

Updated cosmological constraints on thermally-produced axion-like particles

NICOLA BARBIERI (INFN) - 30/06/2025

In collaboration with L. Caloni, M. Gerbino, M. Lattanzi and L. Visinelli

 $10^{-4} {\rm eV}$

$$\begin{split} \Delta N_{\rm eff} &\equiv \frac{\rho_a \left(m_a = 0\right)}{\rho_{\nu,\rm mless}} \propto \left(\frac{g_a}{g_\gamma}\right) \left(\frac{T_a}{T_\gamma}\right)^4 \\ &\simeq 0.027 \left(\frac{g_{*s} \left(T_d\right)}{106.75}\right)^{-4/3} \end{split}$$

Light axions contribute to the energy density of **radiation**
$$10^{-4} \,\mathrm{eV}$$

Cosmo-phenomenology of thermal axions

Axions behaving as

$$\Delta N_{\text{eff}} \equiv \frac{\rho_a \left(m_a = 0\right)}{\rho_{\nu,\text{mless}}} \propto \left(\frac{g_a}{g_\gamma}\right) \left(\frac{T_a}{T_\gamma}\right)^4$$
$$\simeq 0.027 \left(\frac{g_{*s} \left(T_d\right)}{106.75}\right)^{-4/3}$$
Light axions contribute to the energy density of **radiation** 10^{-4} eV

Cosmo-phenomenology of thermal axions

Axions behaving as Warm Dark Matter (WDM)

$$\Delta N_{\text{eff}} \equiv \frac{\rho_a \left(m_a = 0\right)}{\rho_{\nu,\text{mless}}} \propto \left(\frac{g_a}{g_\gamma}\right) \left(\frac{T_a}{T_\gamma}\right)^4$$
$$\simeq 0.027 \left(\frac{g_{*s} \left(T_d\right)}{106.75}\right)^{-4/3}$$
Light axions contribute to the energy density of **radiation** 10^{-4} eV

NICOLA BARBIERI (INFN) – 30/06/2025

Axion's mass

100 eV

...and more

$$\omega_a \simeq m_a n_a h^2 \simeq 0.011 \left(\frac{m_a}{\text{eV}}\right) \Delta N_{\text{eff}}^3$$

Heavier axions contribute to the energy density of **cold dark** matter (CDM)

Pipeline

1

*

Effective modelling of ALPs interactions:

$$\mathcal{L}_{a} \supset \frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{1}{2} m_{a}^{2} a^{2} + c_{\ell} \frac{\partial_{\mu} a}{2f_{a}} \bar{\ell} \gamma^{\mu} \gamma^{5} \ell + \frac{1}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$\mathcal{L}_{a} \supset \frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{1}{2} m_{a}^{2} a^{2} + c_{\ell} \frac{\partial_{\mu} a}{2f_{a}} \bar{\ell} \gamma^{\mu} \gamma^{5} \ell + \frac{1}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$\mathcal{L}_{a} \supset \frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{1}{2} m_{a}^{2} a^{2} + c_{\ell} \frac{\partial_{\mu} a}{2f_{a}} \bar{\ell} \gamma^{\mu} \gamma^{5} \ell + \frac{1}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Boltzmann equation

$$\frac{d\mathcal{F}_a(q,x)}{d\log x} = \frac{\mathcal{C}_a(q,x)}{H(x)} \left(1 - \frac{1}{3}\frac{d\log g_{*s}}{d\log x}\right) \left[1 - \frac{\mathcal{F}_a(q,x)}{\mathcal{F}_a^{eq}(q,x)}\right]$$

NICOLA BARBIERI (INFN) - 30/06/2025

Numerical solution to the full Boltzmann equation

$$\frac{d\mathcal{F}_a(q,x)}{d\log x} = \frac{\mathcal{C}_a(q,x)}{H(x)} \left(1 - \frac{1}{3}\frac{d\log g_{*s}}{d\log x}\right) \left[1 - \frac{\mathcal{F}_a(q,x)}{\mathcal{F}_a^{eq}(q,x)}\right]$$

Full phase-space solution - pt. 1

Example of collision integral numerical calculation for the electron channel lepton production, for different values of momenta and $f_a = 10^5$ GeV

NICOLA BARBIERI (INFN) – 30/06/2025

Axion's phase-space distribution function (same production channel of the previous plot), for different values of f_a

Full phase-space solution - pt. 2

Contribution to $N_{\rm eff}$ from Primakoff production (considering electrons, muons and taus as charged particles in the plasma)

NICOLA BARBIERI (INFN) – 30/06/2025

Contribution to $N_{\rm eff}$ from pair annihilation and Compton-like scattering on charged leptons

Cosmological constraints

• Analysis settings:

likelihood:

planck_2018_low1.TT: null planck_2018_lowl.EE: null planck_NPIPE_high1_CamSpec.TTTEEE: null Planckpr4lensing:null

	$\Lambda \mathbf{CDM}$	e channel	μ channel	au channel
Parameter	95% limits	95% limits	95% limits	95% limits
$\Omega_{ m b}h^2$	$0.02219\substack{+0.00028\\-0.00027}$	$0.02220\substack{+0.00027\\-0.00028}$	$0.02220\substack{+0.00028\\-0.00025}$	$0.02224^{+0.00031}_{-0.00027}$
$\Omega_{ m c} h^2$	0.1194 ± 0.0021	$0.1195\substack{+0.0024\\-0.0022}$	0.1197 ± 0.0022	$0.1207\substack{+0.0034\\-0.0027}$
$\log(10^{10}A_{ m s})$	$3.033\substack{+0.029\\-0.028}$	3.035 ± 0.028	$3.035\substack{+0.029\\-0.028}$	3.037 ± 0.028
$n_{ m s}$	$0.9636^{+0.0080}_{-0.0082}$	$0.9643^{+0.0081}_{-0.0084}$	$0.9645_{-0.0082}^{+0.0093}$	$0.966\substack{+0.010\\-0.0090}$
$ au_{ m reio}$	0.051 ± 0.015	$0.052\substack{+0.015\\-0.014}$	$0.051\substack{+0.015\\-0.014}$	0.051 ± 0.014
H_0	$67.88^{+0.99}_{-0.95}$	68.0 ± 1.0	68.0 ± 1.1	$68.4^{+1.5}_{-1.3}$
$\log_{10} f_a$		> 6.55	> 7.19	

Updated cosmological constraints on thermally-produced axion-like particles

NICOLA BARBIERI (INFN) - 30/06/2025

In collaboration with L. Caloni, M. Gerbino, M. Lattanzi and L. Visinelli