𝑅

= 10,

𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 =
𝑣𝑟𝑚𝑠

෨𝑘𝑁𝑦

≈ 10−7

𝑑 ǁ𝑡

𝑑 ෤𝑥
< 0.01,𝑑 ǁ𝑡 = 10−3,

𝑣𝑟𝑚𝑠 ≈ 4 × 10−6,

almost no decay of the source

𝜕𝜏𝒖 = … + 𝜂 𝛁2𝒖

𝛿𝜏𝑒𝑑𝑑𝑦~107

(𝜂)
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Simulations of Gravitational Waves from vortical turbulence

modes grow as
and saturate when

𝛿 ǁ𝑡2

෨𝑘𝛿 ǁ𝑡 ≈ 1
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Simulations of Gravitational Waves from vortical turbulence

Relativistic case - numerical setup

𝑁 = 512, ෨𝑘𝐼𝑅 = 0.1, ෨𝑘𝑁𝑦 =
෨𝑘𝐼𝑅𝑁

2
= 25.6,

ǁ𝑡𝑓𝑖𝑛 − ǁ𝑡∗ =
1

෨𝑘𝐼𝑅

= 10, 𝑑 ǁ𝑡 = 10−4,
𝑑 ǁ𝑡

𝑑 ෤𝑥
< 0.001,

𝑣𝑟𝑚𝑠 ≈ 0.1, 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 =
𝑣𝑟𝑚𝑠

෨𝑘𝑁𝑦

≈ 10−2

visible decay of the source
𝛿𝜏𝑒𝑑𝑑𝑦~102
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Simulations of Gravitational Waves from vortical turbulence

modes grow as
and saturate when

𝛿 ǁ𝑡2

෨𝑘𝛿 ǁ𝑡 ≈ 1



Velocity Field Contributions: compressional component

Weak and moderately strong (            ) First-Order Phase Transitions → sound wave phase after collisions 

Sound-shell model for GW production from sound waves (see Mark’s talk)

24

𝛼 ≲ 1

Ω𝐺𝑊 𝑘, 𝜏0 ≡ 3 𝒯𝐺𝑊׬ 𝑑𝑧 𝑑𝑃 𝑓 𝑃, ෨𝑃 𝐸𝐿
𝑣 𝑃 𝐸𝐿

𝑣( ෨𝑃) Δ𝑠𝑠𝑚
2 (𝑘, 𝑃, ෨𝑃, 𝜏𝑓𝑖𝑛) 𝑧 =

𝒌⋅𝑷

𝑘𝑃
, ෩𝑷 = 𝒌 − 𝑷

Δ𝑠𝑠𝑚
2 𝑘, 𝑃, ෨𝑃, 𝜏𝑓𝑖𝑛 =

1

4
෍

𝑛,𝑚=±1

Δ𝑚𝑛
2 Δ𝑚𝑛

2 Ƹ𝑝𝑚𝑛 = Ci Ƹ𝑝𝑚𝑛𝜏𝑓𝑖𝑛 − Ci Ƹ𝑝𝑚𝑛𝜏∗
2

+ Si Ƹ𝑝𝑚𝑛𝜏𝑓𝑖𝑛 − Si Ƹ𝑝𝑚𝑛𝜏∗
2

Ƹ𝑝𝑚𝑛 = 𝑝 + 𝑚 ෤𝑝 𝑐𝑠 + 𝑛𝑘

𝑚 = 1, 𝑛 = 1 dominant contribution
Hindmarsh & Hijazi [1909.10040]
Roper Pol, Procacci, Caprini [2308.12943]

Hindmarsh et al. [1304.2433]



Velocity Field Contributions: compressional component

Weak and moderately strong (            ) First-Order Phase Transitions → sound wave phase after collisions 

Sound-shell model for GW production from sound waves (see Mark’s talk)

25

𝛼 ≲ 1

Ω𝐺𝑊 𝑘, 𝜏0 ≡ 3 𝒯𝐺𝑊׬ 𝑑𝑧 𝑑𝑃 𝑓 𝑃, ෨𝑃 𝐸𝐿
𝑣 𝑃 𝐸𝐿

𝑣( ෨𝑃) Δ𝑠𝑠𝑚
2 (𝑘, 𝑃, ෨𝑃, 𝜏𝑓𝑖𝑛) 𝑧 =

𝒌⋅𝑷

𝑘𝑃
, ෩𝑷 = 𝒌 − 𝑷

Δ𝑠𝑠𝑚
2 𝑘, 𝑃, ෨𝑃, 𝜏𝑓𝑖𝑛 =

1

4
෍

𝑛,𝑚=±1

Δ𝑚𝑛
2 Δ𝑚𝑛

2 Ƹ𝑝𝑚𝑛 = Ci Ƹ𝑝𝑚𝑛𝜏𝑓𝑖𝑛 − Ci Ƹ𝑝𝑚𝑛𝜏∗
2

+ Si Ƹ𝑝𝑚𝑛𝜏𝑓𝑖𝑛 − Si Ƹ𝑝𝑚𝑛𝜏∗
2

Ƹ𝑝𝑚𝑛 = 𝑝 + 𝑚 ෤𝑝 𝑐𝑠 + 𝑛𝑘

𝑚 = −1, 𝑛 = ±1

𝑚 = 1, 𝑛 = 1 dominant contribution

if the velocity spectrum is very peaked, i. e.                                             ,  we have approximately 𝐸𝐿
𝑣 𝑃 ≈ 𝛿(𝑃 − 𝑘∗)

𝑝 = ෤𝑝 = 𝑘∗ → ෤𝑝𝑚𝑛 = ±𝑘 → Δ𝑠𝑠𝑚
2 =

1

2
Ci 𝑘, 𝜏𝑓 − Ci 𝑘, 𝜏∗

2
+ Si 𝑘, 𝜏𝑓 − Si 𝑘, 𝜏∗

2

Ω𝐺𝑊 𝑘, 𝜏0 ≡ 3 𝒯𝐺𝑊𝐸Π
∗ 𝑘 Δ𝑠𝑠𝑚

2 same result as in the constant-in-time model

Hindmarsh & Hijazi [1909.10040]
Roper Pol, Procacci, Caprini [2308.12943]

(see Madeline’s talk)

Hindmarsh et al. [1304.2433]



Magnetic Field Contribution

• In a First-Order Phase Transition scalar field 
gradients can generate magnetic fields (see 
Patel & Vachaspati [2108.05357]) and/or 
the pre-existing magnetic fields can be 
amplified through vortical hydrodynamic 
turbulence resulting, due to the high 
conductivity of the primordial plasma (see 
Arnold, Moore & Yaffe 2003), in MHD 
turbulence

• Magnetic fields can hence be a source of 
Gravitational Waves and, being fully 
vortical, their contribution can be 
described with the constant-in-time model 
as shown in numerical simulations (see 
Axel’s talk and Roper Pol et al. 
[2201.05630])

26



Which other contributions can be described with the constant-in-time model?

27

Scalar bubble collisions (see Jinno & Takimoto [1707.03111])

GW spectrum goes from             to      
in the long-lasting limit of the collided bubbles

∝ 𝑘3 ∝ 𝑘



Which other contributions can be described with the constant-in-time model?

28

Feebly interacting particles 
(see Jinno, Shakya & van de Vis [2211.06405])

Scalar bubble collisions (see Jinno & Takimoto [1707.03111])

GW spectrum goes from             to      
in the long-lasting limit of the collided bubbles

∝ 𝑘3 ∝ 𝑘
GW spectrum with super-Hubble         scaling 
and intermediate         scaling

𝑘3

𝑘



Beyond the constant-in-time model

When the source is decaying faster and the GW spectrum cannot be described with the constant-in-time 
model there are improved models leading to a different GW spectrum (mostly in the IR)

• Coherent decay model

𝑘∗ 𝑡 = 𝑘∗ 1 +
𝛿𝑡

𝛿𝑡𝑒

−𝑞

, 𝐴 𝑡 = 𝐴 1 +
𝛿𝑡

𝛿𝑡𝑒

−𝑝

• Kraichnan decorrelation (see Auclair et al. [2205.02588]) 

29

Ω𝐺𝑊 𝑘, 𝜏0 ≡ 3 𝒯𝐺𝑊 න
𝜏∗

𝜏𝑓 𝑑𝜏1

𝜏1
𝐸Π 𝑘, 𝜏1, 𝜏1 cos 𝑘 𝜏0 − 𝜏1

2

𝐸Π 𝑘, 𝜏1, 𝜏2 = 𝐸Π(𝑘, 𝜏1) 𝐸Π(𝑘, 𝜏2)
(modeling the decay of the amplitude
and peak scale of the source 
according to its specific evolution)

𝐸Π 𝑘, 𝜏1, 𝜏2 = 𝐸Π 𝑘 exp[−
1

2
𝑘2𝑣𝑠𝑤

2 𝜏1 − 𝜏2
2]GW spectrum still compatible with the 

one in the constant-in-time model



Conclusions

• Studying the UETC of the anisotropic stresses of the source is important to understand the GW spectrum 
from stochastic processes in the early Universe

• Various contributions to the GW spectrum produced in a First-Order Phase Transition show a universal       
and       behavior which can be described with the constant-in-time model

• The constant-in-time model applies in general when the source is constant or slowly decaying with 
respect to the time it takes to source GWs (which depends on the specific scale of interest)

• Decaying sources can be described by applying extensions of the constant-in-time model (e. g. coherent 
decay and Kraichnan decorrelation)

• Fluid compressional modes (like sound waves) require a different description for the UETC

30

Thanks for your attention!

𝑘3

𝑘
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