SIGNATURES OF ULTRALIGHT BOSONS IN THE ORBITAL EVOLUTION OF BINARY BLACK HOLES

Mateja Bošković

GWAT, DESY

Axions in Stockholm 2025 01/07/2025

Overview

- Existence of ultra-light axions is highly motivated; can be probed via BH superradiance
- How to systematically describe the dynamics of scalar clouds in binaries? MB, Koschnitzke, Porto [250x.xxxx], MB, Savić [25yy.zzzz]
- ► BH clouds in binaries generically depleted; new class of pheno signatures → relics of the BH cloud in the distribution of the orbital elements MB, Koschnitzke, Porto [2403.02415]

Black hole probes of the ultra-light frontier

- (Ultra)-light and weakly-coupled particles: QCD axion (strong CP problem), string axiverse, ultra-light DM...
- ▶ BH SR $\rightarrow \rho_c \simeq 10^{35} \text{GeV}/\text{cm}^3 (M/M_{\odot}) (\mu/10^{-10} \text{eV})^3$ overdensity w. rich pheno
 - $\heartsuit~\simeq~10 ext{x}10$ orders of magnitude in $\mu imes (f_{a} \lesssim m_{ ext{Pl}})$
 - \heartsuit Insensitive to the cosmo abundance
 - \cdots Astrophysics / dynamics needs to be controlled for

Fig: https://cajohare.github.io/AxionLimits/

Superradiant instability

- ▶ BH rotational energy → scalar field enhancement if $m\Omega_{\rm BH} > ω$
- Massive boson μ confined around the BH \rightarrow SR instability

Refs: Zeldovich ('71, '72); Press, Teukolsky ('72); Starobinsky ('73); Detweiler ('80); Cardoso+ [hep-th/0404096]; Arvanitaki, Dubovsky [1004.3558]; East [1807.00043]; **Review/Fig:** Brito, Cardoso, Pani [1501.06570]

Superradiant dynamics

► Hydrogen-like spectrum $|n|m\rangle$ w. (hyper)fine corrections; structure constant $\alpha = \mu M/m_{Pl}^2$

 \star Cloud peaks at $r_{
m c}\simeq M/lpha^2$

- Dissipation from the BH horizon $\Gamma \sim (\omega m\Omega_{\rm BH}) \alpha^{4/+5}$
- Fastest growing modes: $|211\rangle$, $|322\rangle$, $|433\rangle$...
- GW emission of the cloud on long timescales

Refs: Detweiler ('80); Dolan [0705.2880]; Arvanitaki+ [0905.4720, 1004.3558, 1411.2263]; Yoshino, Kodama [1312.2326]; Brito+ [1411.0686, 1706.06311]; East+ [1807.00043, 2211.03845]; Baumann+ [1804.03208, 1908.10370]; Review: Brito, Cardoso, Pani [1501.06570]; Fig: Tsukada+ [2011.06995]

Clouds in binaries: gravitational atomic physics

- Tidal perturbations from $M_{\star} \equiv qM \ (l_{\star} \geq 2)$
- Resonantly enhanced level transitions; ionization
- Cloud survival entangled with the orbital dynamics
- Previous work: atomic physics analogies + cloud-orbit balance

Refs: Baumann+ [1804.03208, 1912.04932, 2112.14777]; Tomaselli, Spieksma, Bertone [2305.15460, 2403.03147]; MB, Koschnitzke, Porto [2403.02415]; **Fig:** Baumann, Chia, Porto [1804.03208]

Gravitational atom as an effective object

- Effective object gravitational atom $S_{\text{WEFT}} = -\int d\tau \left[M_{\text{GA}} + Q_{ab} E^{ab} + ... \right],$
- ▶ GAs are inherently rapidly rotating objects \rightarrow $Q_{\rm perm}$ LO finite size effect Baumann, Chia, Porto [1804.03208]
- Relativistic effects controlled by
 - * the inspiral stage $(\Omega a)^2$ (worldline)
 - * fine-structure constant α (microphysics)

Ref: MB, Koschnitzke, Porto [250x.xxxx], MB, Savić [25yy.zzzzz]; Fig: Baumann, Chia, Porto [1804.03208]

Microphysics of the gravitational atom

► (Einstein-)Klein-Gordon in the non-relativistic limit

$$i\dot{\psi} + \mathscr{I} = \left(-\frac{1}{2\mu}\nabla\psi - \frac{\alpha}{r} + V_{\mathrm{R}} + V_{\star} + V_{\mathrm{sg}}\right)\psi$$

► Perturbative treatment of the bound states / non-perturbative dynamics of state occupancies $\psi \sim \sum c_a(t)(\psi_a + \delta \psi_a)$

▶ BH-cloud co-evolution $\alpha = \alpha(t)$, $\tilde{a} = \tilde{a}(t)$

Ref: MB, Koschnitzke, Porto [250x.xxxx], MB, Savić [25yy.zzzzz]

Perturbative mixing vs. resonance

- Strong orbital change at the (narrow) resonance $\Omega_0 = \Delta \varepsilon / \Delta m$ Baumann+ [1804.03208, 1912.04932]
 - * Bohr $(\Delta n \neq 0)$, fine $(\Delta l \neq 0)$, hyperfine $(\Delta m \neq 0)$
 - * Floating orbits for $\Delta\epsilon < 0$ transitions
- ► ... if the cloud survives the early perturbative mixing ← large decay widths of |n00⟩ states Tong, Wang, Zhu [2205.10527]
 - * |211): can mix only in the Bohr regime;
 - $l \ge 2$ states: driven by $l \ge 2$ multipoles

Fig: Della Monica, Brito [2503.23419]

Eccentric overtones and fixed points

- Eccentric orbit generates overtone resonances $\eta_{gk} \sim \eta_0 \frac{(e)^{|k|}}{|k||}$
- Resonance condition $\Omega_k = \frac{\Delta m}{\Delta m + k} \Omega_0$
- For the floating resonances:
 - Main/late overtones: e > (faster than via GW RR)
 - * Early overtones: critical (fixed) point $e \rightarrow e_{
 m cr} \leftarrow e$
 - * $e_{cr} \in [0.3, 0.6]$

Eccentric in band

- (Hyper)fine transitions typically outside of the GW detectors
- ► not impossible! e.g. $M = 20 M_{\odot},$ $q = 2 \rightarrow f_{res} \approx 10 mHz$
- In general α ≥ 0.2 and q ≥ 1 have floating timescales ~ 𝒪(yr)
- Orbital frequency stalls but not the (peak) GW frequency $f_{\rm GW} \simeq \frac{\Omega}{\pi} \frac{(1+e)^{1.1954}}{(1-e^2)^{3/2}}$

Ref/Fig: MB, Koschnitzke, Porto [2403.02415]

BH superradiance is a powerful tool for constraining ultra-light bosons

- Distinct phenomenological signatures in dynamic environments (resonances, ionization)...
 - shift in the *e* distribution for isolated BBH; in-band transitions; sharp features...
- ... weaken some of the presents constraints
- In order to have broad and robust constraints
 - $\star\,$ General orbits \rightarrow different BBH formation channels
 - \star Relativistic regime ightarrow large-lpha
 - * Self-interacting clouds in dynamic environments
- SR evolution still tractable!

Supplementary material

Superradiance

- Wave in the (rest frame of the) dissipative medium $\Box \psi - a \partial_t \psi - \mu^2 \psi = 0, \ a > 0$
- Rotating cylinder: $\partial_t \rightarrow \gamma(\partial_t + \Omega R \partial_\phi)$
- Ansatz $\psi \sim \exp(-i\omega t + im\phi) \rightarrow -ia\gamma(\omega m\Omega)\psi$
- ► SR condition: $\omega < m\Omega \rightarrow$ wave amplification

Ref: Zeldovich ('71)

Superradiant dynamics (2/2)

Refs: Arvanitaki+ [0905.4720, 1004.3558, 1411.2263]; Yoshino, Kodama [1312.2326]; Brito+ [1411.0686, 1706.06311, 1501.06570]; Siemonsen, May, East [2211.03845]; Fig: (U) Arvanitaki+ [1411.2263]; (D) Tsukada+ [2011.06995]

Signatures of the cloud

- ► Gaps in the BH spin-mass plane → systematics under control?
- ► GW emission of the cloud (axion annihilation, level transition) → continuous signal and stochastic background

Refs: Arvanitaki+ [0905.4720, 1004.3558, 1411.2263]; Brito+ [1706.06311, 1501.06570]; Palomba+ [1909.08854]; Zhu+ [2003.03359], Khalaf+ [2408.16051]; Figs: Brito+ [1706.05097]

Orbital dynamics of gravitational atoms

- ► ≤ 2.5PN
 - * 1PN, 2PN pp effects (conservative)
 - * SO coupling (conservative)
 - Permanent quadrupole (conservative and mixing)
 - * Radiation reaction
- ▶ Quadrupole of GA dominated by the cloud $\frac{Q_{\rm c}}{Q_{\rm BH}} \sim \alpha^{-5}$
- Lagrange's planetary eqns. → E
 ,
 E ≡ {a, e, ι, ϑ, χ, Υ}

The cloud's eccentric fossil (proof of concept)

- ▶ BBH w. $\mathcal{M}_c \leq 10M_{\odot}$; formed in isolation at $f_{GW} \in \{10^{-5}, 10^{-4}\}$ Hz Breivik+ [1606.09558]
- Consider $\alpha \in \{0.1, 0.25\}$ such that $|211\rangle \rightarrow GW$
 - \star Sensitive to $\mu \in [0.5, 2.5] \times 10^{-12} eV$
- \blacktriangleright |322 \rangle experiences mostly
 - * Hyperfine $|322\rangle \rightarrow |320\rangle$
 - * Fine $|322\rangle \rightarrow |31-1\rangle$
 - * Strongest overtones $|k| \simeq 0, 1$
 - * All floating as $\Delta \varepsilon < 0$

Ref/Figs: MB, Koschnitzke, Porto [2403.02415]

Eccentricity growth / floating time

Ref/Figs: MB, Koschnitzke, Porto [2403.02415]

Resonance distribution

Ref/Figs: MB, Koschnitzke, Porto [2403.02415]

Bohr regime and late inspiral

- Bound-to-unbound transition: threshold effects
 Baumann+ [2112.14777]
 - Orbital backreaction is dynamical friction
 Tomaselli, Spieksma, Bertone

[2305.15460]

- * In the Bohr regime $P_{\rm ion} \gg P_{\rm GW}$
- Dipole transitions allowed

Tomaselli, Spieksma, Bertone [2403.03147]

How likely are the clouds in the late inspiral?

Self-interaction; coupling to other species

- Clouds in the moderate/strong self-interacting regime Gruzinov [1604.06422], Baryakhtar+ [2011.11646], Witte, Mummery [2412.03655]
 - ★ Mode mixing changes cloud evolution (e.g. early/simultaneous |322⟩ growth); axion wind
 - Self-interacting clouds in dynamic environments?
- Coupling to photons
 - * Parametric resonance Kephart, Rosa [1709.06581], MB+ [1811.04945], Spieksma+ [2306.16447]
 - * Phenomenology in a consistent EFT?

Figs: Baryakhtar+ [2011.11646]