Lattice Simulations of Axion Inflation Status and perspectives

Angelo Caravano (He/Him) - Institut d'Astrophysique de Paris

Based on work with: Drew Jamieson, Eiichiro Komatsu, Kaloian D. Lozanov, Marco Peloso, Jochen Weller,...

Roadmap

0) Motivation: why axion inflation? Why simulations?

1) The method: lattice simulations of inflation

2) Results

3) Open questions and future directions

[Freese, Frieman, Olinto (1990)] [Anber, Sorbo 0908.4089]

Think of the inflaton as an axion-like field

 $A_{\mu} = (A_0, \vec{A})$

In this talk: focus on U(1) gauge field

Axion-U(1) inflation

[Freese, Frieman, Olinto 1990] [Turner, Widrow 1988] [Garretson, Field, Carrol 1992] [Anber, Sorbo 0908.4089]

Think of the inflaton as an axion-like field.

Observational consequences:

1. Production of gauge field \rightarrow **2.** decay into inflaton perturbations

Axion-U(1) inflation

[Anber, Sorbo 0908.4089] [Barnaby, Peloso 1011.1500]

Think of the inflaton as an axion-like field.

Observational consequences:

1. Production of gauge field \rightarrow **2.** decay into inflaton perturbations

In math:

1.
$$A''_{\pm} + \left(k^2 \pm k\phi'\frac{\alpha}{f}\right)A_{\pm} = 0$$
 one helicity enhanced for $k < \phi'\frac{\alpha}{f}$ easy (linear)

2.
$$\left(\frac{\partial^2}{\partial\tau^2} + 2\mathcal{H}\frac{\partial}{\partial\tau} - \nabla^2 + a^2 V''(\phi)\right)\delta\phi(\vec{x},\tau) = a^2 \frac{\alpha}{f} \left(F_{\mu\nu}\tilde{F}^{\mu\nu}(\vec{x}) - \langle F_{\mu\nu}\tilde{F}^{\mu\nu}\rangle\right)$$
difficult (nonlinear)

Lattice simulations of axion inflation

Analytic results

(Green function methods, in-in calculations)

• Power spectrum:

 $\mathcal{P}_{\zeta}(k) \simeq \mathcal{P}_{\rm vac} + \mathcal{P}_{\rm vac}^2 f_2(\xi) e^{4\pi\xi}$ vacuum sourced (free theory)

Analytic results (Green function methods, in-in calculations)

Power spectrum:

 $\mathcal{P}_{\text{vac}} = \frac{H^4}{(2\pi\dot{\phi})^2}$ $\xi = \frac{\alpha\dot{\phi}}{2fH}$

• Bispectrum:

$$f_{\rm NL}^{\rm (equil.)}(\xi) \simeq \frac{f_3(\xi) \mathscr{P}_{\rm vac}^3 e^{6\pi\xi}}{\mathscr{P}_{\zeta}^2}$$

Analytic results (Green function methods, in-in calculations)

Power spectrum: $\mathcal{P}_{\zeta}(k) \simeq \mathcal{P}_{\text{vac}} + \mathcal{P}_{\text{vac}}^2 f_2(\xi) e^{4\pi\xi}$ $\mathcal{P}_{\text{vac}} = \frac{H}{(2\pi\dot{\phi})^2}$ $\xi = \frac{\alpha\dot{\phi}}{2fH}$

• Bispectrum:

$$f_{\rm NL}^{\rm (equil.)}(\xi) \simeq \frac{f_3(\xi) \mathscr{P}_{\rm vac}^3 e^{6\pi\xi}}{\mathscr{P}_{\zeta}^2}$$

$$\begin{array}{l} \text{assuming} \\ \text{constant} \ \xi \end{array}$$

LI4

Analytic results

(Green function methods, in-in calculations)

• Power spectrum:
$$\mathscr{P}_{\zeta}(k) \simeq \mathscr{P}_{\text{vac}} + \mathscr{P}_{\text{vac}}^2 f_2(\xi) e^{4\pi\xi}$$
 $\mathscr{P}_{\text{vac}} \simeq \frac{\pi}{(2\pi\dot{\phi})^2}$
• Bispectrum: $f_{\text{NL}}^{(\text{equil.})}(\xi) \simeq \frac{f_3(\xi) \mathscr{P}_{\text{vac}}^3 e^{6\pi\xi}}{\mathscr{P}_{\zeta}^2}$ $\xi = \frac{\alpha\dot{\phi}}{2fH}$

• Directly sourced, chiral gravitational waves:

$$\mathcal{P}_{GW}^{L/R} \simeq \frac{H^2}{\pi M_{\rm Pl}^2} \left[1 + \frac{2H^2}{M_{\rm Pl}^2} f_h^{L/R}(\xi) e^{4\pi\xi} \right], \qquad \mathcal{P}_{GW}^L \neq \mathcal{P}_{GW}^R$$

 $\frac{\alpha\phi}{2fH} \propto \sqrt{\epsilon}$

Analytic results

$$\mathscr{P}_{\zeta}(k) \simeq \mathscr{P}_{\rm vac} + \mathscr{P}_{\rm vac}^2 f_2(\xi) e^{4\pi\xi} \qquad \xi =$$

Scalar perturbations naturally grow on small scales Very interesting observational consequences: **PBHs, GWs at interpherometer scales**

Analytic results

$$\mathscr{P}_{\zeta}(k) \simeq \mathscr{P}_{\text{vac}} + \mathscr{P}_{\text{vac}}^2 f_2(\xi) e^{4\pi\xi} \qquad \qquad \xi = \frac{\alpha \phi}{2fH} \propto \sqrt{\epsilon}$$

Scalar perturbations naturally grow on small scales Very interesting observational consequences: **PBHs, GWs at interpherometer scales**

BUT:

More precisely:

$$\partial_{\tau}^2 \bar{\phi} + 2\mathcal{H} \partial_{\tau} \bar{\phi} + a^2 V'(\bar{\phi}) = \frac{a^2 \frac{a}{f} \langle F_{\mu\nu} \tilde{F}^{\mu\nu} \rangle}{f}$$

Sort of extra friction, but not so simple (as we will see)

Importantly, this happens when
$$\frac{\langle E^2 \rangle}{2} + \frac{\langle B^2 \rangle}{2} \ll V(\phi)$$

but $\frac{\langle E^2 \rangle}{2} + \frac{\langle B^2 \rangle}{2} \sim \frac{\langle \dot{\phi}^2 \rangle}{2}$

Lattice simulations of axion inflation

Roadmap

0) Motivation: why axion inflation? Why simulations?

1) The method: lattice simulations of inflation

2) Results

3) Open questions and future directions

Lattice simulations

- Numerical tool to study non-perturbative cosmological phenomena.
- Examples: reheating phase after inflation, cosmological phase transitions.

Lattice simulations

AC, Komatsu, Lozanov, Weller (2021) AC (2022), AC (2025) Jamieson, AC, Komatsu (in prep.)

- Numerical tool to study non-perturbative cosmological phenomena.
- Examples: reheating phase after inflation, cosmological phase transitions.

My goal:

Develop lattice techniques for inflation

Recently published a code for single-field inflation:

InflationEasy: A C++ Lattice Code for Inflation

Lattice simulations of inflation

Start with quantum fluctuations on sub-horizon box:

Lattice simulations of inflation

Lattice simulations of axion inflation

Lattice simulations of inflation

Lattice simulations of axion inflation

Lattice simulations of Inflation

- <u>Key point</u>: non-perturbative $\phi(\vec{x}, t) \neq \bar{\phi}(t) + \delta \phi(\vec{x}, t)$
- Assumptions: 1) Neglect gravitational interactions

2) Semi-classical approach (neglect quantum tunneling, interference, etc...)

Roadmap

0) Motivation: why axion inflation? Why simulations?

1) The method: lattice simulations of inflation

2) Results

3) Open questions and future directions

Lattice simulation of axion inflation

AC, Komatsu, Lozanov, Weller (2022) AC (2022)

The first simulation of axion inflation

Results:

1. Large scales: small
$$\xi = \frac{\alpha \dot{\phi}}{2fH}$$
 linear regime

2. Small scales:

large
$$\xi = \frac{\alpha \phi}{2fH}$$

nonlinear regime

AC, Komatsu, Lozanov, Weller (2022)

Lattice simulations of axion inflation

AC, Komatsu, Lozanov, Weller (2022)

We finally know the full $\zeta(\mathbf{x}, t)$!

Beyond quadratic assumption $\zeta \simeq \zeta_G + f_{\rm NL} K[\zeta_G, \zeta_G]$

AC, Komatsu, Lozanov, Weller (2022)

Thanks to the lattice, we know the full $\zeta(\mathbf{x}, t)$!

Lattice simulations of axion inflation

A. Caravano @ Axions in Stockholm '25

AC, Komatsu, Lozanov, Weller (2022)

Define cumulants:

$$\kappa_n = \frac{\langle \zeta^n \rangle_c}{\sigma^n}$$

 κ_3 "skewness", κ_4 "kurtosis", etc.

AC, Komatsu, Lozanov, Weller (2022)

Define cumulants:

$$\kappa_n = \frac{\langle \zeta^n \rangle_c}{\sigma^n}$$

 κ_3 "skewness", κ_4 "kurtosis", etc.

 $\ldots > \kappa_6 > \kappa_5 > \kappa_4 > \kappa_3$

AC, Komatsu, Lozanov, Weller (2022)

Define cumulants:

$$\kappa_n = \frac{\langle \zeta^n \rangle_c}{\sigma^n}$$

 κ_3 "skewness", κ_4 "kurtosis", etc.

AC, Komatsu, Lozanov, Weller (2022)

Define cumulants:

$$\kappa_n = \frac{\langle \zeta^n \rangle_c}{\sigma^n}$$

 κ_3 "skewness", κ_4 "kurtosis", etc.

$$\ldots > \kappa_6 > \kappa_5 > \kappa_4 > \kappa_3$$

 $\zeta \neq \zeta_G + f_{\rm NL} K[\zeta_G, \zeta_G]$

What now?

Lattice simulation of axion inflation

AC, Komatsu, Lozanov, Weller (2022)

AC, E. Komatsu, K. D. Lozanov, J. Weller 2102.06378 AC 2204.12874

The first simulation of axion inflation

Results:

1. Large scales: small $\xi = \frac{\alpha \dot{\phi}}{2fH}$ perturbative regime 2. Small scales: large $\xi = \frac{\alpha \dot{\phi}}{2fH}$ non-perturbative regime

AC, Komatsu, Lozanov, Weller (2022)

Lattice simulations of axion inflation

AC, Komatsu, Lozanov, Weller (2022)

Study transition linear \longrightarrow nonlinear

AC, Komatsu, Lozanov, Weller (2022)

Non-Gaussianity is suppressed in the nonlinear regime!

AC, Komatsu, Lozanov, Weller (2022)

Non-Gaussianity is suppressed in the nonlinear regime!

The opposite of what it was believed in the literature:

AC, Komatsu, Lozanov, Weller (2022)

Non-Gaussianity is suppressed in the nonlinear regime!

Gaussianization process opens up the parameter space of the model.

15/28

AC, Komatsu, Lozanov, Weller (2022)

Non-Gaussianity is suppressed in the nonlinear regime!

This allows for a sizeable GW signal at PTA

NANOGrav signal from axion inflation

Xuce Niu,^a and Moinul Hossain Rahat^b

^aInstitute for Fundamental Theory, Department of Physics, University of Florida, Gainesville, FL 32611, USA

 $^b \mathrm{School}$ of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ, UK

E-mail: xuce.niu@ufl.edu, M.H.Rahat@soton.ac.uk

Axion-Gauge Dynamics During Inflation as the Origin of Pulsar Timing Array Signals and Primordial Black Holes

Caner Ünal,^{1, 2, *} Alexandros Papageorgiou,^{3, †} and Ippei Obata^{4, ‡}

 ¹Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel ²Feza Gursey Institute, Bogazici University, Cengelkoy, Istanbul, Turkey
 ³Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), 34126 Daejeon, Korea
 ⁴Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan

We demonstrate that the recently announced signal for a stochastic gravitational wave background (SGWB) from pulsar timing array (PTA) observations, if attributed to new physics, is compatible with primordial GW production due to axion-gauge dynamics during inflation. More specifically we find that axion-U(1) models may lead to sufficient particle production to explain the signal while simultaneously source some fraction of sub-solar mass primordial black holes (PBHs) as a signature. Moreover there is a parity violation in GW sector, hence the model suggests chiral GW search as a concrete target for future. We further analyze the axion-SU(2) coupling signatures and find that in the low/mild backreaction regime, it is incapable of producing PTA evidence and the tensor-to-scalar ratio is low at the peak, hence it overproduces scalar perturbations and PBHs.

Lattice simulations of axion inflation

16/28

AC, Komatsu, Lozanov, Weller (2022)

Non-Gaussianity is suppressed in the nonlinear regime!

Why? central limit theorem!

Look at the source term:

$$\begin{split} \Bigl(F_{\mu\nu}\tilde{F}^{\mu\nu}\Bigr)(k) &= \sum_{\substack{(k') \\ \bullet}} F_{\mu\nu}(k') \ \tilde{F}^{\mu\nu}(k-k') \, . \\ & \overbrace{ \\ \bullet} \\ & \frac{1}{8\xi} < \frac{k'}{aH} < 2\xi \longrightarrow \text{ Many terms for large } \xi \end{split}$$

Analogous to fermion production:

[Adshead, Pearce, Peloso, Roberts, Sorbo (2018)]

Lattice simulations of axion inflation

17/28

Backreaction

AC, Komatsu, Lozanov, Weller (2022)

Lattice confirmation of semi-analytical methods:

These works solved the "homogeneous backreaction", i.e. assuming $\delta\phi=0$

[Domcke, Guidetti, Welling, Westphal arXiv:2002.02952]

[E.V. Gorbar, K. Schmitz, O. O. Sobol, S. I. Vilchinskii arXiv:2109.01651]

Backreaction

AC, Komatsu, Lozanov, Weller (2022)

What happens here is under investigation.

See a <u>non-exclusive</u> list of recent developments:

Recent developments

Large scales (weak backreaction)

AC, Komatsu, Lozanov, Weller (2022)

No PBH bound \rightarrow we should look for large-scale signatures

Example, non-Gaussianity:

Large scales (weak backreaction)

Jamieson, **AC**, Komatsu (in preparation)

Use the simulation to understand the large-scale signal **First step:** full bispectrum beyond constant- ξ approximation

$$B_{\rm fit}(k_1, k_2, k_3) = f_{\rm loc} B_{\rm loc} [P_{\rm eff}](k_1, k_2, k_3) + f_{\rm equ} B_{\rm equ} [P_{\rm eff}](k_1, k_2, k_3) + f_{\rm ort} B_{\rm ort} [P_{\rm eff}](k_1, k_2, k_3)$$

$$P_{\rm eff}(k) = \sqrt{10^7 A_s^3} \left(\frac{k}{k_p}\right)^{\frac{3}{4}(n_s - 1)} e^{d_1 |\xi(k)|} |\xi(k)|^{d_2} \left(\frac{\xi(k)}{\xi_p}\right)^{d_3}.$$

Lattice simulations of axion inflation

22/28

AC, Peloso 2407.13405

Spectator axion-gauge sector

Strong backreaction is challenging because of the large dynamical range

Idea: look at a more controlled setup, where the axion is a spectator:

$$\mathscr{L}_{\text{inflation}} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) - \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - V(\sigma) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\alpha}{4f} \sigma F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Inflaton sector

Spectator axion-gauge sector

AC, Peloso 2407.13405

Spectator axion-gauge sector

Strong backreaction is challenging because of the large dynamical range

Idea: look at a more controlled setup, where the axion is a spectator:

$$\mathscr{L}_{\text{inflation}} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) - \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - V(\sigma) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\alpha}{4f} \sigma F_{\mu\nu} \tilde{F}^{\mu\nu}$$
Inflaton sector Spectator axion-gauge sector

We can freely tune $V(\sigma)$ to roll for a finite time.

$$V(\sigma) = \frac{\Lambda^4}{2} \left[\cos\left(\frac{\sigma}{f}\right) + 1 \right]$$

$$\xi \simeq \frac{2\xi_*}{\left(\frac{a}{a_*}\right)^{\delta} + \left(\frac{a_*}{a}\right)^{\delta}}, \qquad \xi_* = \frac{\alpha\delta}{2}, \quad \delta = \frac{\Lambda^4}{6H^2f^2}$$

A. Caravano @ Axions in Stockholm '25

Lattice simulations of axion inflation

AC, Peloso 2407.13405

Spectator axion-gauge sector

Strong backreaction is challenging because of the large dynamical range

Idea: look at a more controlled setup, where the axion is a spectator:

$$\mathscr{L}_{\text{inflation}} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) - \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - V(\sigma) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\alpha}{4f} \sigma F_{\mu\nu} \tilde{F}^{\mu\nu}$$

This model was constructed to increase the tensor-to-scalar ratio

[Namba, Peloso, Shiraishi, Sorbo, Unal (2015)]

Spectator axion model

Indirect, suppressed sourcing of inflation fluctuations

Direct sourcing of gravitational waves

Lattice simulations of axion inflation

Backreaction: spectator model

AC, Peloso 2407.13405

We performed lattice simulations of this model

Lattice simulations of axion inflation

25/28

Backreaction: spectator model

Suppression of non-Gaussianity

Key result: backreaction is important in the PTA range

Backreaction: gradients

Lattice simulations of axion inflation

Summary

- Axion inflation is an interesting model with multi-scale signatures
- Lattice simulations are emerging as a crucial tool in understanding these models:
 - Understanding complicated background dynamics
 - Gaussianization process \rightarrow relaxes 10+ years old PBH bounds

Next steps:

- Use the simulation to calculate the observables (e.g. GW spectra, late-time non-Gaussianity
- Improve on the strong backreaction regime

New lattice techniques (e.g. zoom-in techniques)

- Look at other models: for example SU(2) gauge fields
- Couple the simulation with analytical understanding