

Thanks to the organizers!! I won't say it, I only have 5 minutes

Cosmology of preferred axion models

AXIONS IN STOCKHOLM, CONFERENCE (WEEK 2), JUNE/JULY 2025

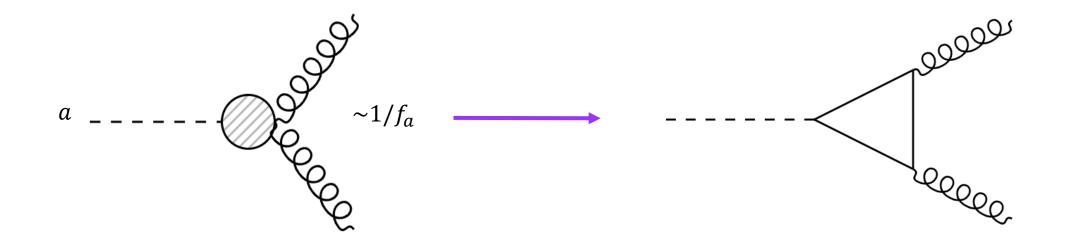
<u>Andrew Cheek,</u> TDLI, SJTU, Shanghai, China Based on <u>JCAP 03 (2024) 061</u>, <u>JCAP 03 (2025) 014</u> and <u>arXiv:2505.04614</u> With J. Osinski, L. Roszkowski, U. Min, A. Ghoshal and D. Paul

Axion dark matter: a simple solution

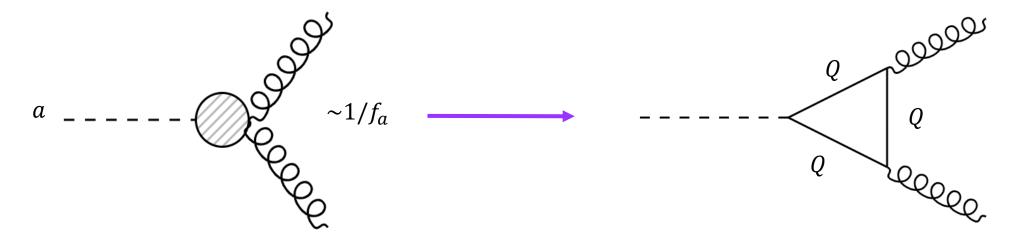
- The QCD axion provides an elegant solution to the strong CP and dark matter problems
- All comes from the spontaneously broken $U(1)_{PQ}$ and the anomaly term

$$\mathcal{L}_{\text{eff}}^{a} = \frac{a\left(t,x\right)}{f_{a}} \frac{\alpha_{s}}{8\pi} G_{\mu\nu}^{a} \tilde{G}_{a}^{\mu\nu} \qquad a \cdots \otimes \mathcal{O}_{a}^{\mu\nu} \tilde{G}_{a}^{\mu\nu} - 1/f_{a}$$

Axion models: not so simple



Axion models: not so simple



- KSVZ axion models generate this term by introducing a 'heavy quark'.
- This setup can have charge configurations that **avoid** the domain wall problem.

Preferred axion models

Models where

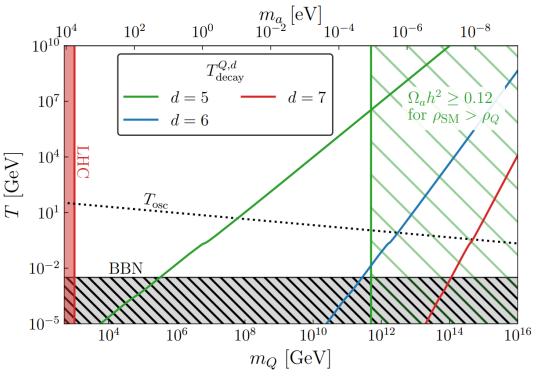
1) Misalignment doesn't overproduce axions

2) Q decay occurs before BBN
(Important in post-inflationary PQ breaking)
↓ ↓ ↓ ↓ ↓ ↓

Preferred axion models decay via dimension 5 at most!

$$\mathcal{L}_{Qq} = \mathcal{L}_{Qq}^{d \leq 4} + \frac{1}{\Lambda^{(d-4)}} \mathcal{O}^{d>4} + \text{h.c.}$$

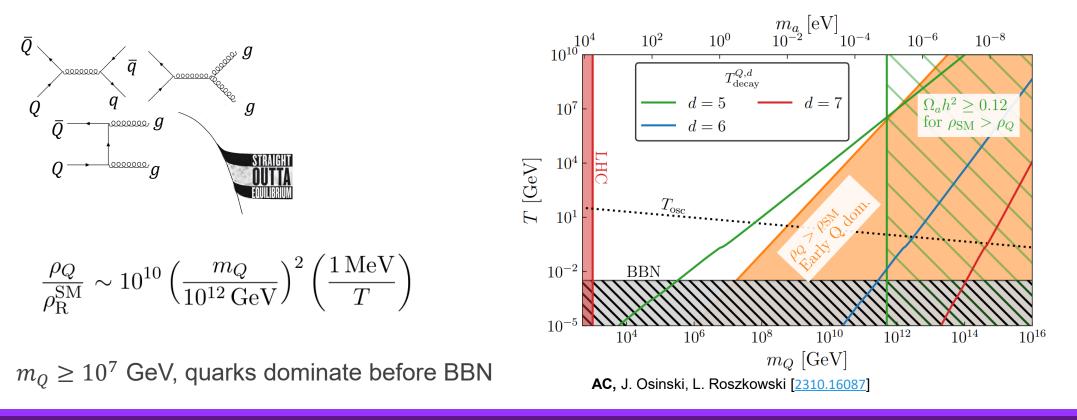
Put forward by Luzio, Mescia and Nardi in <u>PRL 118 (2017)</u> 3, 031801 and <u>PRD 96 (2017) 7, 075003</u>.



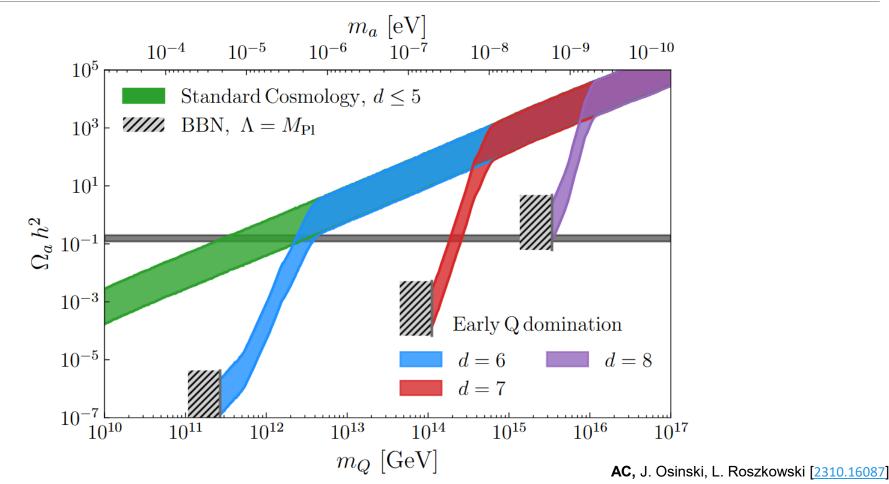
 ΔN_{eff} constraints of these models studied in **AC** + Ui Min [arXiv:2411.17320]

Preferred axion models too restrictive

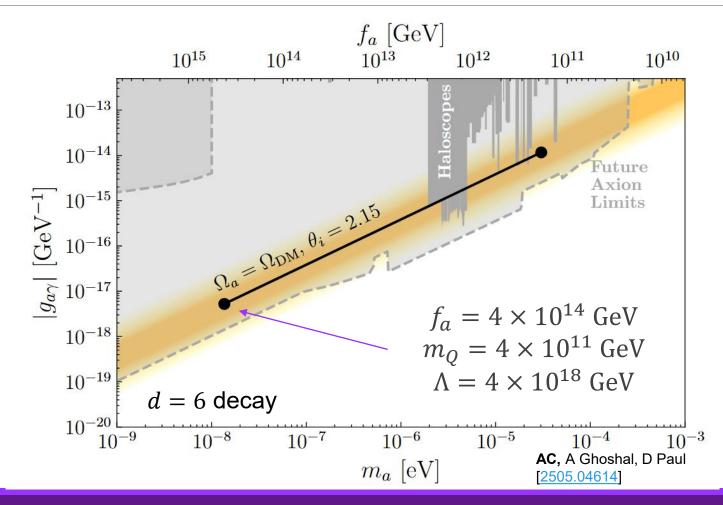
 Constraints on heavy quark decay terms assumed standard cosmology and ignored impact of heavy quarks themselves on the cosmology



Heavy quark domination dilutes Ω_a

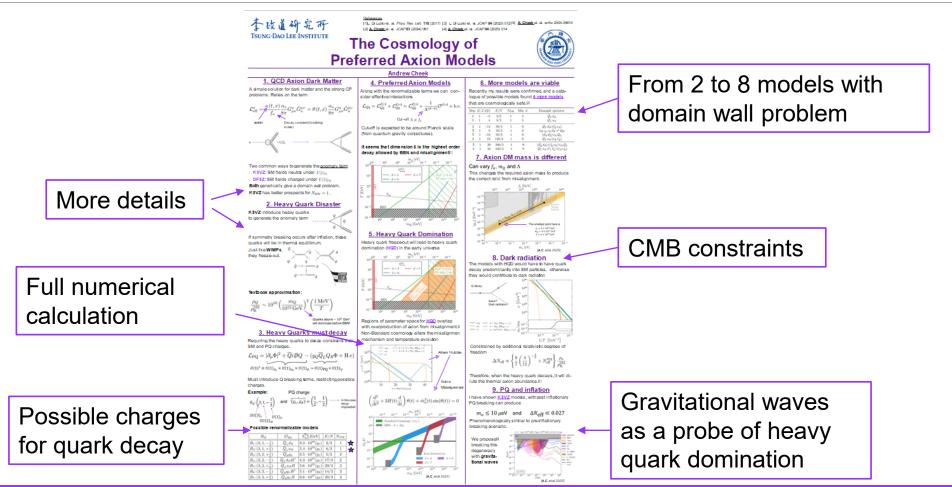


Axion DM mass can be lower



4 models at this dimension don't have a domain wall problem.

More physics on my poster



Back-up slides

谁让你非要问的!

QCD axion as dark matter

Misalignment production in standard cosmology

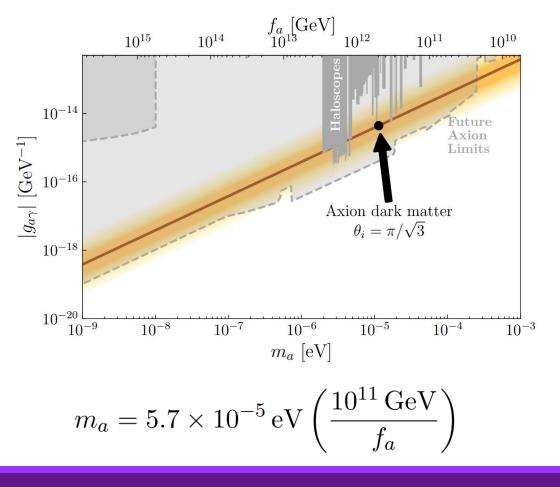
$$\Omega_a h^2 \approx 0.12 \, \left(\frac{\theta_{\rm i}}{2.15}\right)^2 \left(\frac{28 \ \mu {\rm eV}}{m_a}\right)^{7/6}$$

In the post-inflationary breaking you expect random θ_i in range $[-\pi, \pi)$.

Take random values in each Hubble patch

$$\theta_i \equiv \sqrt{\langle \theta_i^2 \rangle} = \frac{\pi}{\sqrt{3}} \simeq 1.81 \xrightarrow{} \approx 2.15$$

Anharmonic corrections

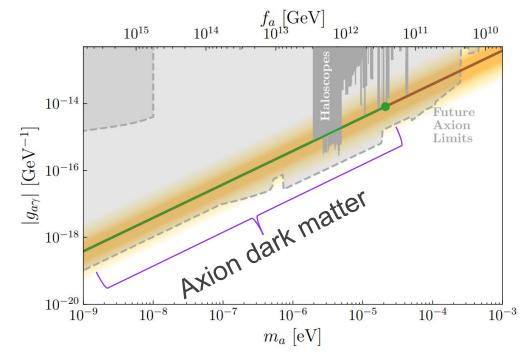


PQ breaking and inflation

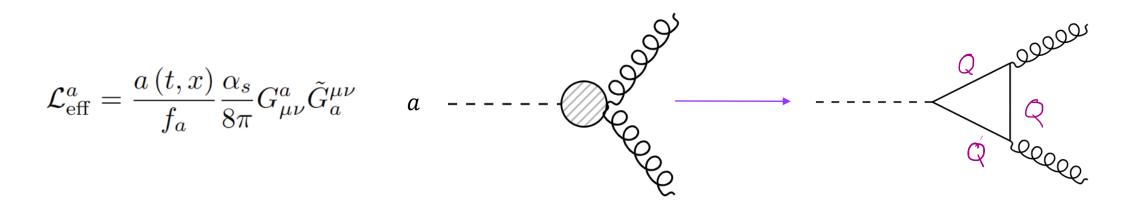
• If PQ symmetry is broken before inflation, the whole observable universe has the same initial angle θ_i , QCD axion could be much lighter.

$$\Omega_a h^2 \approx 0.12 \, \left(\frac{\theta_{\rm i}}{2.15}\right)^2 \left(\frac{28 \ \mu {\rm eV}}{m_a}\right)^{7/6}$$

- The discovery of a light axion would be an indication of pre-inflationary PQ breaking.
- Other phenomenological considerations,
 - Thermal axion contributions to dark radiation.
 - Isocurvature bounds on scale of inflation.



Complicated by completions



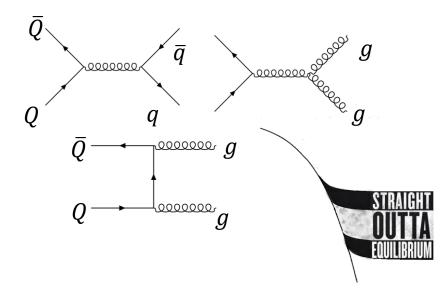
UV completions must involve strongly coupled particles.

KSVZ: SM fields are $U(1)_{PQ}$ neutral \longrightarrow Introduce heavy quarks which need to decay \bigstar DFSZ: SM fields are charged under $U(1)_{PQ} \longrightarrow$ suffer from a domain wall problem \bigstar

These problems can be avoided with pre-inflationary PQ breaking

Heavy quark disaster

These new strongly interacting massive particles undergo thermal freeze-out in a similar way to weak-scale dark matter, but now they are more massive and overproduced!



Assuming stable Q,

$$Y_Q^\infty \approx \frac{x_f}{\lambda} \approx \frac{10 \, H(m_Q)}{m_Q^3 \langle \sigma v \rangle}$$

leads to

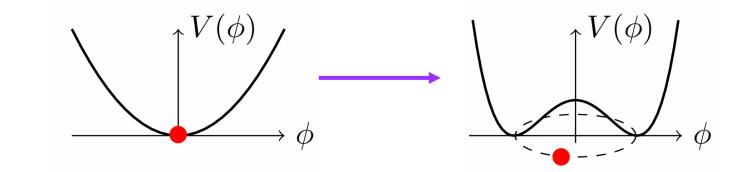
$$\frac{\rho_Q}{\rho_{\rm R}^{\rm SM}} \sim 10^{10} \left(\frac{m_Q}{10^{12}\,{\rm GeV}}\right)^2 \left(\frac{1\,{\rm MeV}}{T}\right)$$

 $m_Q \ge 10^7$ GeV, quarks dominate before BBN

How heavy is the quark?

The **KSVZ** quark gets its mass from $U(1)_{PQ}$ symmetry breaking

$$\mathcal{L}_{PQ} = |\partial_{\mu}\Phi|^2 + \overline{Q}iDQ - (y_Q\overline{Q}_LQ_R\Phi + H.c)$$



 $\Phi \rightarrow (v_{\varphi}/\sqrt{2})e^{ia/f_a}$ so $m_Q = y_Q f_a/\sqrt{2}$, typical choice is $y_Q \approx 1$. So $m_Q \sim f_a$

Heavy quarks must decay

 If such heavy quarks will be overabundantly produced via freeze-out they must decay,

$$\mathcal{L}_{PQ} = |\partial_{\mu}\Phi|^2 + \overline{Q}iDQ - (y_Q\overline{Q}_LQ_R\Phi + H.c)$$

$$U(1)^3 \equiv U(1)_{Q_L} \times U(1)_{Q_R} \times U(1)_{\phi} \rightarrow U(1)_{PQ} \times U(1)_{Q}$$

- Must introduce Q-breaking term
- This is only possible for some charge assignments
- For example,

$$R_{Q}: \begin{pmatrix} 3, 1, -\frac{1}{3} \end{pmatrix} \text{ and } \underbrace{V}_{(\chi_{L}, \chi_{R})} = \begin{pmatrix} \frac{1}{2}, -\frac{1}{2} \end{pmatrix} \longrightarrow \text{ In this case, } \\ \frac{1}{2} \\$$

Not many choices for SM charges

Sticking with only renormalizable terms is already quite restrictive, especially if $N_{DW} = 1$

R_Q	\mathcal{O}_{Qq}	$\Lambda^{R_Q}_{LP}[\text{GeV}]$	E/N	N_{DW}
$R_1:(3,1,-\frac{1}{3})$	$\overline{Q}_L d_R$	$9.3 \cdot 10^{38}(g_1)$	2/3	1
$R_2:(3,1,+\frac{2}{3})$	$\overline{Q}_L u_R$	$5.4 \cdot 10^{34}(g_1)$	8/3	1
$R_3:(3,2,+\frac{1}{6})$	$\overline{Q}_R q_L$	$6.5 \cdot 10^{39}(g_1)$	5/3	2
$R_4:(3,2,-rac{5}{6})$	$\overline{Q}_L d_R H^\dagger$	$4.3 \cdot 10^{27}(g_1)$	17/3	2

R_Q	\mathcal{O}_{Qq}	$\Lambda^{R_Q}_{LP}[{\rm GeV}]$	E/N	N_{DW}
$R_5:(3,2,+\frac{7}{6})$	$\overline{Q}_L u_R H$	$5.6 \cdot 10^{22}(g_1)$	29/3	2
$R_6:(3,3,-\frac{1}{3})$	$\overline{Q}_R q_L H^\dagger$	$5.1 \cdot 10^{30}(g_2)$	14/3	3
$R_7:(3,3,+\frac{2}{3})$	$\overline{Q}_R q_L H$	$6.6 \cdot 10^{27}(g_2)$	20/3	3

L. Di Luzio et. al. [arXiv:1610.07593]

From here, can determine distinct models from PQ charges

$$\mathcal{O}_4^M = M_d \overline{Q}_L d_R, \quad \text{for } (\chi_L, \chi_R) = (0, -1), \quad \text{Model A},$$

$$\mathcal{O}_4^H = y_{1,q} H \overline{q}_L Q_R, \quad \text{for } (\chi_L, \chi_R) = (1, 0), \quad \text{Model B},$$

$$\mathcal{O}_4^\Phi = y_{2,d} \Phi \overline{Q}_L d_R, \quad \text{for } (\chi_L, \chi_R) = (1, 0), \quad \text{Model B},$$

$$\mathcal{O}_4^{\Phi^\dagger} = y_{3,d} \Phi^\dagger \overline{Q}_L d_R, \quad \text{for } (\chi_L, \chi_R) = (-1, -2), \quad \text{Model C}.$$

Not many choices for SM charges

Sticking with only renormalizable terms is already quite restrictive, especially if $N_{DW} = 1$

$R_Q \qquad \qquad \mathcal{O}_{Qq}$		$\Lambda^{R_Q}_{LP}[{ m GeV}]$	E/N	N_{DW}
$R_1:(3,1,-\frac{1}{3})$	$\overline{Q}_L d_R$	$9.3 \cdot 10^{38}(g_1)$	2/3	1
$R_2:(3,1,+\frac{2}{3})$	$\overline{Q}_L u_R$	$5.4 \cdot 10^{34}(g_1)$	8/3	1
$R_3: (3, 2, +\frac{1}{6})$	$\overline{Q}_R q_L$	$6.5 \cdot 10^{39}(g_1)$	5/3	2
$R_4: (3, 2, -\frac{5}{6})$	$\overline{Q}_L d_R H^\dagger$	$4.3 \cdot 10^{27}(g_1)$	17/3	2

R_Q	\mathcal{O}_{Qq}	$\Lambda_{LP}^{R_Q}[\text{GeV}]$	E/N	N_{DW}
$R_5:(3,2,+\frac{7}{6})$	$\overline{Q}_L u_R H$	$5.6 \cdot 10^{22}(g_1)$	29/3	2
$R_6:(3,3,-\frac{1}{3})$	$\overline{Q}_R q_L H^\dagger$	$5.1 \cdot 10^{30}(g_2)$	14/3	3
$R_7:(3,3,+\frac{2}{3})$	$\overline{Q}_R q_L H$	$6.6 \cdot 10^{27}(g_2)$	20/3	3

L. Di Luzio et. al. (PRL) [arXiv:1610.07593]

Can also go to the non-renormalizable level to determine the limit?

$$\mathcal{L}_{Qq} = \mathcal{L}_{Qq}^{d \leq 4} + \mathcal{L}_{Qq}^{d > 4} = \mathcal{L}_{Qq}^{d \leq 4} + \frac{1}{\Lambda^{(d-4)}} \mathcal{O}^{d > 4} + \text{h.c.}$$

This leads to decays which are suppressed by powers of $\Lambda \neq f_a$

$$\Gamma_{d,n_{f}} = \frac{m_{Q}}{4 \left(4\pi\right)^{2n_{f}-3} \left(n_{f}-1\right)! \left(n_{f}-2\right)!} \left(\frac{m_{Q}^{2}}{\Lambda^{2}}\right)^{a-4}$$

7 1

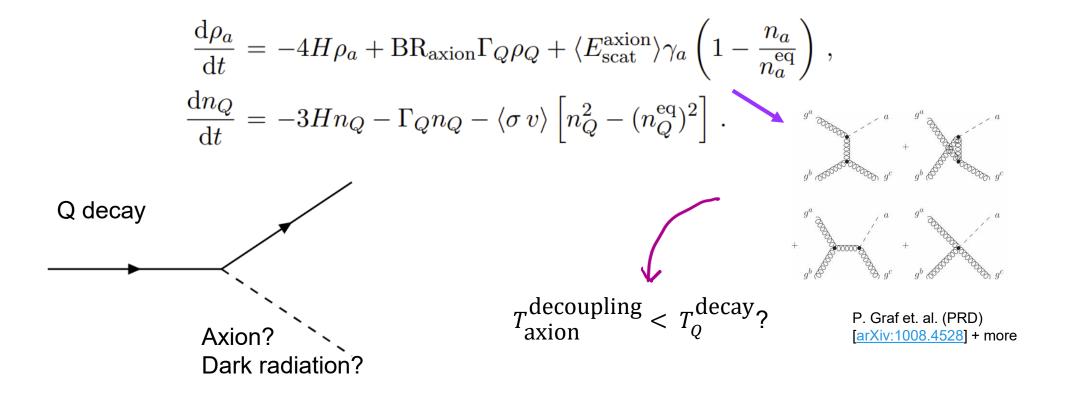
Can explore preferred models

Preferred axion models decay via dimension 5 at $m_a \, [eV]_{10^{-2}} \, 10^{-4}$ most! 10^{10} 10^{4} 10^{0} 10^{-6} 10^{2} 10^{-8} $T^{Q,d}_{\text{decay}}$ KSVZ-I: (3, 1, -1/3), or $\Omega_a h^2 \ge 0.12$ d = 7 10^{7} KSVZ-II: (3, 1, +2/3).for $\rho_{\rm SM} > \rho_Q$ d = 6 $T \, [{\rm GeV}]$ 10^{4} $\mathcal{O}_4^M = M_d \overline{Q}_L d_R,$ for $(\chi_L, \chi_R) = (0, -1),$ $\mathcal{O}_4^H = y_{1,d} H \overline{d}_L Q_R,$ for $(\chi_L, \chi_R) = (1, 0),$ 10^{1} $\mathcal{O}_4^{\Phi} = y_{2,d} \Phi \overline{Q}_L d_R,$ for $(\chi_L, \chi_R) = (1, 0),$ 5 models for each 10^{-2} $\mathcal{O}_4^{\Phi^\dagger} = y_{3,d} \Phi^\dagger \overline{Q}_L d_R,$ BBN for $(\chi_L, \chi_R) = (-1, -2),$ KSVZ model type $\mathcal{O}_5^{\Phi} = \frac{\lambda_{2,d}}{\Lambda} \Phi^2 \overline{Q}_L d_R, \quad \text{for } (\chi_L, \chi_R) = (2,1),$ 10^{10} 10^{12} 10^{14} 10^{4} 10^{6} 10^{8} 10^{16} $\mathcal{O}_5^{|H|^2} = \frac{\lambda_d}{\Lambda} |H|^2 \overline{Q}_L d_R, \quad \text{for } (\chi_L, \chi_R) = (0, -1),$ $\mathcal{O}_5^{\Phi H} = \frac{\lambda'_{2,d}}{\Lambda} \overline{Q}_R q_L H^{\dagger} \Phi, \quad \text{for } (\chi_L, \chi_R) = (2,1),$ m_Q [GeV] $\mathcal{O}_5^{|\Phi|^2} = \frac{\lambda'_d}{\Lambda} |\Phi|^2 \overline{Q}_L d_R, \qquad \text{for } (\chi_L, \chi_R) = (0, -1),$ [arXiv:2411.17320] $\mathcal{O}_5^{\Phi^\dagger} = \frac{\lambda_{3,d}}{\Lambda} (\Phi^\dagger)^2 \overline{Q}_L d_R, \quad \text{for } (\chi_L, \chi_R) = (-2, -3), \qquad \mathcal{O}_5^H = \frac{\lambda_{1,d}}{\Lambda} \Phi H \overline{d}_L Q_R, \quad \text{for } (\chi_L, \chi_R) = (0, -1),$ AC + Ui Min

30/06/2025

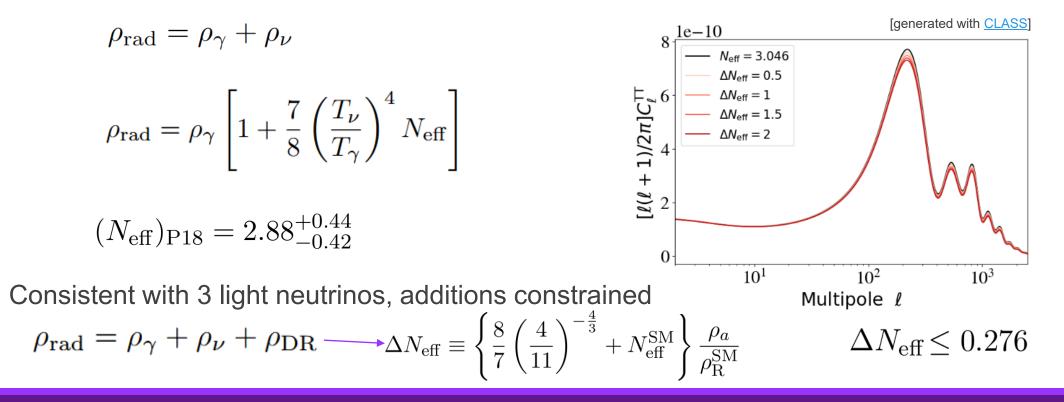
Decay of heavy quarks

• Heavy quark decay products may leave a trace in the early universe.

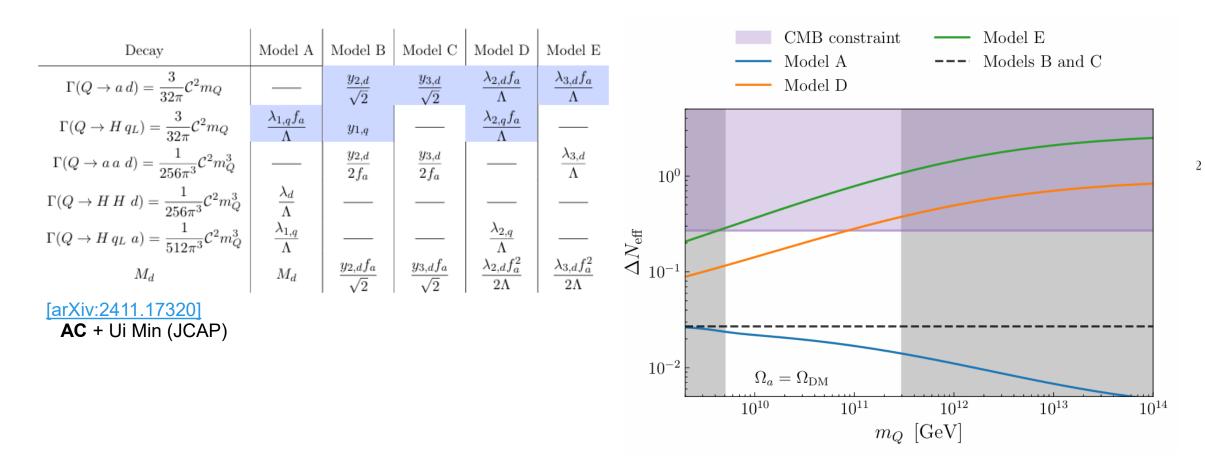


Light remnants of heavy quarks

In the standard picture of the Big Bang, we have two particles species that remain relativistic until recombination.



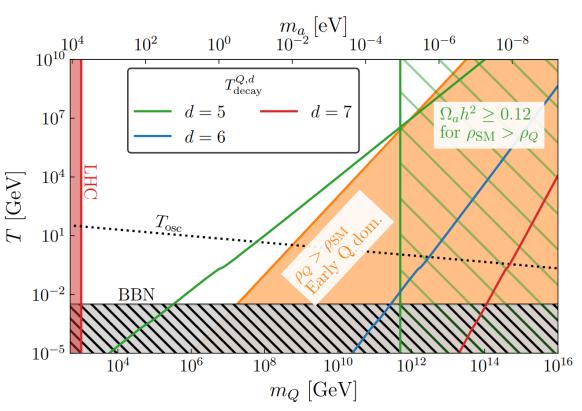
CMB disfavors some models



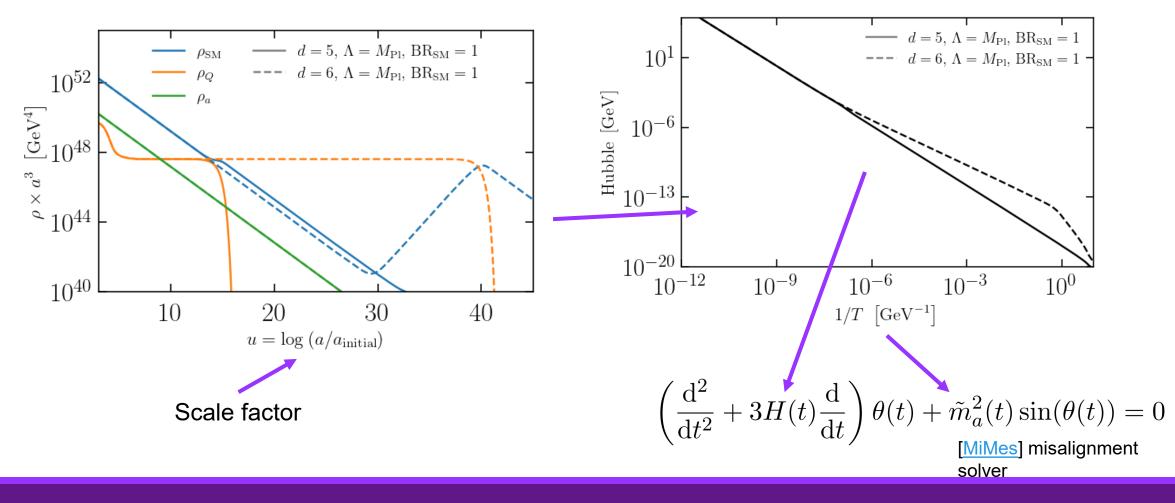
Heavy quark domination

- For these higher dimensional Q decay models, the heavy quarks will dominate the early universe.
- This alters the misalignment mechanism, has been known for decades *Steinhart* et. al. (1984) + *Lazarides* et. al. (1990)
- We show T_{OSC} , temperature when axion field oscillations begin

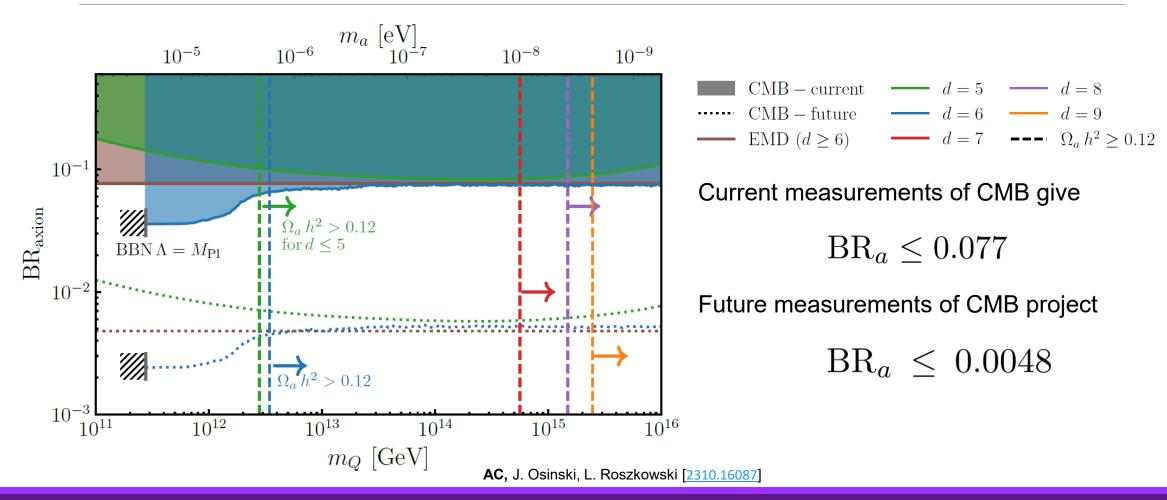
$$3H(T_{\rm osc}) = \tilde{m}_a(T_{\rm osc})$$



First you approximate, then you solve



Constraints from dark radiation

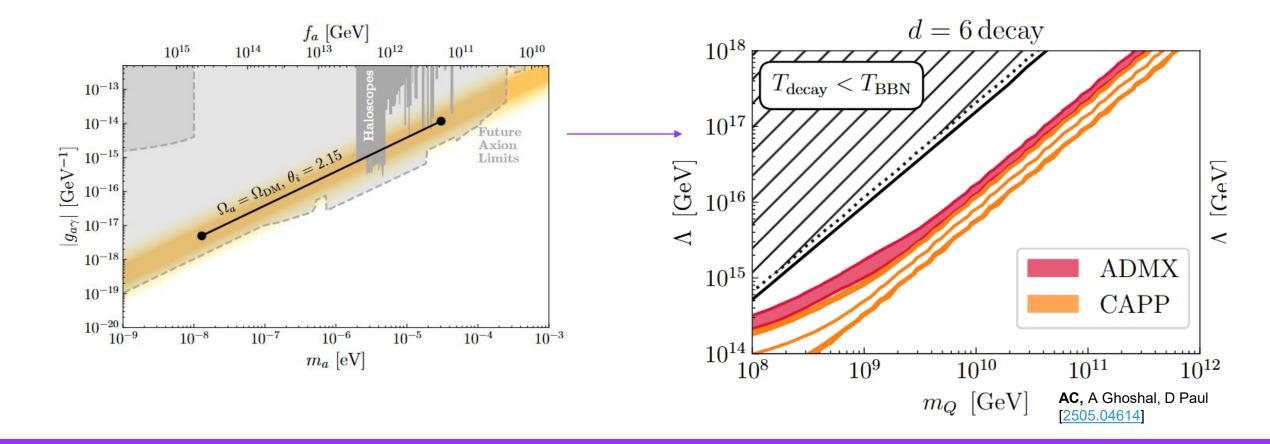


More models without domain walls

Recently, Di Luzio et. al. confirmed my findings and catalogued higher dimensional models

Rep.	$(\mathcal{C}, \mathcal{C})$	$\mathcal{I}, 6\mathcal{Y})$	E/N	$N_{\rm DW}$	Min. d	Example operator	$LP \ [GeV]$	
$\frac{3}{3}$	1 1	$-2 \\ 4$	$2/3 \\ 8/3$	1 1	3 3	$ar{\mathcal{Q}}_L d_R \ ar{\mathcal{Q}}_L u_R$	2.0×10^{39} 6.8×10^{35}	
$\frac{3}{\overline{3}}$ $\frac{3}{\overline{3}}$	1 1 1 1	$-14 \\ 8 \\ -10 \\ 16$	98/3 32/3 50/3 128/3	1 1 1 1	6 6 6 6	$egin{aligned} ar{\mathcal{Q}}_L d_R (ar{e}_R^c e_R) \ ar{u}_R \gamma_\mu e_R ar{d}_R \gamma^\mu \mathcal{Q}_R \ (ar{d}_R d_R^c) ar{e}_R \mathcal{Q}_L \ ar{\mathcal{Q}}_L u_R (ar{e}_R e_R^c) \end{aligned}$	$\begin{array}{c} 2.2 \times 10^{22} \\ 3.0 \times 10^{28} \\ 6.4 \times 10^{25} \\ 1.8 \times 10^{21} \end{array}$	$\overrightarrow{Br_{SM}} \approx 1$ $\therefore \Delta N_{eff} \ll 0.027$
$ \frac{\overline{3} 1 20 200/3 1 9 (\bar{d}_R^c d_R) (\bar{e}_R^c e_R) \bar{u}_R Q_L 6.2 \times 10^{19}}{\bar{Q}_L u_R (\bar{\ell}_L \ell_L^c) (\bar{e}_R e_R^c)} 2.0 \times 10^{19}} $ $ g_{a\gamma} \equiv \frac{\alpha}{2\pi} \frac{1}{f_a} \left(\frac{E}{N} - 1.92(4)\right) $								

GUT-scale PQ breaking & $N_{\rm DW} = 1$



When does PQ break?

BEFORE INFLATION

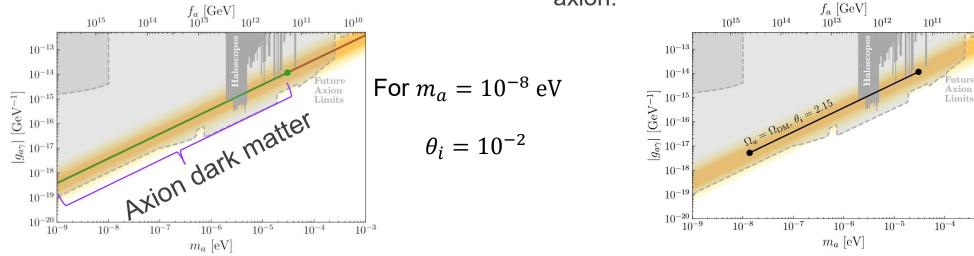
Can have $m_a \leq 10 \ \mu eV$

No detectable dark radiation component from axion.

AFTER INFLATION

Now can have $m_a \leq 10 \ \mu \text{eV}$ with HQD

The only models that survive with have no detectable dark radiation component from axion.



Both scenarios have the same phenomenological output.

ANDREW CHEEK

 10^{10}

 10^{-3}

We perform a full numerical treatment

To assess the effect, we solve the coupled Friedmann-Boltzmann equations

$$\frac{3H^2 M_{\rm Pl}^2}{8\pi} = \rho_{\rm R}^{\rm SM} + \rho_{\rm DR}^{\rm axion} + \rho_Q$$

Entropy density evolution:

Thermal axion energy density evolution:

Heavy quark energy density evolution:

$$\begin{split} \frac{\mathrm{d}s_{\mathrm{R}}^{\mathrm{SM}}}{\mathrm{d}t} &= -3Hs_{\mathrm{R}}^{\mathrm{SM}} + \frac{\mathrm{BR}_{\mathrm{SM}}\Gamma_Q}{T}\rho_Q \,,\\ \frac{\mathrm{d}\rho_a}{\mathrm{d}t} &= -4H\rho_a + \mathrm{BR}_{\mathrm{axion}}\Gamma_Q\rho_Q + \langle E_{\mathrm{scat}}^{\mathrm{axion}}\rangle\gamma_a \left(1 - \frac{n_a}{n_a^{\mathrm{eq}}}\right) \,,\\ \frac{\mathrm{d}n_Q}{\mathrm{d}t} &= -3Hn_Q - \Gamma_Q n_Q - \langle \sigma \, v \rangle \left[n_Q^2 - (n_Q^{\mathrm{eq}})^2\right] \,. \end{split}$$

.

We perform a full numerical treatment

To fully assess the effect we solve the coupled Friedmann-Boltzmann equations

$$\begin{split} \frac{3H^2M_{\rm Pl}^2}{8\pi} &= \rho_{\rm R}^{\rm SM} + \rho_{\rm DR}^{\rm axion} + \rho_Q \\ \\ \text{Entropy density evolution:} & \frac{\mathrm{d}s_{\rm R}^{\rm SM}}{\mathrm{d}t} &= -3Hs_{\rm R}^{\rm SM} + \frac{\underline{\mathsf{BR}}_{\rm SM}\Gamma_Q}{T}\rho_Q \,, \end{split} \overset{\text{"Simplified" branching ratio}}{\inf \text{ only } Q \to a + q \text{ the only decay channel, } BR_{\rm SM} = BR_{\rm axion} = 1/2 \\ \\ \text{Thermal axion energy density evolution:} & \frac{\mathrm{d}\rho_a}{\mathrm{d}t} &= -4H\rho_a + \underline{\mathsf{BR}}_{\rm axion}\Gamma_Q\rho_Q + \langle E_{\rm scat}^{\rm axion}\rangle\gamma_a \left(1 - \frac{n_a}{n_a^{\rm eq}}\right) \,, \\ \\ \text{Heavy quark energy density evolution:} & \frac{\mathrm{d}n_Q}{\mathrm{d}t} &= -3Hn_Q - \Gamma_Q n_Q - \langle \sigma v \rangle \left[n_Q^2 - (n_Q^{\rm eq})^2\right] \,. \end{split}$$

-

evolution:

ANDREW CHEEK

 $\mathbf{2}$

We perform a full numerical treatment

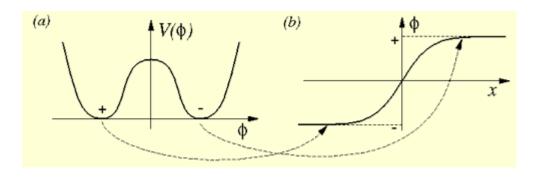
To fully assess the effect we solve the coupled Friedmann-Boltzmann equations

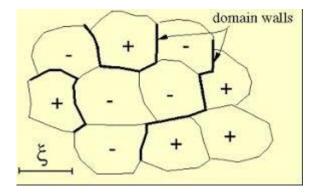
$$\begin{split} &\frac{3H^2M_{\rm Pl}^2}{8\pi} = \rho_{\rm R}^{\rm SM} + \rho_{\rm DR}^{\rm axion} + \rho_Q \\ \\ \text{Entropy density evolution:} & \frac{\mathrm{d}s_{\rm R}^{\rm SM}}{\mathrm{d}t} = -3Hs_{\rm R}^{\rm SM} + \frac{\mathrm{BR}_{\rm SM}\Gamma_Q}{T}\rho_Q \,, \end{split} \begin{array}{l} \gamma_a: \text{Thermal axion production rate} \\ \text{more on this later.} \\ & \left\langle E_{\rm scat}^{\rm axion} \right\rangle \sim 3T_{\rm SM} \\ \\ \frac{\mathrm{d}\rho_a}{\mathrm{d}t} = -4H\rho_a + \mathrm{BR}_{\rm axion}\Gamma_Q\rho_Q + \frac{\langle E_{\rm scat}^{\rm axion} \rangle \gamma_a}{\left(1 - \frac{n_a}{n_a^{\rm eq}}\right)} \,, \\ \\ \text{Heavy quark energy density} & \frac{\mathrm{d}n_Q}{\mathrm{d}t} = -3Hn_Q - \Gamma_Q n_Q - \left\langle \sigma \, v \right\rangle \left[n_Q^2 - (n_Q^{\rm eq})^2\right] \,. \end{split}$$

. .

Domain walls

• Topological defect where two distinct vacua are separated by a potential





- Stable domain walls scale like a^{-2} so can quickly dominate.
- Much axion model building effort has gone into getting these things to decay or be destroyed.
- I think its interesting to first explore models where this isn't a problem.