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The Many Axions of String Theory

Why does string theory have axions?

Antisymmetric tensor fields in six extra dimensions
Why many axions? How many?

Rich topology of extra dimensions. N ~ 100 to 100,000.
What are their properties?

Couplings scale with V.

Why does it matter what happens in string theory?

Axion couplings depend on nature of quantum gravity.



The Many Axions of String Theory

String theory has many axions because of the topological
complexity of the six extra dimensions,

and the number N of axions matters:
large-N theories are qualitatively different from small-/NV theories.



The Many Axions of String Theory

String theory has many axions because of the topological
complexity of the six extra dimensions,

and the number N of axions matters:
large-INV theories are qualitatively different from small-/V theories.

We have, for the first time, constructed large-/N theories
in actual solutions of string theory.

We are in the process of discovering the properties of these theories.



Sumimary

Research program: computing the string axiverse,
the landscape of many-axion effective theories in string theory.

We have made advances in computational geometry
allowing study of theories with N > 1 axions.

We have constructed part of the axiverse, in type 11B
string theory on Calabi-Yau threefolds.

We find geometric hierarchies involving powers of NV,
and corresponding hierarchies in the low-energy couplings.

Consequences for strong CP, DM abundance, superradiance,
axion-photon couplings.

We can already exclude many string models.



Based on

Demirtas, Long, L.M., Stillman 2018 topological complexity
‘Kreuzer-Skarke Axiverse’: (4 axions in type IIB on CY3 = hierarchies

Mehta, Demirtas, Long, Marsh, L.M., Stott 2021
Black hole superradiance

Demirtas, Gendler, Long, L.M., Moritz 2021
Strong CP problem

Gendler, Marsh, L.M., Moritz 2023
Axion-photon couplings
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Sheridan, Carta, Gendler, Jain, Marsh, L.M., Righi, Rogers, Schachner 2024
Fuzzy dark matter

Bellas, Halverson, L.M., Vander Ploeg Fallon, Zhu 2025 many more axions
Axions in F-theory = stronger effects
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I. Axions in string theory
II. Geometric hierarchies at NV > 1

I1I. Hierarchies in axion couplings



Setting

We start with superstring theory,
for which the fundamental solution is R?:!.



Setting

We start with superstring theory,
for which the fundamental solution is R?:!.

We study compactifications in the geometric regime:
ds?y = g\t datda” + ds%,

with Xg a compact six-manifold that is large compared to a string.
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Geometry of the extra dimensions

Einstein equations in vacuum: Ricci = 0

R,, =0 and Rpyn =0

u,v e {0,1,2,3 m.n € {4,5,6,7,8,9}
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Geometry of the extra dimensions

Einstein equations in vacuum: Ricci = 0

R,, =0 and Rpyn =0

Vacuum solution of string theory =
M3 1% [compact Ricci-flat six-manifold]
e.g. ‘Calabi-Yau threefold’]

T .

4d spacetime 6d compact space

0123 456789



Kaluza-Klein reduction

ds® = n,,drtdx’ + R?d9? V=94 27
GGiven a scalar ® in bd:
O => c,P,(z" V)

(I)n(l’“’ 19) — ¢n($“) . Spn(ﬁ) Spn(ﬁ) _ 67;7»“9
0=y (2",7) & (D4 + ;—Z)Cb(:c“) =0

Massless 5d scalar ® gives Kaluza-Klein tower of 4d scalars ¢.,,.
Massless 4d scalar from zero-mode oy.

In string theory it’s the same, but with more extra dimensions.



Axions from extra dimensions
ds® = n,,drtdx’ + R?d9? V=04 21

Given a gauge field (1-form) Aj,s in 5d:

S5 D —/d5xFMNFMN, M,N€0,...4

o
0 = /dz?A4
0
S1 D 1 /d4az £20,00"0 f? = 2
2 ’ TR2

In string theory it’s the same, but with more extra dimensions.



Axions from extra dimensions

ds® = n,,detdz” + R*(dz)?, zt = pt 4 2m
S5 D — /d5a:FMNFMN, M,N€0,...4

27

0 .= /d:c4A4

0

1 4
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Axions from extra dimensions

ds® = n,,detdz” + R*(dz)?, zt =gt 4 2 ds® = n,datdr” + dsky,
S5 D — /d% FynFMN M,N€0,...4 Sig D —/dl% FynporFMNPRE . M Ne€0,...9
27
9 — /d:U4A4 0; := /[dw4dm5dm6dm7] Ay
0 i
1 2 1 _
12 -3 / d*z f20,00M0,  f?= — $42 -3 / d*ax Z f20,0:0"0;,  f? o Vol(CY4)~4/3
A 1-form A, A 4-form Ay
integrated over a 1-manifold integrated over a 4-manifold
yields an axion. yields an axion.

In typical Calabi-Yau threefolds there are many submanifolds
= many axion fields.



Setting

A QGEFT is an effective theory, of gravity and other fields,
that results from an ultraviolet completion of gravity,
such as a compactification of string theory.

Axion fields and couplings in QGEFT depend on
topology, geometry, fields of extra dimensions.

We aim to understand axions in QGEFTSs.

Strategy: enumeration of compactifications
on Calabi-Yau threefolds (CY3).



Context

Topologically simple compactifications yield simple QGEFTSs.



Context

Topologically simple compactifications yield simple QGEFTSs.
e No large dimensionless parameters. NDA works.

e Planck-suppressed operators have expected size:

L Deca MOAA_4 with ca 2 O(1)
pl
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What about topologically complex compactifications?
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Context

What about topologically complex compactifications?
e Complex < some topological integers are large.

e A large integer is a large dimensionless parameter.

e Sometimes O(1) — O(N) or O(e) or O(GNZ)

N
® C.2. O = Z Mw¢z¢]

1,7=1

Treating eigenvalues as ~ equal numbers is too simple.
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Context

What about topologically complex compactifications?
e Complex < some topological integers are large.

e A large integer is a large dimensionless parameter.

e Sometimes O(1) — O(N) or O(elV) or O(€N2)

N . .
® C.2. O = Z Mijqbngj.
iyj=1
Treating eigenvalues as ~ equal numbers is too simple.

How can we discover such effects?

Enumerate compactifications of string theory at large V.
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Obstacle:

Until recently, topologically complex Calabi-Yau compactifications —
those with N > 1 axions — were too complex to analyze.
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Context

Obstacle:

Until recently, topologically complex Calabi-Yau compactifications —
those with IV > 1 axions — were too complex to analyze.

Their existence has been very well known, but the computations
were intractable, even for computational geometry software.

Cost of many steps is ~ eV in Sage/TOPCOM/Instanton/etc.
We have overcome this problem.
We found polynomial-time algorithms

for ‘everything’, and implemented them
in a software package, CYTools. ¢

S 4%



Combina-toric geometry

Key to unlocking large IN:

Constructing CY3 as hypersurfaces in toric varieties,
and exploiting combinatoric structures.

Toric varieties correspond to triangulations of polytopes.

S
SRS

b

DFWV

AN L

473,800,776 4d reflexive polytopes < 10?8 CY,




Combina-toric geometry

Key to unlocking large IN:

Constructing CY3 as hypersurfaces in toric varieties,
and exploiting combinatoric structures.

Toric varieties correspond to triangulations of polytopes.

analysis

algebraic geometry

easier to automate

combinatorics




number of three-cycles

400

200

1004

3001 &

Shaded: computable with prior software

)60

Y X

http://cy.tools

Demirtas, L.M., Rios-Tascon

400 500

number of four-cycles (and axions)



The Kreuzer-Skarke Axiverse

Using CYTools we generated millions of CY3 hypersurfaces.




The Kreuzer-Skarke Axiverse

Using CYTools we generated millions of CY3 hypersurfaces.

Compactifying type IIB string theory, we constructed
an ensemble of N-axion QGEFTs, 1 < N < 491.

These are incarnations of the string axiverse.

Null hypothesis: isotropic internal space, one length scale L.

Our result: hierarchies of cycle sizes, polynomial in V.

Topologically complex CY compactifications are anisotropic.

Consequence: hierarchical axion couplings.
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Cycle sizes

Curvature expansion: a fundamental expansion in string theory.

ls: string length

Couphng Es/L L: typical length

Can compute QGEFT when ¢/, < L.

Strategy: ensure that appropriate cycles are large in units of L.

Specifically: arrange that all 2-cycles have volume > ¢2.

Let’s see how to achieve this.



The Kahler cone

The number of 2-cycles is the number of axions, V.
So moduli space of 2-cycle sizes is C RV.

In fact it’s a cone:

The Kdhler cone K C RY
is the region where all 2-cycles have volume > 0.

On the walls of the cone, one or more 2-cycles have zero size.
Inside the cone, all (holomorphic) 2-cycles have positive size.

The Stretched Kahler cone
is the subregion of IC where all 2-cycles have volume > 1.



2-cycle volume > 0

2-cycle volume > 0

Kahler cone

2-cycle volume = 0

A 4
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2-cycle volume = 1
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/ 2-cycle volume = 0

We work in the stretched Kahler cone,
where the curvature expansion is plausibly controlled.



Key observation

In a narrow cone with many walls,
the subcone that is distance > 1 from every wall
has its apex far from the origin.

Fact: for NV > 1, Kahler cones are narrow and have many walls.
So for N > 1, stretched Kéahler cones have apex far from the origin.

This means that some cycles are large.

Their size is a power of N.

>
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Key observation

In a narrow cone with many walls,
the subcone that is distance > 1 from every wall
has its apex far from the origin.

Fact: for NV > 1, Kahler cones are narrow and have many walls.

So for N > 1, stretched Kéahler cones have apex far from the origin.

This means that some cycles are large.

Their size is a power of N.
But other cycles have volumes of order unity.
A main result: hierarchies of cycle sizes, by powers of V.

‘“Topologically complex CY compactifications are anisotropic’.
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Consider a spherical cow of radius Reow-.

Q: find minimum Roy s.t. all its spots have size Rgpor > 1 meter.
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Key observation

Consider a spherical cow of radius Reow-.
Q: find minimum Roy s.t. all its spots have size Rgpor > 1 meter.
Al: For an isotropic cow, Rcow ~ Rspot, S0 Rcow min ~ 1.

A2: For an anisotropic cow with many spots of widely varied size,
one has Reow, min > 1.

CY3 are anisotropic, with many cycles of widely varied size.



Distance to tip of cone




Story so far

We constructed a landscape of string compactifications,
and studied the resulting many-axion theories.

We found geometric hierarchies that are powers of
the number of axions, N.

Next: the geometric hierarchies lead to hierarchies in the
low-energy couplings, with consequences for phenomenology.

Warning: not clear that these extra-dimensional axions
can form axion strings.



Consequence #1:

Decay constants spread over wide range,
and diminish with N.



Decay constants f,

- 491

300
- 200

100

50
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lOglo fa (GGV)



Consequence #2:

Fuzzy axion dark matter is extremely rare
for N 2 15.



Fuzzy axion dark matter

Could dark matter consist of ultralight axions?

For m, < 10718 eV, chance of future tests.

Y

For m, ~ 1072! eV, significant constraints.

Misalignment abundance €2, fzw/ma.
= need f, > 10'%eV for abundant fuzzy axion DM.

We find f, decreases with N,
and is typically too small for fuzzy DM for N = 15.



Fuzzy axions at small N

-10!
107 | 109
- 1071
/:; 1015 I 10_25\
\; 107 10~ =]
= - 107?
1074 ~10~6
5 4 5 6 1 8 0 10 12 15

N = hpt-t
fao typically too small for fuzzy DM for N 2 15.

Fuzzy DM generally accompanied by overabundance of
heavier-axion DM. Exceptions: fibration, or tuned cosmology.

el 4

Sheridan, Carta, Gendler, Jain, Marsh, L.M., Righi, Rogers, Schachner 2412.12012



Consequence #3:

Strong CP problem solved by PQ mechanism,
without a PQ quality problem,
for N 2 15.



PQ quality problem

The Peccei-Quinn solution of the strong CP problem is sensitive
to Planck-scale CP-breaking, and so requires UV completion.
This is the PQ quality problem.

High-scale physics, even Planck-scale physics,
can easily break PQ symmetry badly enough to ruin mechanism.



PQ quality problem

The Peccei-Quinn solution of the strong CP problem is sensitive
to Planck-scale CP-breaking, and so requires UV completion.
This is the PQ quality problem.

High-scale physics, even Planck-scale physics,
can easily break PQ symmetry badly enough to ruin mechanism.
If there is another term that breaks the P(Q shift symmetry,
e.g. Vireaking = A* cos(6 + ) Y € |0,27)
_ A4

then  (f) ~ —— <107 & A*<6x107! GeV*
QCD

Write in terms of A% = M4 —5 as

S > 200.

So every instanton carrying P(Q) charge must have S 2 200.



PQ quality problem
Every instanton carrying PQ charge must have S = 200.

This dramatic sensitivity to Planck-scale physics is an opportunity
for string theory: the effects in question can be computed.

In our ensemble this breaking comes from certain instantons.
We explicitly compute the leading such instantons.

When N 2 15, the Planck-scale breaking is negligible,
and the quality problem is solved.



PQ) quality
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P(Q) quality problem in string theory

K

What’s going on:

A x e=2™Vola for leading 4-cycle.

Anisotropy of topologically complex space
= large 4-cycles
= small #-angle.

Demirtas, Gendler, Long, L.M., Moritz, 2112.04503



Consequence #4:

Photon couplings to ultralight axions
are hierarchically suppressed,
if there is a stringy instanton on the QED cycle.



Axion-photon couplings

1

[:QED — _Zga'y'y Spa F/ﬂ/ﬁ"uy

We have not built actual SM.
QED proxy: 4-cycle YXgrp that ‘could” host QED.

Gayy ~ 1/ f = coupling increases with N



Axion-photon couplings

1.0
Rl = 50
0.81 A1 = 100
htl = 200
ELt 06 hl’l = 491
a
0.4 i
0.2 | '
0.0 ll_ |

920 —15 —10
loglo(gmax/GeV_1>

Gayy ~ 1/ f = coupling increases with N



Light threshold

Gauge group with #-angle Loange = 0o Fu '

and potential £ > A'cos(0,)  ¢o=104/fa, a=1,...,N

has negligible coupling to axions ¢; with m; < Mgauge = A%/ [
QED does not have ordinary instantons of its own.

But there can be stringy instantons!

Then the photon has negligible couplings to axions j with

m; < Miight = f@éD o—27Vol(QED)

Light threshold: a mass scale set by stringy instantons on XqQgp.

Axions with m < myjgne have negligible photon couplings.
Makes ultralight axions invisible.



Density

0.8 1

N
3 55 proxy
3 235 proxy

-12

Light threshold

0.2 1

0.1 1

0.0 -

N
=3 55 proxy

3 235 proxy

Ll

-325 -300 -27.5 -25.0 =225 -20.0 -175 -15.0 -125

Bellas, Halverson, L.M., Vander Ploeg Fallon, Zhu WIP

Gendler, Marsh, L.M., Moritz 23



Birefringence prospects

Maximum birefringence

G

__.ES— } w B ?f-fﬁiéé P, W e

Y e
¢

w !

G

e hll=50
«  hU =100
R = 200
¢ kb =491
.0 7.9
QED)

B =~ 0.3° possible for Vol(QED) = 40.

Minami, Komatsu 20

Coincidentally, o~ ! ~ =+ at GUT scale in SM.

40 Gendler, Marsh, L.M., Moritz 23



F-theory axiverse
So far, the string axiverse. Now, a work in progress: F-theory.
F-theory = type IIB string theory with strong + varying coupling
Compactify F-theory on a CY4 that is a fibration over a base Bs.
In general Bs is not a CYs5.
Consequence: much wider range of possible topologies.
String theory on CY3: N < 491.
F-theory on CY,4: N < 181,820.

best-understood ensemble: N < 2,591



F-theory axiverse

‘Tree’ ensemble, of toric threefold bases. N < 2,591
cf.

Result: trends seen in CY3 (N < 491) continue for N < 2,591.

max f,/Mp vs. N

1077 1
10‘4?
lD‘Eé
max fo/Mop

1075 3

1077 3

1078 3

1 T L
104 103



F-theory axiverse

Result: gq~~ Increases with N.
Here: preliminary first sample up to N < 2,591.

—-16.0 -15.5 -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0

logqg (ga,w - GeV)



F-theory axiverse

Result: gq~~ Increases with N.
Here: preliminary first sample up to N < 2,591.

_12_
/N -13 -
C
O
. -14 1
?\
?\
S 2o 8
N—" =15 1 ’
o o "'
% .
O 167 * o

@
~17 1 g
TS Nm

Models exist up to N = 181,820.

Bellas, Halverson, L.M., Vander Ploeg Fallon, Zhu WIP



Conclusions and Outlook

Advances in computational geometry have allowed us to
construct parts of the string axiverse, with NV > 1.

(Geometric hierarchies from control of curvature expansion
lead to hierarchies of couplings in the axion EFT.

Expect progress in:

e explicit SM constructions and couplings

e other string theories, other compactifications
e F-theory, with NV up to 180,000

e moduli stabilization

e models of inflation and reheating

e detailed constraints






Axion couplings

N axions: 09 = / Cy a=1,...,N

ath4-cycle, X,

»Caxion — Lkin + [fpot + »Cgauge

1 metric /C,p: volumes,
Liin =~ K 00 06" - /

intersection numbers

scales Aj: 4-cycle volumes

Lpot = — Z AZIl [1 — CO3 (QIa ea)} charges Q! : topology

instantons, [

~ gauge groups: D-branes
E : A
ﬁgauge — Ca ea(FMUFILLV)A

gauge groups, A couplings CaA: topology

Computable in terms of topology and point in moduli space.



Turn the crank

. Construct ensemble of CY3 hypersurface topologies.
. Sample moduli space inside stretched Kahler cone.
. Specify (or model) D-brane configuration.

. Identify contributing instantons.

. Compute axion couplings.

. Express in terms of mass+Kkinetic eigenstates.



Canonical axion couplings

»Caxion — £kin + »Cmass + £gauge + ...

1
Lyin = —5 Z(agpa)Q
1 4
Lmass = —5 ma (%) m2 A_g
gauge — Z JayA~yA QO F F'LW)

groups A



Fuzzy axion abundance

Constraint

10—1_
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—
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10—3_ Forecast \
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Sheridan, Carta, Gendler, Jain, Marsh, L.M., Righi, Rogers, Schachner 2412.12012
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