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Q ball
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What’s Q ball ?
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(Coleman 1985)

Q-ball : stable, spherical symmetric, localized field configuration

that can store the charge Q.

⚫ It usually forms in a complex scalar field with a global U(1) symmetry. 

⚫ Given fixed charge Q0, it is energetically stable and has a lower energy 

state than a collection of free particles.

⚫ Charge conservation guarantees its stability.

By ChatGPT

Φ ≠ 0

Φ ➔ 0 (r ➔ ∞)



Why is Q ball so interesting ???

➔

Affleck-Dine baryogenesis
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Scalar field condensation

Affleck-Dine field Φ：
A complex scalar field with baryon or lepton number q

0

ImΦ

ReΦ

Affleck-Dine field acquires

angular momentum in field space
B or L number is generated.
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(Affleck and Dine 1985)



Flat directions in a SUSY standard model

soft mass non-renormalizable terms A-term

B or L is conserved violate

B or L is generated dynamically thanks to A-term

when a flat direction has baryon and/or lepton charge.

Some combinations of squark and/or slepton fields (AD field):

⚫ No classical potential in the SUSY exact limit

(called flat directions).

⚫ Often have baryon and/or lepton charge

⚫ Lifted by SUSY breaking effects and the non-renormalizable terms

⚫Acquire a large amount of VEV during inflation
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Cosmological scenario

Φ acquires a large VEV during inflation thanks to large 

negative mass squared (- c H2 |Φ|2).           (𝐆𝐍𝐕 ~ 𝐇𝟐)

It starts oscillation around 

the origin around                .

At the same time, it starts rotation

due to A-term and

B and/or L number is produced.

Φ decays into quarks and/or leptons,

the stored B or L number is 

transferred to them.

V

Φ０

ImΦ

ReΦ

(Dine, Randall, and Thomas 1995)

Taken from Fujii’s master thesis
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After inflation



Q ball formation in cosmology
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(Dvali et al. 1998, Kusenko & Shaposhnikov 1998, etc)

Which is energetically favored, given Q inside horizon?

⚫ Keeping a homogeneously rotating solution 

OR    

⚫ A stable, spherical symmetric, localized field 

configuration called Q ball is formed

What’s the condition to form Q balls ???



Q-ball solution and existing conditions

Φ : a complex scalar field

⚫ What's the lowest energy configuration E, given fixed charge Q0 ??? 

= 0 (Phase of 𝝓 must be const => 𝝓 : real)



Bounce solution

11

3D bounce solution

(Coleman et al. 1978)

with 2 B.C. to avoid the divergence of Q and Eω

to guarantee the regularity of 𝝓 at r = 0

Shooting problem by regarding r as time !!

To find the minimum of Eω



Q-ball existing conditions
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Observation:  

For only case (i) : there exists a solution satisfying 

the boundary conditions.

with 2 B.C. to avoid the divergence of Q and Eω

to guarantee the regularity of 𝝓 at r = 0

(iii) φ cannot reach the origin.

(ii)  φ cannot stop at the origin.

(Simply saying, the potential 𝐕 𝝓  should be 

flatter than quadratic one !!)



Generic properties
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⚫ Topological defects :

⚫ Q balls : 

Gradient energy   ～  Potential energy

Gradient energy   ～  Potential energy ～ Kinetic (rotation) energy



Revised scenario
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After inflation, around , it starts oscillation around 

the origin.

At the same time, it starts rotation

due to A-term and

B and/or L number is produced.

A non-topological soliton called Q ball

is formed.

Q ball serves as DM !!

Figure taken from Kasuya & Kawasaki 2000

A part of baryon/lepton charge 

is striped off from Q ball.

=> Baryogenesis !!



PLANCK results were released 

and are interesting
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Constraints on scalar and tensor perturbations 

from the PLANCK satellite

Theoretical predictions : Observational constraints : 

Planck 2018 results. X  1807.06211

(Starobinsky model)

(95% CL TT,TE,EE+lowE+lensing)

Attractor models like

Starobinsky model

fit the data well.



R2 (Starobinsky) model (Starobinsky 1980)

(MG = 1)

Much flatter than the mass term, φ2

oscillation

⚫ During the oscillation period, can a non-topological soliton

like Q ball be formed in attractor models ???

⚫ But, apparently, there is no conserved charge

for a real scalar field !!



Oscillon/I ball
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What’s Oscillon/I ball ?
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(Gleiser 1994, Copeland et al, 1995, Kasuya et al. 2002, etc)

Oscillon/I ball : long-lived (𝜏 ∼ 10≲11𝑚−1), spherical symmetric, 

localized field configuration

⚫ Oscillons/I balls could be formed after inflation. 

⚫ It usually forms in a real scalar field with (approximately) adiabatic 

conserved quantity. 

⚫ Given fixed adiabatic quantity I0, it is energetically favored.

By ChatGPT

φ ≠ 0

φ ➔ 0 (r ➔ ∞)



Oscillon/I ball solution
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Oscillon/I ball as analogy of Q ball :

Equation of motion:
e.g.

(Mukaida & Takimoto 2014, etc)



Non-relativistic limit
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LNR respects U(1) symmetry : 

Adiabatic 

invariance

Rapid oscillating parts (more than 𝑒𝑖𝒎𝑡) 

averaged to be zero over a period



(Approximate) Charge Conservation
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LNR respects U(1) symmetry : 

is conserved

Oscillon  :  “Q ball” solution minimizing Ε for given Q0

Bounce solution :  

Existing conditions :  



Oscillon from Adiabatic Invariance
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Adiabatic invariant :

What’s the physical meaning of Q                             ?

⚫ Periodic system characterized by some parameter λ(t) satisfying 

(T : period)

⚫ Scalar field system : 

Oscillon/I ball is long-lived thanks to this adiabatic invariance. 

(Kasuya et al. 2002, etc)



Oscillon configurations
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EOM : 

Radius shrinks first and amplitude decreases 

when oscillon becomes small.



End of Oscillon
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decay direction

⚫ Adiabatic charge : 

⚫ Time-averaged energy : 𝜔𝑒𝑛𝑑

“Energetic end” at ത𝐸𝒆𝒏𝒅(𝜔𝒆𝒏𝒅) where
𝜕 ത𝐸

𝜕𝜔
= 0

Oscillons cannot be stable against small perturbations for 𝜔 > 𝜔𝒆𝒏𝒅, 

which we define as the end of oscillons and use it to estimate its lifetime.



Semi-analytic estimate of 

decay and lifetime of oscillons
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(Ibe et al. 2019, Zhang et al. 2020)

outgoing spherical waves

Energy decay rate and lifetime:

With Green’s function technique, 𝜉 𝑡, 𝑟 can be solved in terms of 𝜓 𝑟 and 𝜔. 

For 𝑽𝐧𝐥 𝜙 = −𝜆𝜙4 + 𝑔6𝜙
6

Ξ3 𝜅3  : dominant mode



Numerical estimate of 

decay and lifetime of oscillons
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decay direction

ത𝐸𝒆𝒏𝒅

ത𝐸𝒆𝒏𝒅

zero points of Ξ3 𝜅3



Inflaton must couple to another field to 

reheat the universe.
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What’s the effect of an external field 

on oscillons ?

Let’s consider an interaction 𝒈𝝓𝟐𝝌𝟐

as an example.

Siyao Li, MY, Ying-li Zhang, 2507.13276 [hep-ph]

(c.f. Shafi et al. 2024)



Effects of external field χ on oscillons
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EOM of χ

Mathieu-like equation

Floquet theorem:    𝜒𝑘(𝑡) ∝ 𝒫𝑘 𝑡 𝑒𝜇𝑘𝑡

For Re[𝜇𝑘] > 0, 𝜒𝑘 grows as 𝑒Re[𝜇𝑘]𝑡.

( 𝜒𝑘 ∶ Fourier mode of 𝜒(𝑟),  Ψ 𝑘 : Fourier mode of 𝜓2 𝑟  )

Convolution because of the inhomogeneity of 𝝓



Neglecting inhomogeneous oscillon profile

30

EOM of χ
Standard Mathieu equation

tachyonic
broad 
band

narrow 
bands

(Tachyonic instability, Ak <  0)

For g > 0 (attractive interaction),

in the first narrow band,

For g < 0 (repulsive interaction),

𝝍𝟐 𝒓 ⇒ 𝝍𝟐 𝟎 = 𝝍𝟎
𝟐 : homogeneous profile !! 



Inhomogeneous oscillon profile
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Numerical calculation : 

𝜙: fixed as oscillon profile, 𝜙 = 2𝜓 𝑟 cos(𝜔𝑡)
𝜒: initially Gaussian function

Energy density of χ sector: 

We fit the Floquet exponent, Re(μ), by 𝑬𝝌 𝒕 ∝ 𝒆𝟐𝐑𝐞(𝝁)𝝎𝒕

R

𝜒 particles

escape

𝜙 oscillon

Inhomogeneous oscillon profile prevents resonance because of

Particle escaping from the resonance region, i.e. oscillon radius.

Homogeneous Floquet analysis 

for mχ = 0



You may wonder if

the lifetime of oscillons with external 

coupling would be 𝝉 ∼
𝟏

𝐑𝐞[𝝁]

because, once the resonance starts, 

oscillons would be destroyed immediately ?
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We evolve the EoM of two fields numerically, starting from initial conditions:

➢ 𝜙: oscillon profile as 𝝓 = 𝟐𝜓 𝑟 cos(𝜔𝑡)

➢ 𝜒: time-averaged profile from previous simulation

Two-field simulation
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Two-field simulation (g > 0)

Top: 𝜔/𝑚 = 0.85, 𝑚𝜒/𝑚 = 0.3, 𝑔/𝜆 = 1.0 Bottom: 𝜔/𝑚 = 0.83, 𝑚𝜒/𝑚 = 0.3, 𝑔/𝜆 = 1.0

Even though the resonant growth of χ happens, 

the oscillon is not necessarily destroyed immediately => different profile !!

Critical oscillon

energy, ത𝐸0
osc, below 

which Re[μ] = 0
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Two-field simulation (g < 0)

Critical oscillon

energy, ത𝐸0
osc, below 

which Re[μ] = 0

Top :𝜔/𝑚 = 0.84, 𝑚𝜒/𝑚 = 0.6, 𝑔/𝜆 = −1.0,      Bottom:𝜔/𝑚 = 0.84, 𝑚𝜒/𝑚 = 0.6, 𝑔/𝜆 = −0.8

χ causes Eϕ to drop below Eend, 

thereby driving the oscillon to immediate destruction.



Oscillon lifetime with external coupling
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Total lifetime :

⚫ i runs different stage from initial 𝑬𝐢𝐧𝐢 to 𝑬𝟎
𝐨𝐬𝐜

,  

and the first term becomes zero if  𝑬𝐢𝐧𝐢 ≤ 𝑬𝟎
𝐨𝐬𝐜

.

⚫ 𝝉𝐬𝐢𝐧𝐠𝒍𝒆(𝑬𝟎

𝐨𝐬𝐜
) = 0  if  𝑬𝟎

𝐨𝐬𝐜
≤ 𝑬𝐞𝐧𝐝



Summary

⚫  Q balls are stable, spherical symmetric, localized field configuration, 

whose stability is guaranteed by U(1) symmetry.

⚫ They are paid attention to in the context of baryogenesis.

⚫ Oscillons/I balls are long-lived, spherical symmetric, 

localized field configuration, 

whose long lifetime is guaranteed by adiabatic invariance.

⚫ They are paid attention to in the context of attractor models of inflation

like Starobinsky inflation. 

⚫ We have discussed the effects of an external field on oscillons.

⚫ Even though the resonant growth of χ happens, 

the oscillon is not necessarily destroyed immediately.

⚫ We gave the rough estimate of lifetime of oscillons.
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