

The Dark Side of the Sun: The Quest for Solar Axions with Helioscopes

Julia K. Vogel Axions in Stockholm, Nordita, 30th June – 4th July 2025

color meets flavor

- 1. Axions and how to detect them
- 2. Solar Axion Searches
- 3. Current and future Axion Helioscopes
- 4. Outlook for helioscopes

- Axions featured prominently in ESPP Open Symposium, e.g. in TH & EXP Opening Talks (Eric Laenen, F. Gianotti)
- Mixture of small scale and larger scale experiments

Axions

Axion physics is a beautiful combination of cosmology, particle, nuclear and astroparticle physics, with experiments large and small

dortmund

university

When should we stop looking for DM (incl. axions)?

Axions@ESPP

"We must be relentless in the search for dark matter because we know it is there" M.Mccullough

Strong CP problem

CP violation expected in QCD, but not observed experimentally (θ , nEDM)

Peccei-Quinn solution Peccei & Quinn, PRL 38 (1977) 1440. New global U(1) symmetry, θ turn into a dynamical variable, relaxes to zero

Axion Weinberg, PRL 40 (1978) 223; Wilczek, PRL 40 (1978) 279

Pseudo Goldstone-Boson of spontaneous symmetry breaking of PQ at yet unknown scale f_a

Properties of this potential DM candidate

- Extremely weakly-coupled fundamental pseudo-scalar
- Generic coupling to two photons due to coupling to pions
- Mass unknown $m_a \propto g_{a\gamma}$

dortmund

university

- Astrophysics: $g_{a\gamma} < 10^{-10} \text{ GeV}^{-1}$
- ightarrow Dark matter candidate & solves strong CP

Coupling of **axions** to photons exploited by many experiments

- Relatively "simple" and generic for all axion models
- Model-dependencies exist however

Source	Experiments	Model & cosmology dependency	Detection Principles for axions and ALPs
Lab axions	Light-Shining- Through-Wall (LSTW) Experiments	Very low	Laser Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet
Solar axions	Helioscopes	Low	Magnet Magnet <u>e 1</u> x B
Relic axions	Haloscopes	High	Magnet

Large complementarity between different experimental approaches!

- 1. Axions and how to detect them
- 2. Solar Axion Searches
- 3. Current and future Axion Helioscopes
- 4. Outlook for helioscopes

Blackbody photons (keV) in solar core can be converted into axions in the presence of strong electromagnetic fields in the plasma \rightarrow Primakoff Effect

Blackbody photons (keV) in solar core can be converted into axions in the presence of strong electromagnetic fields in the plasma \rightarrow Primakoff Effect

university

Blackbody photons (keV) in solar core can be converted into axions in the presence of strong electromagnetic fields in the plasma \rightarrow Primakoff Effect

Additionally to Primakoff:

"ABC axions" which may be x100 more intense but model-dependent

Solar Axion Searches

Via axion-nucleon couplings can also observe monochromatic lines from nuclear transitions

- keV axions emitted in the M1 transition of Fe-57 nuclei (14.4 keV) and Tm-169 (8.4keV)
- MeV axions from ⁷Li (0.478 MeV) and D(p;γ)³He (5.5 MeV)
- Axions-nucleon coupling g_{aN} especially intriguing: If the axion has couples via g_{aN}, it is most likely a QCD axion

Di Luzio *et al* 2022 *Eur. Phys. J.* C 82:120 CAST collaboration *et al* 2009 *JCAP* 12 002 D. Miller *et al* 2010 JCAP 1003 032 Derbin *et al* 2023 *Jetp Lett.* 118, 160 Candon et al. arXiv:2504.21107

dortmund

university

$$\Phi_a = 5.06 \times 10^{23} \ (g_{aN}^{\text{eff}})^2 \ \text{cm}^{-2} \text{s}^{-1}$$

P. Sikivie 1983 PRL 51 1415

First axion helioscope proposed by P. Sikivie

Reconversions of axions into x-ray photons in strong laboratory magnetic field

Idea refined by K. van Bibber et al.

dortmund

university

Van Bibber et al 1989 Phys. Rev. D 39 2089

Buffer gas to restore coherence over long magnetic field and access higher axion masses

$$P_{a \to \gamma} = \left(\frac{Bg_{a\gamma\gamma}}{2}\right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L} - 2e^{-\Gamma L/2}\cos\left(qL\right)\right] \quad \text{with} \ q = \left|\frac{m_{\gamma}^2 - m_a^2}{2E_a}\right| \ \text{GAS}$$

Solar Axion Searches

Helioscope Figure of Merit

Expect next gen improvement: 1-1.5 OoM in sensitivity to g_{av} (factor 10k-20k in S/N)

- 1. Axions and how to detect them
- 2. Solar Axion Searches
- 3. Current and future Axion Helioscopes
- 4. Outlook for helioscopes

Julia K. Vogel | Solar Axions Searches with Helioscopes | Axions in Stockholm 2025

First helioscopes

1st generation helioscope: Brookhaven

- First Axion Helioscope
- Merely a few hours of data

Lazarus et at. PRL 69 2333 (1992)

First helioscopes

1st generation helioscope: Brookhaven

- First Axion Helioscope
- Merely a few hours of data Lazarus et at. PRL 69 2333 (1992)

2nd generation: Tokyo Helioscope (SUMICO)

- 2.3 m long, 4T magnet

Current & Future Experiments Current best experiment

CERN AXION SOLAR TELESCOPE

Solar Telescope (CAST) with next-gen experiment pathfinder

 $g_{a\gamma} < 0.58 \times 10^{-10} \text{ GeV}^{-1}$ Nature Phys. 13 584 (CAST 2017) New CAST limit 2024 KSV2/E/W=0] 10-11 10 - 4 10^{-3} 10-2 10-1 100 m_a (eV)

Anastassopoulos et al. Nature Phys. 13 (2017) 584-590, Altenmüller et al. PRL 133 (2024), 221005

Julia K. Vogel | Solar Axions Searches with Helioscopes | Axions in Stockholm 2025

Current & Future Experiments Next-gen : IAXO/BabyIAXO

Next-gen : IAXO

INTERNATIONAL AXION OBSERVATORY (IAXO)

- Next-gen helioscope for solar axions
- Mature and state-of-the-art technology
- Purpose-built large-scale superconducting magnet
 - Toroidal geometry
 - 25 meters long, up to 5.4 T
 - > 300 times larger FoM than CAST magnet
 - 8 conversion bores of 60 cm Ø
- 8 detection lines

dortmund

university

- X-ray optics with 0.2 cm² focal spot
- Ultra-low background detectors
- ▶ 50% of Sun-tracking time.

 $g_{a\gamma} \lesssim 5.8 \times 10^{-11} \text{ GeV}^{-1}$

Julia K. Vogel | Solar Axions Searches with Helioscopes | Axions in Stockholm 2025

BabyIAXO =INTERMEDIATE EXPERIMENTAL STAGE BEFORE IAXO

- ► Technological prototype of IAXO with only two magnet bores (10 m, Ø 70 cm)
- Relevant physical outcome (~10 × CAST B²L²A)
- Magnet will be upscalable version for IAXO
- > X-ray optics/detectors close to final IAXO configuration (focal length, performance)

Baby VXO MAGNET

NEED: large magnetic field B & cross-sectional area A

- "Common coil" configuration
- Minimal risk and cost-effective
- Racetrack layout close to IAXO toroidal design
 - Some delays: availability of Al-stabilized SC cable

Racetrack layout close to IAXO toroidal design

Some delays: availability of Al-stabilized SC cable

Baby VXO MAGNET

dortmund

university

NEED: large magnetic field B & cross-sectional area A

- "Common coil" configuration
- Minimal risk and cost-effective

Baby VXO MAGNET

NEED: large magnetic field B & cross-sectional area A

- "Common coil" configuration
- Minimal risk and cost-effective

- Racetrack layout close to IAXO toroidal design
 - Some delays: availability of Al-stabilized SC cable B [T] Superconducting coils Magnet 3D coil geometry, current direction,

BabyIAXO Optics

Baby VXO TELESCOPES

NEED: Maximized throughput efficiency (40-60%), Small focal spot (r < 2.5 mm), Cost-effective way (need 8 for IAXO)

- Baseline 1-10 keV (prototyping and R&D)
 - Existing XMM flight-spare telescope
 - Custom IAXO optic (NuSTAR/BRAVO)
- Beyond baseline
 - Lower threshold of 0.3 keV or better
 - Add sensitivity at 14.4 keV

Leveraging decades of NASA/ESA research for space instrumentation: minimal risk and superior performance

Henriksen et al 2021 AO 60, 22; Irastorza et al 2015 JCAP 12, 008

Julia K. Vogel | Solar Axions Searches with Helioscopes | Axions in Stockholm 2025

Core optic (NuSTAR/XRISM)

High radii (BRAVO-SUN)

BabyIAXO Optics

Baby VXO TELESCOPES

Custom-built telescope

- Optimization to re-use as much existing NuSTAR glass as possible
- Compromise solution only degrades overall efficiency of the combined optics by less than 10%

BabyIAXO Detectors

Baby VO DETECTORS

NEED (Baseline 1-10 keV)

- ▶ Low background (<10⁻⁷ 10⁻⁸ cts keV⁻¹ cm⁻² s⁻¹)
 - Less than 1 event per 6 months of data taking!
 - Already demonstrated 8×10⁻⁷ c keV⁻¹ cm⁻² s⁻¹ and 10⁻⁷ cts keV⁻¹ cm⁻² s⁻¹ above ground and at Canfranc, respectively
- High detection efficiency

WANT (Beyond baseline)

- Low E-threshold (< 1 keV) and improved E-resolution</p>
 - Especially interesting for axion-electron measurements
 - Notably useful in case an axion signal is detected

Micromegas baseline option to reach required low background Additional technologies considered /active R&D efforts

BabyIAXO Detectors

Baby VO DETECTOR

WANT (Beyond baseline)

- Pursuing a variety of detector technologies
 - Gaseous (Time Projection Chamber): MM, GridPix
 - Semiconductor: Silicon Drift Detectors (SDD)
 - Cryogenic: Metallic Magnetic Calorimeters (MMC), Transition Edge Sensors (TES)

See poster by Lucinda Schönfeld

window

Far electronics

Entrance

Aluminum grid above Timepix3 readout chip

MMC

SDD

BabyIAXO Location

Baby VO @DESY

- DESY HERA hall as BIAXO site
- CTA Medium Sized Telescope (MST) support and drive system to be used for BIAXO
- End-to-end simulation of (B)IAXO experiment

Rare Event Searches Toolkit software

Expect to commission BIAXO without magnet before baseline science run

dortmund

university

Science case

- QCD axions incl.
 DM candidates
- "ALP miracle"
 region: DM &
 Inflation solved
- Astrophysical hints: Anomalous stellar cooling
- Astrophysical hints: Transparency to UHE photons
- ALP dark matter
- + Beyond baseline program e.g. RADES, a-e, a-n, DP,...

Armengaud et al 2019, JCAP 1906, 047

Novel Approach using satellites

Concept: Utilize outer solar magnetic field for reconversion of axions into x-ray photons and use X-ray astronomy mission to detect them

- 1. Axions and how to detect them
- 2. Solar Axion Searches
- 3. Current and future Axion Helioscopes
- 4. Outlook for helioscopes

Julia K. Vogel | Solar Axions Searches with Helioscopes | Axions in Stockholm 2025

Armengaud et al 2019, JCAP 1906, 047

IAXO as a generic axion(-like) detection facility

(Baby)IAXO constitutes a great infrastructure that can be used to target other physics goals beyond Primakoff solar axions:

Outlook for helioscopes

Parameter space showing the sensitivity of the experiments in the $g_{a\gamma}$ - g_{ae} plane

Axion mass m_a ≃ 1meV

Parameter space showing the sensitivity of the experiments in the $g_{a\gamma}$ - g_{aN} plane

Axion mass $m_a \simeq 20 meV$

Non-Primakoff solar axions

 ABC axions via axion-electron coupling or solar axions via axion-nucleon coupling as mentioned before:

→ needs more specialized detection systems (XRTs, detectors)

- Solar ALP production via conversion in large-scale B-fields of longitudinal plasmons
 - Solar B-field dependence (field not well known but can be constrained)

Non-Primakoff solar axions

 ABC axions via axion-electron coupling or solar axions via axion-nucleon coupling as mentioned before:

→ needs more specialized detection systems (XRTs, detectors)

- Solar ALP production via conversion in large-scale B-fields of longitudinal plasmons
 - Solar B-field dependence (field not well known but can be constrained)
 - ALP flux from longitudinal plasmon (LP)-ALP conversions peaks around 100 eV (could be detectable with upgraded IAXO)
 - Depends on axion-photon coupling
 - Transversal plasmon-ALP conversion depends also on axion mass

dortmund

university

Outlook for helioscopes

dortmund

university

Outlook for helioscopes

SN Axions

Ge et al. JCAP11(2020)059

Axion from galactic supernova

- If sufficiently close-by galactic SN, SN axions could be detectable at (Baby)IAXO.
- SN axions have O(100MeV) energies

dortmund

university

- Carenza et al. 2502.19476
- Requires IAXO to have large HE γ-ray detector, covering all magnet bore, sufficient pointing accuracy, alert system in place
- Can be implemented complementary to baseline BabyIAXO setup (opposite magnet side)

Julia K. Vogel | Solar Axions Searches with Helioscopes | Axions in Stockholm 2025

RADES

Exploratory project towards a later stage of CAST experiment: helioscope magnets for haloscope searches, with interesting results up to now

Outlook for helioscopes

dortmund

university

Haloscope meets Helioscope

Outlook for helioscopes

university

Dark Photons

Julia K. Vogel | Solar Axions Searches with Helioscopes | Axions in Stockholm 2025

Potential improvements

dortmund

university

 Utilizing a helical magnet profile to enhance axion-photon conversion via axion-magnetic resonance (AMR) → maintain phase matching

Seong et al., JHEP 03 (2025) 071

Outlook for axions

But let's be relentless first and find the axion...

Summary

- Axions can solve strong CP & the dark matter problem
- Axions could be found with various experiments, complementary searches crucial including big and small efforts
- Helioscope searches (like IAXO) do NOT assume axions are DM
- Next-gen experiments expected to have discovery potential in relevant regions with lots of interesting science beyond vanilla axions

AXIONS IN STOCKHOLM, SWEDEN

23 JUNE – 11 JULY 2025

THANK YOU!

