

More axion stars and GWs from strings

[2405.19389]

Outline

1. Axion dark matter abundance and stars

2. Gravitational waves from ALP strings

Pre-inflationary

$$\theta \equiv \frac{a}{f_a} \in [-\pi, \pi]$$
 $\Omega_a \simeq \theta_0^2 \left(\frac{f_a}{10^{12} \, {\rm GeV}}\right)^{1.2} \Omega_{\rm DM}$ misalignment

Post-inflationary

Observable universe

@
$$T \simeq f_a \text{ (or } H \simeq f_a)$$

Kibble mechanism \implies **Axion strings**

grows logarithmically in time

$$\mu = \frac{E}{L} \sim \frac{\pi f_a^2}{\log \frac{d}{m_r^{-1}}} \sim \pi f_a^2 \log \frac{m_r}{H}$$
axion gradient

The Scaling Regime

rate of energy loss:

$$\Gamma \simeq rac{\xi \mu}{t^3}$$

number of strings per Hubble patch

$$H^{-1}$$
 $\begin{cases} \vdots \\ \xi = 1 \end{cases}$ $\xi = 2$ $\xi < 1$ \vdots

Domain Walls

@
$$T \simeq 1 \text{ GeV} \quad (m = H \equiv H_{\star})$$

Axion potential from QCD:

$$\xi \to \frac{\log(m_r/H)}{4 \div 5}$$

$$\stackrel{\log o 70}{\longrightarrow} 15(2)$$

The Spectrum

$$n \sim \frac{\rho}{\langle k \rangle}$$

Davies, Shellard, ...

$$n \sim \frac{\rho}{H} \sim \xi \log f^2 H \sim \xi \log n^{mis}$$

$$\sim 10^3$$

Sikivie, ...

$$n \sim \frac{\rho}{H \log} \sim \xi f^2 H \sim \xi n^{mis}$$

$$n \sim \frac{\rho}{H} \left(\frac{H}{m_r}\right)^{1-q} \sim n^{mis} \left[\frac{H}{m_r}\right)^{1-q}$$

« 1

The Spectral Index

Running of
$$q$$
 \longrightarrow $q > 1$

$$f_a \simeq (1 \div 6) \cdot 10^{10} \text{ GeV} + \text{DW?}$$

Figure 18: The best fit values of q as a function of log for physical strings, with statistical error bars. Left: results with q fit over the momentum range $[30H, m_r/4]$ for data with lattice spacing at the final time $m_r\Delta_f=1.5$. Center: q fit in the range $[50H, m_r/6]$ for $m_r\Delta_a=1$. Right: q fit in the range $[50H, m_r/6]$ for $m_r\Delta_f=1.5$.

Formation of structures

Gravitational collapse vs quantum Jeans scale

overdensity ρ \overbrace{R}

spatial size of the overdensity

de Broglie wavelength of the particles in the resulting clump

 $\frac{1}{mv}$

$$\simeq \frac{1}{m(\frac{GM}{R})^{1/2}} \simeq \frac{1}{R(4\pi G\rho m^2)^{1/2}}$$

$$4\pi \rho R^3/3$$

$$R_{\rm crit} \simeq \lambda_J \simeq (16\pi G \rho m^2)^{-1/4}$$

quantum Jeans length $\lambda_J = 2\pi/k_J$

smallest scale an overdensity can have before wave effects (quantum pressure) have to be considered

The standard lore after DW decay

quantum Jeans scale

$$k_J \equiv (16\pi G \rho m^2)^{\frac{1}{4}}$$

@MRE

$$\left. \frac{k_p}{k_J} \right|_{\text{MRE}} \simeq \left(\frac{f_a}{M_p} \right)^{1/3} \frac{k_{p\star}}{H_{\star}} \sim 10^{-3} \frac{k_{p\star}}{H_{\star}}$$

Naive because k_p increases due to the self-interactions and becomes of order k_J

The remarkable coincidence

Axion stars:

Bose Star
$$\lambda_{dB}$$
 $1/k_p$

$$\begin{cases} \dot{\psi} + \frac{\nabla^2}{2m}\psi + m\Phi\psi = 0 \\ \nabla^2\Phi = 4\pi G|\psi|^2 \end{cases} \rightarrow \begin{cases} \nabla^2\sqrt{\rho} = 2m^2\Phi\sqrt{\rho} \\ \nabla^2\Phi = 4\pi G\rho \end{cases} \qquad \rho = |\psi|^2$$

 $0.5 < \frac{a}{a_{\rm eq}} < 7$

Axion stars properties:

$$\bar{R}_{0.1} \approx 2.1 \cdot 10^6 \text{ km } \left(\frac{10^{10} \text{ GeV}}{f_a}\right)^{\frac{1}{2}} \qquad v_a \approx \text{mm/s}$$

Axion stars (after MRE):

e.g. for
$$\begin{cases} M_s = 10^{-19} M_{\odot} \\ f_a = 10^{10} \text{ GeV} \\ f_s = 0.1 \end{cases} \longrightarrow \begin{cases} n_s^{-1/3} = 1.4 \cdot 10^8 \text{ km} \\ \tau_{\oplus} = 5 \text{ yrs} \\ \Delta t \simeq 8 \text{ hrs} \end{cases}$$

Gravitational waves from ALPs

Gravitational Waves

String Effective Theory

- 1) GW energy emission rate: $\Gamma_g(t)$
- 2) momentum distribution: $\frac{\partial \Gamma_g}{\partial k}$

Degrees of freedom:

$$\bullet \ a \longleftrightarrow A_{\mu\nu}$$

•
$$X^{\mu}(\tau,\sigma)$$

$$\partial A \sim F^{\mu\nu\rho} = \epsilon^{\mu\nu\rho\sigma} \partial_{\sigma} a$$

$$S_{\rm eff}[X,A] = -\mu \int d\tau d\sigma \sqrt{-\gamma} - \frac{1}{6} \int d^4x \; (\partial A)^2 + \frac{2\pi f_a}{2\pi f_a} \int d\tau d\sigma \; \partial_\tau X^\mu \partial_\sigma X^\nu A_{\mu\nu}$$

$$Nambu-Goto \; action \\ \gamma_{ab} = \partial_a X^\mu \partial_b X_\mu$$
Axion kinetic term
$$\gamma_{ab} = \partial_a X^\mu \partial_b X_\mu$$
Axion kinetic term
$$(Kalb-Ramond \; action)$$

- 1) GW energy emission rate: $\Gamma_g(t)$ 2) momentum distribution: $\frac{\partial \Gamma_g}{\partial k}$

Gravitational Wave Emission

1) GW energy emission rate: $\Gamma_g(t)$

2) momentum distribution: $\frac{\partial \Gamma_g}{\partial k}$

EoM:
$$\Box_x A^{\mu\nu} = 2\pi f_a \int d\sigma \dot{X}^{[\mu} X^{\prime\nu]} \delta^3(\vec{x} - \vec{X})$$

Einstein Eq:
$$\Box_x h^{\mu\nu} = 16\pi G \left(T_s^{\mu\nu} - \frac{1}{2} \eta^{\mu\nu} T_{s\lambda}^{\lambda} \right)$$

$$T_s^{\mu\nu} = \prod d\sigma \left(\dot{X}^{\mu} \dot{X}^{\nu} - X'^{\mu} X'^{\nu} \right) \delta^3(\vec{x} - \vec{X})$$

$$\frac{dE_a}{dt} = r_a[X] f_a^2 \qquad \frac{dE_g}{dt} = r_g[X] G \mu^2$$

dimensionless functionals of the shape of the string trajectory X^{μ}

$$\Gamma_g = r \frac{G\mu^2}{f_a^2} \Gamma_a \propto \frac{\log^4}{t^3}$$

$$\frac{r_g[X]}{r_a[X]} = \text{const} = \mathcal{O}(1)$$

$$\frac{\xi \mu}{t^3}$$

Comparison with field theory simulations

- 1) GW energy emission rate: $\Gamma_g(t)$
- 2) momentum distribution: $\frac{\partial \Gamma_g}{\partial k}$

The Gravitational Wave Spectrum

1) GW energy emission rate: $\Gamma_g(t)$

2) momentum distribution: $\frac{\partial \Gamma_g}{\partial k}$

• approximately scale invariant

time increases

• \log^4 enhancement

See also: C. Chang and Y. Cui, [1910.04781]

Y. Gouttenoire, G. Servant, P. Simakachorn [1912.02569]

D. Figueroa + [2007.03337]; Baeza-Ballesteros + [2308.08456]

Bounds on the Post-Inflationary Scenario

Conclusions

• Post-inflationary abundance **uncertain**, despite progress $f_a \lesssim 10^{10}\,\text{GeV} \quad \text{or} \quad m_a \gtrsim 0.5\,\text{meV} \quad \text{from dark matter over-production}$

- Axion star formation enhanced at MRE
 - → Potential for new observational opportunities

• **GWs** from ALP strings observable for $f_a \gtrsim 10^{14} \, \text{eV}$

Backup

Advert:

Solar halos of ultra-light dark matter

• DM is
$$\phi$$
 with $V(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{4}\frac{m^2}{f_a^2}\phi^4 + \dots$

$$R_{\star} = \frac{1}{m\alpha} = 1 \,\text{AU} \left[\frac{1.3 \cdot 10^{-14} \,\text{eV}}{m} \right]^{2}$$

$$\frac{GM_{\odot}m}{\text{Bohr radius}}$$

Capture dominates over stripping when:

$$v_{\rm dm} \simeq 10^{-3} \lesssim 2\pi \,\alpha$$

i.e. if
$$m \gtrsim 1.5 \cdot 10^{-14} \,\text{eV}$$

$$\dot{N}_{\rm bound} \sim \Gamma(m, f_a) \cdot N_{\rm bound} \rightarrow N_{\rm bound} \propto e^{\Gamma t}$$

density profile after 5 Gyr

- bands have $v_{\rm dm} = 50 \div 240 \, \rm km/s$
- f_a (or λ) fixed in $10^7 \div 10^8 \,\mathrm{GeV}$