Haloscopes and the Search for **Axion Dark Matter**

Reina Maruyama Yale University

Axions in Stockholm 2025 June 23 - July 11, 2025

Amazing Images from Vera Rubin Observatory!

1970's: Vera Rubin and co. found that rotation curves are flat, indicating presence of dark matter

Rotation Curve of Galaxies

"What you see in a spiral galaxy ... is not what you get."

Evidence for Dark Matter

All consistent with ~25% dark matter

3

Characteristics of dark matter

Naturally give right cosmic density

- thermal production in hot primordial plasma.

Matches requirements from DM evidence

- Non-baryonic
- non-relativistic and exerts gravity
- Interact little with ordinary matter
- Stable and long-lived
- local density: $\rho = 0.4 \text{ GeV/cm3}$

l plasma

Dark Matter Candidates: Cartoon Version

Snowmass 2021 Cross Frontier Report on Dark Matter Complementarity

Dark matter mass

Strong Charge-Parity (CP) Problem

- CP symmetry violated in the weak force but not in the strong force
 - Weak force: CP violation in neutral kaon decays
 - Strong force: would lead to a neutron EDM $d_N = (5.2 \times 10^{-16} \text{e} \cdot \text{cm}) \bar{\theta}$
- Current experimental limits: $d_N < 10^{-26} \text{e} \cdot \text{cm} \rightarrow \bar{\theta} < 10^{-10}$

Solution: the Axion

Dark Matter Astrophysical measurements of gravitational interaction

(m)

e 10⁻²²

MQ 10⁻²⁴

 10^{-26}

1950

Strong CP Problem No neutron electric dipole moment

Adapted from M. Silva-Feaver

Solution to "clean up" both problems

Axion coupling and bounds

Lower bound from universe ulletoverclosure

Ways to look for Axions

Adapted from J. Vogel

Light-Shining-Through-Wall Experiment

Laboratory-based experiments producing and detecting axions

<u>Helioscope</u>

Scientific instrument designed to detect axions or axion-like particles (ALPs) coming from the Sun

Haloscope

Scientific instrument designed to detect axions in the Milky Way halo

Axion Searches: Current Status and Reach

 10^{0}

Explore the axion + ALP parameter space with:

- Haloscopes
- Light-shining-through-wall experiments
- Helioscopes

Adapted from Julia Vogel, ESPPU 2026

Haloscope Dark Matter Searches

Julia Vogel, ESPPU 2026

11

Axions' Pre-vs. Post-Inflation Production

Pre-inflation axion –

wide range of viable masses. "GUT-scale" axion.

Mass: below 1 µeV **Typical Measurement:** Lumped element detectors

Adapted from Max Silva-Feaver 12

Detecting Axion Dark Matter

The Axion Haloscope

Magnet

- Axions modify Maxwell's equation and produce an effective AC current, which couples Axions to EM.
- High Q-factor cavity to capture photons produced through axion-photon conversion
- Measuring our local dark matter halo = "haloscope"

Figure: Kowitt, Balatendiev et al. (2023) *Tunable wire metamaterials for an axion haloscope*

Haloscope principle: P. Sikivie, Phys. Rev. Lett., 51, 1415 (1983)

Detecting Axions

Signal Power:

$$P \propto B^2 C V Q \simeq 10^{-24} \mathrm{W}$$

- B = External field
- V = Cavity Volume
- Q =Quality Factor
- C = Overlap of cavitymode & magnetic field

System Noise:

$$k_b T_{sys} = h\nu \left(\frac{1}{e^{h\nu/k_b T} - 1} + \frac{1}{2}\right) + k_b T_A$$

 T_{sys} = System temp. T = Cavity temperature T_A = Amp. noise temp.

Requirements: Low T and custom amplification

Figure of Merit: (FOM) $\frac{d\nu}{dt} \propto \frac{V^2 B^4 C^2 Q}{T_{sys}^2}$

Challenge: Do experiments in human timescales!

ADMX

Principles of ADMX Gold standard

Psig **kT**S n

FFT

$P_{sig} \sim (B^2 V Q_{cav} C_{010}) (g^2 m_a \rho_a) \sim 10^{-24} W$

This axion lineshape has been exaggerated. A real signal would hide beneath the noise in a single digitization. An axion detection requires a very cold experiment and an ultra low noise receiver-chain.

System noise temp. $T_S = T_{phys} + T_N$ *T_{Quant}* ~ 48 *mK* @ 1 *GHz* t = Integration time *limited to ~ 100 sec*

Unknown axion mass requires a tunable resonator

$$\frac{df}{dt} \approx 1.68 \text{ GHz/year } \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{1 \text{ GHz}}\right)^2 \left(\frac{\rho_0}{0.45 \text{ GeV/cc}}\right)^2.$$
$$\left(\frac{5}{SNR}\right)^2 \left(\frac{B_0}{8 \text{ T}}\right)^4 \left(\frac{V}{100l}\right)^2 \left(\frac{Q_L}{10^5}\right) \left(\frac{C_{010}}{0.5}\right)^2 \left(\frac{0.2 \text{ } K}{T_{sys}}\right)^2.$$

Carosi, Axions Beyond Boundaries Workshop – 2023

ADMX Experimental Layout

Field Cancellation Coil

SQUID Amplifier Package

Dilution Refrigerator

Antennas

8 Tesla Magnet

Microwave Cavity

Tuning Rods

Lawrence Livermore National Laboratory

Carosi, Axions Beyond Boundaries Workshop – 2023

ADMX 2024 Results

Over the range explored:

- KSVZ Axion Model at nominal dark matter density excluded at 90% confidence between 1 GHz and 1.3 GHz
- DFSZ Axion Model at slightly higher densities excluded

https://arxiv.org/abs/2504.07279

ADMX Near Future

Work in the next few years:

- Extend reach down to DFSZ at below-nominal dark matter density
- 2. Extend sensitivity to higher masses using a multicavity system

Next Year – 4 cavity system

• Power from 4 cavities are combined coherently to maintain detector volume at higher frequencies

Rybka -Berkeley Axion Workshop - 2025

CAPP-9T

CAPP-12TB

22

CAPP-8TB SungWoo Youn

CAPP-8T

CAPP-12T (12T/96m) 10^{0} 3-cell + JPA (5.3 GHz, 400 mK) KSVZ sensitivity NM algorithm PRL 133 051802 (2024) UF 3 RBF CAPP IX 10 0

 $m_a \; [eV]$

24

 $m_a \ [eV]$

Search for QCD Axions in CAPP

25

PRL 130 071002 (2023) Extended scan (Af~120 MHz) PRX 14 031023 (2024) Ready for 300-MHz run w/ SC cavity

- CAPP has established a world-class facility for axion search
- Novel R&D efforts and productive scientific results
- Substantial contributions to exploring the parameter space

 The effort was taken over in 2025 by a smaller group, DMAG (Dark Matter Axion Group), the successor to CAPP.

Axion Searches at Yale

Nature **590**, 238–242 (2021) PRD 107 072007 (2023) PRL 134, 151006 (2025) *Editors' Suggestion*

OX alpha Phase1

PRL **123**, 141802 (2019) PRD 107, 055013 (2023)

https://axion-dm.yale.edu/²⁷

Phys. Rev. D 109, 032009 (2024)

HAYSTAC Experiment

..........

Microwave cavity

Haysta**c**

..........................

HAYSTAC Innovations: Phase 1 Josephson Parametric Amplifier (JPA)

- Near quantum-limited noise
- Tunable LC resonators
- Phase-sensitive amplifier

Brubaker et al., PRL 118 061302 (2017)

Ben Brubaker

HAYSTAC: Phase 2

- Dark matter search enhanced by quantum squeezing
 - LIGO the other experiment that uses squeezing to enhance signal
- -4dB noise reduction \bullet
- x2 speedup

Kelly Backes, Dan Palken

Malnou et al., Phys. Rev. X 9, 021023 (2019) Backes et al., Nature, 590, 238 (2021)

Results from Phase II

- Phase II covered 550MHz of unexplored parameter space
 - With 413MHz covered in new data
 - Remaining gaps are inaccessible due to mode crossings
- No evidence of an axion signal

• 90% Aggregate exclusion $|g_{\gamma}| > 2.86 |g_{\gamma}^{KSVZ}|$ over all Phase II

Final Exclusion

Combined with Phase I we have covered ~750 MHz @ 4 – 6GHz

Xiran Bai

Mike Jewell

HAYSTAC in 2025

Visible on log-log scale!

Pushing the Frontiers: New Techniques

HAYSTAC: Beyond Phase II P-IIIa

HAYSTAC: Beyond Phase II P-IIIa

Rev.Sci.Instrum. 92 (2021)

Lehnert Group: Y. Jiang et al., PRX Quantum 4 (2024)

P-IV

HAYSTAC: Beyond Phase I an Bibber Group P-IIIa

Rev.Sci.Instrum. 92 (2021)

Lehnert Group: Y. Jiang et al., PRX Quantum 4 (2024)

cavities get smaller at higher frequencies

HAYSTAC

Solution: decouple cavity size from mass

MADMAX: Magnetized Disc and Mirror Axion experiment

MADMAX: First Axion Search with CB200

- \bullet
- World best limits for axion masses 76.5-76-8 μ eV and 79.5-79.7 μ eV \bullet
- First axion dark matter limit using dielectric haloscope \bullet

arXiv:2409.11777 Accepted for publication in PRL

Five data runs in two configurations ~ 18.5 GHz and 19.2 GHz (in total 100 MHz frequency range covered)

Dagmar Kreikemeyer-Lorenzo, MADMAX

MADMAX: Dark Photon Searcn

- Dark photon dark matter search with OB300 \bullet (no magnetic field)
 - OB300 with 3 fixed disks + a Cu mirror
 - Custom-made receiver system
 - Setup at room temperature
 - 12 days of data-taking
- Boost factor determination
 - using in-situ bead-pull method (JCAP 04 (2023) <u>064</u>, <u>JCAP 04 (2024) 005</u>)
 - β^2 peak ~ 600
 - Broadband config.: frequency covered 1.2 GHz
- No signal excess being observed
- First DPDM exclusion limit with MADMAX •

World-best exclusion limit (95% CL) \rightarrow 1-3 order of magnitude below previous limits

Dagmar Kreikemeyer-Lorenzo, MADMAX

12

BREAD in a Nutshell

broadband axion detector from µeV (GHz) to eV (Infrared)

Stefan Knirck | BREAD

BREAD Reflector Prototypes

GigaBREAD (10-12GHz, 300K, 4T) first physics results

Stefan Knirck | BREAD

InfraBREAD (infrared, cryo) construction & testing

8T cryogenic (GHz, THz) in preparation

GigaBREAD: First Science Results

Stefan Knirck | BREAD

Axion-Like-Particle Run (2024)

BREAD: Next Steps

Stefan Knirck | BREAD

W Higher Signal: Large-Volume Resonators

Multilayer Haloscope

Existing Diel. Stacks at Harvard:

> 100 GHz

- Idea in Lawson, Millar, Pancaldi, Vitagliano & Wilczek, Phys. Rev. Lett. 123 (2019)
- Allows for larger volumes/higher power for high frequencies than traditional approaches
- + HAYSTAC-like quantum detectors for readout

Kowit et al, *Phys.Rev.Applied* 20 (2023)

Solution: plasmonic resonance

Credit: J. Gudmundsson Sikivie (1983), PRL Lawson et al. (2019), PRL

ALPHA Phase I Resonators

Spiral Tuning Mechanism Junu Jeong, Stockholm Group

12.483 GHz

10.678 GHz

Quadropode Spinor Mechanism

Shriram Sadashivajois, K van Bibber, UCB Group

Dimension (m)

0.1

6-arm Protoype cavity

ALPHA: Projected Sensitivity

European Strategy for Particle Physics

Axions' Pre-vs. Post-Inflation Production

Pre-inflation axion –

wide range of viable masses. "GUT-scale" axion.

Mass: below 1 µeV **Typical Measurement:** Lumped element detectors

Adapted from Max Silva-Feaver 51

A Broadband / **Resonant Approach** to **Cosmic Axion Detection with an Amplifying B-field Ring Apparatus**

ABRACADABRA

Based on Kahn, Safdi and Thaler, Phys.Rev.Lett. 117 (2016) no.14, 141801

Real Magnetic Field!

A real magnetic field induced in a zero field region.

ABRA Readout Options:

Option #1 - Broadband Readout

- pickup loop directly coupled to the SQUID
- simultaneous scan of all frequencies
- simple and fast

Option #2 - Resonant Readout

- pickup loop coupled to the SQUID through a resonant circuit
- scan across all frequencies
- signal enhancement by $Q_{value} P 10^6$ resonance but significant enhancement of sidebands as well
- better ultimate sensitivity

For a review of this issue see Chaudhuri, Irwin et al. arXiv:1803.01627

<u>BRACADABRA</u>⊳

ABRACADABRA

A staged approach to searching for QCD axions at sub-µeV masses

ABRA-10cm

DMRadio-50L

DMRadio-m³

DMRadio-GUT

More lumped-element detection

DMRadio-50L construction underway now

First gravitational wave results from ABRA-10cm

arxiv:2504.2039

6

arxiv:2505.0282

Sensor R&D: Optimal SQUID chain SQL-beating RQUs

Resonant readout R&D: High Q passive resonators Beyond Bode-Fano

ML-based denoising

arxiv:2210.0557

arxiv:2406.04378

QUAX Experiment

- Look for an axion "wind" which acts as an effective RF magnetic field on electron spin via electron-axion coupling

This axion induced RF excites magnetic transition in a magnetized sample (Larmor frequency) and produces a detectable signal

Summary & Outlook

- Axions are a great dark matter candidate and solve the strong-CP problem
- Exciting developments so much I did not cover!
- New experiments, new technologies, new ideas, new people
 - Cavities, quantum sensors, magnets, …
- Potential for discovery in the next decade.
- Discussions this afternoon

Special thanks to everyone who provided slides

