More is Different: Multi-Axion Dynamics Changes Topological Defect Evolution July 2, 2025 @Axions in Stockholm Fumi Takahashi (Tohoku University) # OCD axion The QCD axion is a pseudo Nambu-Goldstone boson associated with SSB of U(1) Peccei-Quinn symmetry. Peccei, Quinn `77, Weinberg `78, Wilczek `78 # Axion production from strings/walls Cosmic strings and domain walls, formed in post-inflationary scenarios, produce axion dark matter. See talks by Long, Kaltschmidt, Gelmini Cosmic strings # Axion production from strings/walls # Axion production from strings/walls $N_{\rm DW} = 1$ Hiramatsu, Kawasaki, Saikawa, Sekiguchi,, 1202.5851 Studying the evolution of strings and domain walls is crucial for predicting the mass of axion dark matter. ### Prediction of post-inflationary scenario # Key assumption: Single PQ scalar model $$\Phi = \frac{f_a + s}{\sqrt{2}} e^{ia/f_a}$$ - Prevalent in high-precision lattice calculations. - Simplifying assumption or crucial factor? Origin and breaking of U(1) PQ are unknown! # Is UV physics always confined in the string core? We introduce two PQ scalars $$\Phi_1 = \frac{f_1}{\sqrt{2}} e^{i\frac{\phi_1}{f_1}} \text{ and } \Phi_2 = \frac{f_2}{\sqrt{2}} e^{i\frac{\phi_2}{f_2}}$$ $$\theta_1 \equiv \phi_1/f_1 \text{ and } \theta_2 \equiv \phi_2/f_2$$ We introduce two PQ scalars $$\Phi_1 = \frac{f_1}{\sqrt{2}} e^{i\frac{\phi_1}{f_1}} \text{ and } \Phi_2 = \frac{f_2}{\sqrt{2}} e^{i\frac{\phi_2}{f_2}}$$ $$\theta_1 \equiv \phi_1/f_1 \text{ and } \theta_2 \equiv \phi_2/f_2$$ and the potential for axions $$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$ We introduce two PQ scalars $$\Phi_1 = \frac{f_1}{\sqrt{2}} e^{i\frac{\phi_1}{f_1}} \text{ and } \Phi_2 = \frac{f_2}{\sqrt{2}} e^{i\frac{\phi_2}{f_2}}$$ $$\theta_1 \equiv \phi_1/f_1$$ and $\theta_2 \equiv \phi_2/f_2$ and the potential for axions $$V_{1}(\phi_{1}, \phi_{2}) = \Lambda^{4} \left[1 - \cos \left(n_{1} \frac{\phi_{1}}{f_{1}} + n_{2} \frac{\phi_{2}}{f_{2}} \right) \right] \qquad \Lambda \gg \Lambda'$$ $$V_{2}(\phi_{1}, \phi_{2}) = \Lambda'^{4} \left[1 - \cos \left(n'_{1} \frac{\phi_{1}}{f_{1}} + n'_{2} \frac{\phi_{2}}{f_{2}} + \alpha \right) \right] \qquad n_{1}, n_{2}, n'_{1}, n'_{2} \in \mathbf{Z}$$ with the post-inflationary initial condition. $\Lambda \gg \Lambda'$ We introduce two PQ scalars $$\Phi_1 = \frac{f_1}{\sqrt{2}} e^{i\frac{\phi_1}{f_1}} \text{ and } \Phi_2 = \frac{f_2}{\sqrt{2}} e^{i\frac{\phi_2}{f_2}}$$ $$\theta_1 \equiv \phi_1/f_1 \text{ and } \theta_2 \equiv \phi_2/f_2$$ and the potential for axions $$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$ $$V_2(\phi_1, \phi_2) = \Lambda'^4 \left[1 - \cos\left(n_1' \frac{\phi_1}{f_1} + n_2' \frac{\phi_2}{f_2} + \alpha\right) \right]$$ $\Lambda \gg \Lambda'$ $n_1, n_2, n_1', n_2' \in \mathbf{Z}$ with the post-inflationary initial condition. One linear combination of two axions becomes heavy, leaving the orthogonal one (nearly) massless. $$\phi_{ m heavy} \propto n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2}$$ $$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$ # Two types of strings and multiple DWs Both ϕ_1, ϕ_2 -strings quickly reach the scaling solution, and when V_1 becomes relevant, n_1 (n_2) domain walls appear, attached to the $\phi_1(\phi_2)$ -string. 1 2 # Two types of strings and multiple DWs Both ϕ_1, ϕ_2 -strings quickly reach the scaling solution, and when V_1 becomes relevant, n_1 (n_2) domain walls appear, attached to the $\phi_1(\phi_2)$ -string. # Two types of strings and multiple DWs Both ϕ_1, ϕ_2 -strings quickly reach the scaling solution, and when V_1 becomes relevant, n_1 (n_2) domain walls appear, attached to the $\phi_1(\phi_2)$ -string. $$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right] \qquad n_1, n_2 \in \mathbf{Z}$$ $$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$ #### String bundle (= ordinary cosmic string) cf. Higaki, Jeong, Kitajima, Sekiguchi and FT, 1606.05552, See also Eto, Hiramatsu, Saito and Sakakihara, 2309.04248 $$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$ #### String bundle (= ordinary cosmic string) cf. Higaki, Jeong, Kitajima, Sekiguchi and FT, 1606.05552, See also Eto, Hiramatsu, Saito and Sakakihara, 2309.04248 #### Numerical results (2D) Lee, Murai, FT and Yin 2409.09749 $$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$ #### String bundle (= ordinary cosmic string) cf. Higaki, Jeong, Kitajima, Sekiguchi and FT, 1606.05552, See also Eto, Hiramatsu, Saito and Sakakihara, 2309.04248 #### Numerical results (3D) Lee, Murai, FT and Yin 2409.09749 $$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$ #### String bundle (= ordinary cosmic string) $$V_1(\phi_1, \phi_2) = \Lambda^4 \left[1 - \cos \left(n_1 \frac{\phi_1}{f_1} + n_2 \frac{\phi_2}{f_2} \right) \right]$$ #### String bundle (= ordinary cosmic string) String-wall network String-wall network forms in stead of string bundles. #### String bundle (= ordinary cosmic string) Numerical results (2D) Lee, Murai, FT and Yin 2409.09749 String-wall network forms in stead of string bundles. String bundle (= ordinary cosmic string) #### Numerical results (3D) Coutesy of Junseok Lee In the post-inflationary scenario, a string-wall network forms instead of ordinary cosmic strings if n_1 , $n_2 \ge 2$. $n_1, n_2 \geq 2.$ These heavy axion DWs also produce a large amount of GWs. #### Mixed initial conditions We may impose a mixed "pre-post" initial condition, i.e., pre-inflationary initial condition for ϕ_1 post-inflationary initial condition for ϕ_2 Then, no strings bundles are formed, and string-wall network of ϕ_2 remains if $n_2 \ge 2$ (even if $n_1 = 1$). Mixed initial conditions makes string-wall network formation more likely. $$\phi = \phi_{\text{right}}$$ $$\phi = \phi_{\text{left}}$$ #### Couple ϕ to gluons: ϕGG $$\theta = \theta_{\text{right}}$$ $$\theta = \theta_{\text{left}}$$ $$\theta = \theta_{\text{left}}$$ $\phi = \phi_{\text{left}}$ #### Couple ϕ to gluons: ϕGG Introduce QCD axion a: $aG\tilde{G}$ $$\frac{a_{\text{left}}}{f_a} = -\theta_{\text{left}}$$ $$\theta = \theta_{\text{left}}$$ $$\theta = \theta_{\text{left}}$$ $\phi = \phi_{\text{left}}$ $$\frac{\phi}{\theta} = \phi_{right}$$ $$\frac{\theta}{\theta} = \theta_{right}$$ $$\frac{\alpha_{right}}{\theta} = -\theta_{right}$$ Couple ϕ to gluons: $\phi G \tilde{G}$ $$\frac{a_{\text{left}}}{f_{\alpha}} = -\theta_{\text{left}}$$ $$\frac{a_{\text{right}}}{f_a} = -\theta_{\text{right}}$$ # "Induced DW" formation due to V_2 Now we consider the DW formation due to $V_2 \ll V_1$. $$V_{1}(\phi_{1}, \phi_{2}) = \Lambda^{4} \left[1 - \cos \left(n_{1} \frac{\phi_{1}}{f_{1}} + n_{2} \frac{\phi_{2}}{f_{2}} \right) \right]$$ $$V_{2}(\phi_{1}, \phi_{2}) = \Lambda'^{4} \left[1 - \cos \left(n'_{1} \frac{\phi_{1}}{f_{1}} + n'_{2} \frac{\phi_{2}}{f_{2}} \right) \right] \qquad \Lambda' \ll \Lambda$$ Both V_1 and V_2 can be minimized in any domains, and so there is no potential bias at the minimum. # Induced DW due to V_2 $V_1 \, {\sf DW} \qquad \qquad \phi_1 \ ({\sf or} \ \phi_2) \ {\sf string} \qquad \begin{array}{c} V_1 \, {\sf DW} \\ n_1 = 2 \end{array}$ The string-wall network persists even after V_2 is included, since induced DWs appear and the domains remain degenerate in energy. Thus, even a minimal extension with two PQ scalars leads to the cosmological DW problem if n_1 , $n_2 \ge 2$. The simplest solution to the DW problem is to introduce a potential bias along the heavy axion, leaving the PQ mechanism intact. (I'll present an alternative approach shortly.) ## Induced domain walls of QCD axion We consider induced domain walls of the QCD axion a, arising from its mixing with a heavy axion ϕ . Pre-inflationary condition for the QCD axion $A = \frac{f_a}{\sqrt{2}}e^{i\frac{a}{f_a}}$, Post-inflationary condition for the heavy axion $\Phi = \frac{f_\phi}{\sqrt{2}} e^{i\frac{\phi}{f_\phi}}$ #### The axion potential: $$V(a,\phi) = \chi(T) \left[1 - \cos\left(\frac{a}{f_a} + \frac{\phi}{f_\phi}\right) \right] + \Lambda^4 \left[1 - \cos\left(2\frac{\phi}{f_\phi}\right) \right]$$ $$\chi(T) \equiv \frac{m_a^2(T) f_a^2}{N_a^2} = \begin{cases} \chi_0 & (T < T_{\rm QCD}) \\ \chi_0 \left(\frac{T}{T_{\rm QCD}}\right)^{-n} & (T < T_{\rm QCD}) \end{cases}, \quad \chi_0 \simeq (75.6 \, {\rm MeV})^4, \quad T_{\rm QCD} \simeq 153 \, {\rm MeV}, \text{ and } n \simeq 8.16 \\ (T \ge T_{\rm QCD}) & (T \ge T_{\rm QCD}) \end{cases}$$ A. Borsanyi et al, 1606.07494 For simplicity we assume a hierachy in the mass and the tension: $$m_{\phi} \sim \frac{\Lambda^2}{f_{\phi}} \gg m_{a0} = m_a (T=0)$$ $m_{\phi} f_{\phi}^2 \gg m_{a0} f_a^2$ for the QCD axion a The tension of induced DWs is always smaller than that of ordinary DWs. #### Decay temperature of the ϕ -DWs (We introduce a small potential bias along ϕ -direction to make DWs unstable) Lee, Murai, FT and Yin 2407.09478 # GW spectrum from the ϕ -DW collapse $k \, [\mathrm{Mpc}^{-1}]$ #### Red: Analytical estimate with $$\sigma_{\phi} = 6 \times 10^{15} \, \mathrm{GeV}^3$$ $$T_{\rm dec} = 100 \, {\rm MeV}$$ #### Blue: Numerical estimate with $$\sigma_{\phi} = 1.3 \times 10^{15} \,\mathrm{GeV}^3$$ $$T_{\rm dec} = 150 \, {\rm MeV}$$ Kitajima, Lee, Murai, FT and Yin 2306.17146 f[Hz] Lee, Murai, FT and Yin 2407.09478 Lee, Murai, FT and Yin 2507.xxxxxx, FT and Yin 2012.11576 $$\mathcal{L} = -N_{\rm DW} \frac{g_s^2}{32\pi^2} \frac{a}{v_a} G\tilde{G}$$ $N_{\mathrm{DW}} = 3 \ \mathrm{or} \ 6 \ \ \mathrm{for} \ \mathrm{DFSZ} \ \mathrm{axion}$ Lee, Murai, FT and Yin 2507.xxxxxx, FT and Yin 2012.11576 $$\mathcal{L} = -N_{\text{DW}} \frac{g_s^2}{32\pi^2} \frac{a}{v_a} G\tilde{G} \rightarrow \mathcal{L} = -\frac{g_s^2}{32\pi^2} \left(N_{\text{DW}} \frac{a}{v_a} + \frac{\varphi}{v_{\varphi}} \right) G\tilde{G}$$ $N_{ m DW}=3~{ m or}~6~{ m for}~{ m DFSZ}$ axion P: Massless (or very light) axion e.g. KSVZ axion (different from a) Lee, Murai, FT and Yin 2507.xxxxx, FT and Yin 2012.11576 $$\mathcal{L} = -N_{\text{DW}} \frac{g_s^2}{32\pi^2} \frac{a}{v_a} G\tilde{G} \rightarrow \mathcal{L} = -\frac{g_s^2}{32\pi^2} \left(N_{\text{DW}} \frac{a}{v_a} + \frac{\varphi}{v_{\varphi}} \right) G\tilde{G}$$ $N_{ m DW}=3~{ m or}~6~{ m for}~{ m DFSZ}$ axion φ : Massless (or very light) axion Lee, Murai, FT and Yin 2507.xxxxx, FT and Yin 2012.11576 Adding another light axion can solve the DW problem by converting the string-wall network into string bundes. Lee, Murai, FT and Yin 2507.xxxxx, FT and Yin 2012.11576 Unlike the usual QCD axion strings, the string bundles are stable and contribute to the cosmic birefringence! See talks by Andrew Long and Eiichiro Komatsu for CB ## Summary - The origin and breaking of U(1) PQ are unknown. - A minimal extension from one to two PQ scalars often leads to stable DWs with large tension. - Their decay can produce GWs and QCD axion DM even for small f_a . - Adding another light axion can solve the QCD axion DW problem, leading to stable string bundles. # Back-up slides # Symmetry breaking pattern $$U(1)_{\phi_1} \times U(1)_{\phi_2} = U(1)_H \times U(1)_L$$ $$\stackrel{V_1}{\longrightarrow} Z_{\frac{n_1^2 + n_2^2}{d}} \times U(1)_{L=PQ}$$ $$\stackrel{V_2}{\longrightarrow} Z_{\frac{n_1^2 + n_2^2}{d}} \times Z_{\underbrace{\begin{bmatrix} n_1 n_2' - n_2 n_1' \end{bmatrix}}_{d}} = N_{DW}$$ $$V_{1}(\phi_{1}, \phi_{2}) = \Lambda^{4} \left[1 - \cos \left(n_{1} \frac{\phi_{1}}{f_{1}} + n_{2} \frac{\phi_{2}}{f_{2}} \right) \right] \qquad d = \gcd(n_{1}, n_{2})$$ $$V_{2}(\phi_{1}, \phi_{2}) = \Lambda'^{4} \left[1 - \cos \left(n'_{1} \frac{\phi_{1}}{f_{1}} + n'_{2} \frac{\phi_{2}}{f_{2}} + \alpha \right) \right] \qquad \Lambda \gg \Lambda'$$ FIG. 8. The snapshots of strings and DWs at the time when $H^{-1} = 483.8/\sqrt{\lambda\eta}$ for $(n_1, n_2) = (1, 2)$ are shown. The blue (red) lines correspond to 1-strings (2-strings) and the semi-transparent white surfaces correspond to heavy axion DWs. One side of the box is the size of two Hubble horizons. Pre-inflationary for ϕ_1 , post-inflationary for ϕ_2 with $(n_1,n_2)=(1,-2)$ and $(n_1',n_2')=(1,-3)$. Green vertical line: field configuration around a ϕ_2 string in the absence of V_1 and V_2 . Before V_2 is turned on. Pre-inflationary for ϕ_1 , post-inflationary for ϕ_2 with $(n_1,n_2)=(1,-2)$ and $(n_1',n_2')=(1,-3)$. Green vertical line: field configuration around a ϕ_2 string in the absence of V_1 and V_2 . Before V_2 is turned on. Pre-inflationary for ϕ_1 , post-inflationary for ϕ_2 with $(n_1, n_2) = (1, -2)$ and $(n'_1, n'_2) = (1, -3)$. Green vertical line: field configuration around a ϕ_2 string in the absence of V_1 and V_2 . Blue line: ϕ_2 string and two DWs with V_1 present, and V_2 absent. Before V_2 is turned on. TABLE I. Fate of the string-wall network in the post-post scenario. We consider cases where at most one of n_1 , n_2 , n'_1 , n'_2 is zero. Here, we assume $|n_1| \ge |n_2|$ for convenience. For $|n_1| < |n_2|$, this table should read with $n_1 \leftrightarrow n_2$. $D \equiv |n_1 n'_2 - n_2 n'_1|$. d is the greatest common divisor of $(|n_1|, |n_2|)$, with $d = n_2$ for $n_1 = 0$ and $d = n_1$ for $n_2 = 0$. $N_{\text{DW}} \equiv D/d$. Columns V_1 and V_2 show topological defects formed or decayed when each potential becomes effective. We assume that the effects of V_1 are more significant than those of V_2 . | $_n_1$ | n_2 | $N_{ m DW}$ | V_1 | V_2 | figure | | |----------|----------|-------------|-------------------------------------|--|---------------|--------| | 1 | 0 | _ | decay of ϕ_1 strings | ϕ_2 strings with $ n_2' $ DWs | _ | | | ≥ 2 | 0 | - | ϕ_1 network & ϕ_2 strings | stable network | _ | | | | | 0 | | θ_L string bundles | | - | | ≥ 1 | 1 | 1 | $ heta_L ext{ string bundles}$ | decay of network | Figs. 2 and 8 | Fig. 7 | | | | ≥ 2 | | stable network | | _ | | ≥ 2 | ≥ 2 | _ | stable network | stable network with induced DWs
or collapse by transient bias | Fig. 2 | - | TABLE II. Fate of the string-wall network in the pre-post scenario. Other definitions and column descriptions are the same as in Table I. | $ n_2 $ | D | n_2^\prime/n_2 | V_1 | V_2 | figure | |----------|----------|------------------|-----------------------------------|---|---------------| | 0 | - | _ | ϕ_2 strings without DWs | ϕ_2 strings with $ n_2' $ DWs | _ | | 1 | - | _ | decay of ϕ_2 strings | no defects | _ | | ≥ 2 | 0 | integer | | stable network | Fig. 5 | | | | non-integer | ϕ_2 strings with $ n_2 $ DWs | network collapse by bias | Fig. 6 | | | $\neq 0$ | _ | | stable network with induced DWs [*]
or collapse by transient bias | Figs. 3 and 4 | ^{*} If $n_1 = 0$ and n_2'/n_2 is an integer, the stable network does not accompany induced DWs.