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Galaxy-scale dynamics:

Formation of DM halos with a flat core

R. Galazo Garcia et al., 2024, arXiv: 2304.1022



- ULTRA-LIGHT MATTER

10_33 eV 10_22 eV eV keV Cltev Mpl A?@ Mass

____________________ | | |
| | | | | | >

DE Ultra—hght DM ngh'f DM WIMP (7‘()1111)(%“(\ Primordial BHs

/|

FuzzyDM This talk: SFDM, ALPs 107%°eV <m < 1eV

1
Sy = [ dxy=g {— S 40,0, V(qb)} .

1
V(gp) = §m2¢2 + Vi() Dominant quadratic term » behaves like dark matter:  p a3
A
Vi(¢) = f¢4 Small repulsive quartic self-interaction » important on small-scales, gives an effective pressure PP X ,02
J.Fan,2016

Contrary to the FuzzyDM case, we assume that on small scales we are in the Thomas-Fermi regime:
the self-interaction pressure dominates over the quantum pressure.

The de Broglie wavelength is much smaller than the size of the system.



lI- NON-RELATIVISTIC REGIME

On the scale of the galactic halo we are in the nonrelativistic regime: the frequencies and wave numbers of interest are much smaller than m
and the metric fluctuations are small.We can also neglect the Hubble expansion on galactic scales.

A) From Klein-Gordon eq. to Schrodinger eq.:

1 . .
Decompose the real scalar field ¢ in terms of a complex scalar field ES (e™"y + "My )
V2m
factorizes (removes) the fast oscillations of frequency m
(z,t) evolves slowly, on astrophysical or cosmological scales. ¢ < ma), Vi < ma
. . . . . Vzl//
Instead of the Klein-Gordon eq., it obeys a (non-linear) Schrodinger eq.: Yy = 5 m(®y + Oy )y
")\
Newtolnlan Self-interactions
gravity
Which is complemented by the Poisson equation Vb = 4nGp d; = L
and the expression of the self-interaction pressure: Pa
2
p = mfi o
m



B) From Schrodinger eq. to Hydrodynamical egs (Madelung transformation):

Madelung 1927, Chavanis 2012, ....

. - Vv
One can map the Schrédinger eq. to hydrodynamical eqgs.: W = \/ge” b=
m

The real and imaginary parts of the Schrodinger eq. lead to the continuity and Euler egs.:

p+ V- (pv) =0 conservation of probability for ¥ — conservation of matter for 0

p

\ T
Self-interactions Pa
V2 effective pressure  Pog o p*

__ VP
« quantum pressure » P = —

2m? \/,5

comes from part of the kinetic terms in w

V=2

In the following, we neglect the « quantum pressure » (which dominates for FDM) large-m limit



l1l- SOLITON (boson star, ground state): HYDROSTATIC EQUILIBRIUM

As compared with CDM, the self-interactions allow the formation of hydrostatic equilibrium solutions,
with a balance between gravity and the effective pressure:

@ R)E= V(PG +Ox +B) —>

» Finite-size halo, called « soliton » or « boson star »

P. Brax, ]. Cembranos, PV, 1906.00730

Ruffini and Bonazolla 1969,
Chavanis 201 I,
Schiappacasse and Hertzberg 2018, ...
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m > 10718V :  galactic soliton governed by the balance between the repulsive self-interaction and self-gravity.

m ~ 107?'eV : Fuzzy Dark Matter (de Broglie wavelength of galactic size): galactic soliton governed by the balance between
the quantum pressure and self-gravity.

Numerical simulations of FDM indeed find that solitons form, from gravitational collapse, within an extended NFW-like
out-of-equilibrium halo.

Chen et al. 2020
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V- SOLITON FORMATION INTHE THOMAS-FERMI REGIME

(Self-interactions dominate over the gquantum pressure in the soliton)

A) Numerical simulations

SiIl(ﬂ'?“/R 1) A
Initial conditions: halo (+ central soliton): Yinitial = Psol + Phalo Psol(T") = Posol —p SIO , Vsol(r) = \/ Psol (T)

Stochastic halo: sum over eigenmodes of the target gravitational potential with random coefficients

2
A . - € A — A A — — _
Yhato(F,1) = Y GnomUnem (F)eFret/e Anom = a(Fpg)e’Omem — 5 Vip+ Y =Edp  0(r) = On(r), Yoy =dnp

ném \

random phase

(Prato) = Y a(Ene)?|tnom |’ Choose a(E) so as to recover the target density profile p(7)

nfm

With the WKB approximation we can relate this system to a classical system defined by a phase-space distribution f(FE)

take a(E)? = (2me)’ f(F)

f(E)

(Eddington formula)

B 1 d /O dq)N dpclassical
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- At t ~ 8, the soliton is formed with Rsol ~ 0.5 and it contains ~ 50% of the total mass.
- The system reaches a quasi-stationary state.
- Afterwards, the mass of the soliton slowly grows.



2) Dependence of the soliton mass on the formation history

Growth rate as a function of the soliton mass, MO

Growth with time of the soliton mass for several initial conditions
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- The soliton always forms and grows, with a growth rate that decreases with time.
- Its mass can reach 50% of the total mass of the system.
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- There is no sign of a scaling regime, where the growth rate would be independent of initial conditions.

Probably no well-defined halo-mass/soliton mass relation



* Solitons always form at the center of virialized halos.

For large self-interactions, the soliton forms in a few dynamical times.

For small self-interactions, the soliton formation can take a long time, until stochastic density peaks reach
densities that are large enough to trigger the formation of the soliton.

The soliton keeps growing until the end of our simulations, making from 10% to 80% of the total mass.

The growth rate of the soliton does not seem to obey a scaling regime.
It seems to depend on the formation history of the system.

In the cosmological context, there should be a large scatter for the soliton mass as a function of the halo mass,
depending on the assembly history ?

It is not clear how to derive simple but accurate analytical predictions for the soliton mass.



Vortex lines and rotating soliton

(What happens when a collapsing halo
has a nonzero angular momentum)

Ph. Brax and P Valageas, 2025, arXiv: 2501.02297, 2502.12100



I- Vortices

2
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Nondimensional units (rescaled to the ot
typical size and mass of the system) Thomas-Fermi regime: € < 1

A(I)N — 47T107 b = )‘/07 P = W‘Q

* Gross-Pitavskii equation: similar to BEC and superfluids at low temperature,
where the external confining potential is replaced by the self-gravity.

Hydrodynamical picture: ¢ = \/pe’”, ¥ =€VS Curl-free velocity field

No longer true if the phase is not regular: at locations where the density vanishes this mapping is ill-defined !

* Appearance of vortices/vortex lines that carry the vorticity of the system (BEC, superfluids),
associated with singularities of the phase and of the velocity field.



This is observed in cold atoms experiments: Abo-Shaer et al. 200 -
10° Na atoms

Fig. 1. Observation of Thomas-Fermi radius= 29um
vortex lattices. The
examples shown con-
tain  approximately
(A) 16, (B) 32, (C) 80,
and (D) 130 vortices.
The vortices have
“crystallized” in a tri-
angular pattern. The
diameter of the cloud
in (D) was 1 mm after
ballistic ~ expansion,
which represents a
maghnification of 20.

Slight asymmetries in the density distribution were due to absorption of the optical pumping light. The Spati al distribution of

the density is obtained by
resonant absorption
imaging.

Healing length & = 0.2um

(ballistic expansion after
the trap is switched off)

The vortices correspond to troughs of the density field.

Rotation of the BEC is produced by the dipole force exerted by laser beams.

The spatial distribution of the density is obtained by resonant absorption imaging.

One observes a regular lattice of vortices. Such Abrikosov lattices were first predicted for quantised magnetic flux lines
In type-Ill superconductors.  Aprikosov 1957

In our case, there is no external container.

* The rotation will be generated by the initial rotation of the dark matter halo.



Vortex line aligned with the vertical z-axis of spin O (7, t) = e e oo f(r)e?,  p(F) = pof2(ry)

1 I I T | =

0.8 /,/"/’ _

'¢——--'—'— '--.N~‘ 06 - ////,/ 1

pEISTL IR o () e Pitaevski 2003

""J_ - 04 e -

/l] 0.2 F //// -

05" 2 3 7 5 6

n
F1G. 5.2. Vortical solutions (s = 1, solid line; s = 2, dashed line) of the Gross—
Pitaevskii equation as a function of the radial coordinate r/£. The density of the
gas is given by n(r) = nf?, where n is the density of the uniform gas
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The vorticity is carried by the vortices Vorticity: & =V X U = 2meadp,’ (L)€,
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The vorticity and circulation are quantized I'(ry) = jéﬁ b = /Sc?f - dS = 2meo



Excess energy (as compared with the static soliton) for a vortex of spin O : AE, ~ o*mpoe’ In[Ry/(|o|€)]

-
Excess energy for IV, vortices of unit spin: AEN, ~ NUW/OOGZ 111[R0/§] =+ N,E 1,0062

* It is energetically favorable for a large-spin vortex to break up into unit-spin vortices.

In the numerical simulations we only find unit-spin vortices.



ll- Many vortices

N,
For a collection of Nyvortices: (7, t) = /pe*’ H e’ p;(7) = (5ﬁ—ﬂj)
j=1

As Iin classical hydrodynamics of ideal fluids, the vortices move with the matter along the flow generated by the other vortices
and the background curl-free velocity

Nfu — —
. . r —7r .
F=0(F), T=eVs+ Y 7 U;(F) = €08, x ==L
j=1

ry —Tljy

The system is again described by the continuity and Euler equations, but the velocity field is no longer curl-free:

G=V X T = 2Tee, Zﬁjcsg)(fl — 7 1)

J



I11- Continuum limit

The Gross-Pitaevskii equation conserves the mass, the momentum and the energy, as well as the angular momentum.

Rotating soliton: we look for a minimum of the energy at fixed mass and angular momentum: ¢V (E — M —

\ /O

—> Solid-body rotation: U = Q x 7 Q=0c, Lagrange multipliers

At leading order for a slow rotation, we obtain the density profile and the soliton surface:

0?2 T 5702  [7mr 02
0) = — — | P. 0 —
p(r,6) (po 5 ) (Ro> T (Ro> 2(cos0) + o,

Q? 5O
0 1 — P 0
Ra(0) = Ry ( + 277,00) Ry o 5 (cos 6)

02 927

==  Dynamical stability for Q| S Vo Doy S Py ~ Pj



IV- Numerical simulations

A) Initial conditions

Initial conditions: virialized collisionless halo = sum over eigenmodes of the target gravitational potential with coefficients
with a random phase.

A N S - - 1 d d 2l +1
— Z Antm Vnem (T)a Unem (T) — Rné(r)lfg (‘97 90) Anltm — ‘a’nﬁmeze)nem\ [_ 62 2 dr (72%) ™ 6 (27“2 ) ™ (I)N] Rne = EneRae
nfm -
random phase
2 m 2
(P) W‘ Z @t R Y Choose \angm\so as to recover the target density profile p(r)

ném

With the WKB approximation we can relate this system to a classical system defined by a phase-space distribution

Take |an£m‘2 — (QWG)Sf(Enﬁa Lz)a L, = €n,

Forinstance: f(E,L:) = fo(E)+ [-(E, L) with f_(E,L,) oddover L,

B 00 — B , R 00 r\/2(E—<I>N) L.
(p(r)) —47TLN(T) dE\/Q(E Oy (r))fo(E) (J,) = 167 /o drrLN dE/O dL. L, Arccos (r\/Q(ECI)N)> f_(E,L,)

Initial angular momentum and rotation
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Density along the x/y/z axis
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B) Formation of a rotating soliton in a few dynamical times
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Circular section
of the soliton
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C) Formation of a lattice of vertical vortex lines

Vertical vortex lines g
inside the soliton E

Stacking of the vortex lines
(winding number maps)
over many times
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V= Conclusion

==  Halos with a nonzero angular momentum form stable rotating solitons with an oblate shape, for € < 1

These rotating solitons are N0t high angular momentum eigenstates of the Schrédinger equation with a vanishing central density

Yem (Z,1) = e f()Y(0,0) > 1 m|>1

Instead, they have a maximum central density and display a solid-body rotation that is supported by
a regular |lattice of vortex lines, aligned with the initial angular momentum of the system.

The number of vortex lines grows linearly with the soliton angular momentum.

- Cosmic web of vortex lines along filaments, linking collapsed halos ?
- Connection with spinning filaments ?

* - Relativistic regime ? Frame dragging effects on baryons ?
- Detection of such DM substructures by lensing ?

- Impact on the distribution of the gas ? ,
Alvarez-Rios et al. 2025



