COSMOLOGICAL TESTS OF ULTRA-LIGHT AXIONS

Keir K. Rogers

UKRI STFC Ernest Rutherford Fellow Imperial College London

Axions are dark energy and dark matter candidates

• $m_a = 10^{-33} \text{ eV}$: cosmological constant

Figure credit: Pargner (2019); Peccei & Quinn (1977); Weinberg (1978); Wilczek (1978)

Fuzzy axion dark matter forms interference fringes, halo cores and oscillating dark matter granules

Dark matter density

I Mpc / h

m_a = 10⁻²² eV 10% FDM 90% CDM

Schive et al. (2014); Mocz et al. (2019); Lague, Schwabe, Hložek, Marsh, Rogers (PRD, 2024)

Linear and mildly non-linear cosmological constraints on axion dark matter

Rogers, Hložek, et al. (JCAP, 2023); ACT ⁴Collaboration et al. (inc. Hložek, Rogers; 2025)

Science and Technology Facilities Council

PROSPECTS FOR DISENTANGLING DARK MATTER WITH WEAK LENSING

arXiv: 2505.02233 with Calvin Preston, Alex Amon, George Efstathiou

Galaxy weak lensing traces dark matter distribution

Rubin Observatory's Legacy Survey of Space and Time will image 20 billion galaxies

Axions and feedback indistinguishable in S₈ — is weak lensing sensitive to DM transfer function?

Preston, Rogers, Amon & Efstathiou (arXiv: 2505.02233)

The effect of ignoring axions in LSST Y1 if they exist

Rogers, Hložek, et al. (JCAP, 2023); Preston, Rogers, Amon & Efstathiou (arXiv: 2505.02233)

LSST YI can detect DE-like axions

LSST YI can detect DM-like axions with feedback prior (e.g., CMB Sunyaev-Zeldovich effect)

Preston, Rogers, Amon & Efstathiou (arXiv: 2505.02233)

LSST YI can strongly limit DM-like axions

LSST YI weak lensing as a dark matter probe: strongest limits & discovery potential

Kobayashi+ (2017); Rogers+ (2021); Dentler+ (inc. Rogers, 2022); Preston, Rogers+ (2025)

Summary

- Ultralight axions < 10⁻²⁶ eV can't be > 10% dark matter (CMB/galaxy power)
- Rubin LSST weak lensing will set strongest axion limits < 10⁻²² eV
- 3 sigma detection with external feedback information and better sims