Lattice Simulations of Axion Inflation
Status and perspectives

Angelo Caravano (He/Him) - Institut d’Astrophysique de Paris

Based on work with: Drew Jamieson, Eiichiro Komatsu, Kaloian D. Lozanov, Marco Peloso, Jochen Weller,...
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0) Motivation: why axion inflation? Why simulations?

1) The method: lattice simulations of inflation

2) Results

3) Open questions and future directions
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Think of the inflaton as an axion-like field

a - H
g' flati D_¢F F,ul/ gb‘{:'::/
inflation 4f UV B

In this talk: focus on U(1) gauge field Aﬂ = (A, A )

Lattice simulations of axion inflation 1/28 A. Caravano @ Axions in Stockholm 25



Think of the inflaton as an axion-like field.

04 ~
Zz inflation = Ef ¢F ,uyF e ¢

Observational consequences:

1. Production of gauge field — 2. decay into inflaton perturbations

LSS (SDSS)

observable!
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Think of the inflaton as an axion-like field.

04 ~
Zz inflation — EC ¢F ,uVF e

Observational consequences:

1. Production of gauge field — 2. decay into inflaton perturbations

In math:
7 2 & . . a
1. AL+ (k + k¢ 7) A, =0 one helicity enhanced for k < qb’7

% (P - (EuP)

072 o0t

0° 0 .
2. (— 42— -V + an”(gb)) Sp(%,7) = a®
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easy (linear)

difficult (nonlinear)
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Analytic results
(Green function methods, in-in calculations) /_w___\

® Power spectrum: | R | | P
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Analytic results
(Green function methods, in-in calculations)

® Power spectrum:

® Bispectrum:

Lattice simulations of axion inflation
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Analytic results

(Green function methods, in-in calculations) ‘_{i\:j)‘

® Power spectrum:

® Bispectrum:

Lattice simulations of axion inflation
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vacuum sourced 2f H
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Analytic results
(Green function methods, in-in calculations)

H4
e Power spectrum: % g(k) ~ @mc + {@zac ]”2(5)34”5 Do = iy
f3(5) Vac a&
: _ (equil.) _
® Bispectrum: NS (PR @% £ = 7

® Directly sourced, chiral gravitational waves:

2H? | o 47:5_ L R
1+ M2 fh (S)e ) ‘@GW 7 ‘@GW
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Analytic results

‘@C(k) ~ Prac T ‘@%ac:fZ(é)eémé &= i X \/E

Scalar perturbations naturally grow on small scales
Very interesting observational consequences: PBHs, GWs at interpherometer scales
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Analytic results
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Scalar perturbations naturally grow on small scales
Very interesting observational consequences: PBHs, GWs at interpherometer scales
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More precisely:

27T T, 2w iy 24 iy
i+ 2704 + V() = 2 (F, P

If these terms become ] Sort of extra friction, but
comparable backreaction not so simple (as we will
see)
(E*)  (B®)

_|_

Importantly, this happens when < V(@)

() (B @)
2 2 2

but
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0) Motivation: why axion inflation? Why simulations?

1) The method: lattice simulations of inflation

2) Results

3) Open questions and future directions
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- Numerical tool to study non-perturbative cosmological phenomena.

- Examples: reheating phase after inflation, cosmological phase transitions.
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* Numerical tool to study non-perturbative cosmological phenomena.

- Examples: reheating phase after inflation, cosmological phase transitions.

My goal:

Develop lattice techniques for inflation

Recently published a code for single-field inflation:

InflationEasy: A C++ Lattice Code for Inflation

Lattice simulations of axion inflation

6/28
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Start with quantum fluctuations on sub-horizon box:

Lattice simulations of axion inflation 7/28
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“sub-horizon” box

Nonlinear
evolution

“super-horizon” box
(frozen)

aV
!/ / 2
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+ Friedmann equation

fozr scale factor
d“a 1
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“sub-horizon” box

Nonlinear
evolution

“super-horizon” box
(frozen)
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Lattice simulations of axion inflation

a
Ay — 0,040 = 7€ijkak¢aiAja

a a

+ Friedmann equation
fozr scale factor

da 1

— = — -3 3
= =2 (P =3(p))a
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Analogous to the

approach used for
reheating in

Adshead, Gibling,
Pieroni, Weiner (2019)
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A|, b, _time |

e Key point: non-perturbative  @(X, 1) # p(t) + dp(X, 1)

® Assumptions: 1) Neglect gravitational interactions

2) Semi-classical approach (neglect quantum tunneling, interference, etc...)
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AC, Komatsu, Lozanov, Weller (2022)

AC (2022)
The first simulation of axion inflation
Results:
agp . .
1. Large scales: small § = —— linear regime
2fH
. ag | |
2. Sma” ScaleS. Iargeé - nonlinear regime

OfH
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Simulation confirms analytical results (very nontrivial

1076 -

Power spectrum:
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, Beyond quadratic assumption
|
We finally know the full (X, ?)! ¢~ {6+ hiKlCs 6

Gaussian () Non-Gaussian ()
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Thanks to the lattice, we know the full {(X, 1)!

Gaussian ()

Lattice simulations of axion inflation
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Define cumulants:

()

Gl’l

Kn

K5 “skewness”, K, “kurtosis”, etc.

Lattice simulations of axion inflation

13/28

1072

1073
16~?
107

10°°

— (Gaussian

A. Caravano @ Axions in Stockholm 25



Define cumulants:

()

K5 “skewness”, K, “kurtosis”, etc.

13/28

Lattice simulations of axion inflation

1073

D> K > Ks > Ky > Ky

— (Gaussian
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Define cumulants:

()

Kn

Gl’l

K5 “skewness”, K, “kurtosis”, etc.

Higher order
polyspectra

Lattice simulations of axion inflation

Trispectrum

13/28

1073

— (Gaussian

Bispectrum
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Define cumulants:

()

Gl’l

Kn

K5 “skewness”, K, “kurtosis”, etc.

D> K > Ks > Ky > Ky

¢ # Co+ Kl &6l

Lattice simulations of axion inflation

What now?
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AC, E. Komatsu, K. D. Lozanov, J. Weller 2102.06378
AC 2204.12874

The first simulation of axion inflation

Results:

ag
. small £ = —— erturbative regime
1. Large scales: & o7H P 9

o _ ag . .
2. Small scales: large & = 2f_H non-perturbative regime
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Study transition linear — nonlinear

Linear-nonlinear

Linear o
transition
(no backreaction) (strong backreaction)
p 3.05 ~
5 — _agb 3.00 >
2fH |

2.95 - 4 -
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Ne Ne

e-folds number (time)
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' Non-Gaussianity is
' suppressed in the
‘nonlinear regime!

-10
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0.015 | — s L
2 ' Non-Gaussianity is |
£ i | M ‘suppressed inthe
- 0.005{ {nonlinear regime! |
I I I I 0.000_
0 2 4 6 .
N, (=time)

The opposite of what it was believed in the literature:

2 '
¢ ~ fNL¢g — Stringent PBH

bound

[Linde, Mooij, Pajer (2012)]
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0.015 | — s L
2 ' Non-Gaussianity is |
£ i | M ‘suppressed inthe
- 0.005{ {nonlinear regime! |
I I I I 0.000_
0 2 4 6 .
N, (=time)

Gaussianization process opens up the parameter
space of the model.

¢ = fudy ——pp

[Linde, Mooij, Pajer (2012)]
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' Non-Gaussianity is
' suppressed in the
-nonlinear regime!
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This allows for a sizeable GW signal at PTA

NANOGrav signal from axion
inflation

Xuce Niu,” and Moinul Hossain Rahat’

*Institute for Fundamental Theory, Department of Physics, University of Florida,
Gainesville, FL. 32611, USA

E-mail: xuce.niu@ufl.edu, M.H.Rahat@soton.ac.uk

bSchool of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ, UK

Lattice simulations of axion inflation

Axion-Gauge Dynamics During Inflation
as the Origin of Pulsar Timing Array Signals and Primordial Black Holes

Caner Unal,l»2* Alexandros Papageorgiou,® | and Ippei Obata* !

! Department of Physics, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
2 Feza Gursey Institute, Bogazici University, Cengelkoy, Istanbul, Turkey
3 Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe,
Institute for Basic Science (IBS), 34126 Daejeon, Korea
*Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI),
UTIAS, The Uniwversity of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan

We demonstrate that the recently announced signal for a stochastic gravitational wave background
(SGWB) from pulsar timing array (PTA) observations, if attributed to new physics, is compatible
with primordial GW production due to axion-gauge dynamics during inflation. More specifically
we find that axion-U(1) models may lead to sufficient particle production to explain the signal
while simultaneously source some fraction of sub-solar mass primordial black holes (PBHs) as a
signature. Moreover there is a parity violation in GW sector, hence the model suggests chiral GW
search as a concrete target for future. We further analyze the axion-SU(2) coupling signatures and
find that in the low/mild backreaction regime, it is incapable of producing PTA evidence and the
tensor-to-scalar ratio is low at the peak, hence it overproduces scalar perturbations and PBHs.
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' Non-Gaussianity is
' suppressed in the
-nonlinear regime! |

00154 ——
5 ”
CE 0.010 -
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Why? central limit theorem!

Look at the source term:

(Fuf™ ) = 3 Fu ) P = k).
@

'

1 k'

<
8 aH

< 2E —» Many terms for large &

Analogous to fermion production: [Adshead, Pearce, Peloso, Roberts, Sorbo (2018)]

Lattice simulations of axion inflation
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| Comparison with 2002.02952

Lattice confirmation of semi-analytical methods:

These works solved the “homogeneous
backreaction”, i.e. assuming 6¢p = 0

Lattice simulations of axion inflation

18/28

[Domcke, Guidetti, Welling,
Westphal arXiv:2002.02952]

[E.V. Gorbar, K. Schmitz, O. O.
Sobol, S. I. Vilchinskii
arXiv:2109.01651]

A. Caravano @ Axions in Stockholm 25



| Comparison with 2002.02952

What happens here is under investigation.

See a non-exclusive list of recent developments:

[Peloso, Sorbo, [Figueroa, Lizarraga, Urio,
2209.08131] Urrestilla 2303.17436]
Analytical Lattice simulation of the

end of inflation

Lattice simulations of axion inflation

[Sharma, Brandeburg, [larygina, Sfakianakis,
Subramanian, Vikman Brandenburg, 2506.20538]
2506.20538] $
$ Lattice, end of inflation,
Lattice, end of inflation, with Schwinger pair
magnetogenesis production
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Key result in this Axion inhomogeneities matters [Figueroa, Lizarraga, Urio,
context: Urrestilla (2023)]

—— (L Inhomogeneous

ol ==~ CL Homogeneous 1l
——— Gradient Exp. )
~ = = Tterative
- Linear

4 3 2 -1 0 1 2 3 -1 2
N

See a non-exclusive list of recent developments:

[Peloso, Sorbo, [Figueroa, Lizarraga, Urio, [Sharma, Brandeburg [larygina, Sfakianakis,
(2022)] Urrestilla (2023)] Subramanian, Vikman (2025)] Brandenburg, (2025)]

v v I v

, . . . Lattice, end of inflation,
Analytical Lattice simulation of the Lattice, end of inflation, with Schwinger pair
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Recent developments



No PBH bound — we should look for large-scale signatures

Example, non-Gaussianity:

Eauilater
bispectrum:

> Lattice

—* Analytical
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Use the simulation to understand the large-scale signal

First step: full bispectrum beyond constant-£ approximation

Bﬁt(kl’ ky, ks) =

flocBloc[ ff](kl’ k2’ k3) +ﬁequ equ
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P(k) =/ 107A) <k£> ehIEI | £(k) ldz(éa(fk)> |
P P

107" b TT0 4725 6665

Jes P L w5y & 700

LTI

1074
5

-~

=

= i n-14
A 10

Ne}

e

T T TITI

1077

IL”'I%‘/'liL”'“i'

4 |
"BG@@iﬁ;E%E
Flllllﬁll L L1

02 | I

050 4 B N )
001 5S4t £ 54

—0.2h

AB/Bft

o il
1071
k [Mpc™]

1072

Lattice simulations of axion inflation

1.8

P ](ky, ky, k3) + for Bor Pee] (k1 ko, k3)

I
S/

N

froe. | —0.262(10)
foau. | 3.22(12)
fore. | —0.967(37)
dy | 9.412(60)
dy | —5.54(15)
dy | —1.838(11)
A 2/d.o.f 1.15

Figure credit:
Drew Jamieson

N

AN

’floc.‘

0.23 0303036091192 96 5

f equ.

61.80 1.87

[fort] i |ds|

A. Caravano @ Axions in Stockholm ‘25

|da|



Strong backreaction is challenging because of the large dynamical range

|dea: look at a more controlled setup, where the axion is a spectator:

<

inflation

1 1 1 a
> = >0,40"h = V(§) = 50,00'c = V(o) = F, F*" - 7 oF,, "

Inflaton sector Spectator axion-gauge sector
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Strong backreaction is challenging because of the large dynamical range

|dea: look at a more controlled setup, where the axion is a spectator:

<

inflation

1 1 1 a
> = >0,40"h = V(§) = 50,00'c = V(o) = F, F*" - 7 oF,, "

Inflaton sector Spectator axion-gauge sector

We can freely tune V(o) to roll for a finite time.

S(N) .

»

2E. ao A? \ R
& = 5SK 5 5"‘:7’ 5=6H2f2 | N=loga
() +(%) |
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Strong backreaction is challenging because of the large dynamical range

|dea: look at a more controlled setup, where the axion is a spectator:

<

inflation

1 1 1 , -~
D — Eaﬂqb@”gb — V(g) — Eaﬂoal“‘a — V(o) — ZFWF” — 4—](0'FWF”

This model was constructed to increase the tensor-to-scalar ratio
[Namba, Peloso, Shiraishi, Sorbo, Unal (2015)]

Minimal axion inflation Spectator axion model

Aﬂ Aﬂ Indirect,

& Direct sourcing of _5..q_1:|_~ 5cb suppressed
A inflation fluctuations A sourcing of inflation

H H fluctuations
A, Ay
h.. Direct sourcing of h.. Direct sourcing of

Y gravitational waves v gravitational waves

A, A

Lattice simulations of axion inflation 24/28 A. Caravano @ Axions in Stockholm ‘25



We performed lattice simulations of this model

weak backreaction

£.=5,5=0.5 (AN ~ 2)

5 =
4 =
(&) 3-
2 - : :
—  Simulation
— == analytical
1 =
—2 0 2 4
N

Lattice simulations of axion inflation

strong backreaction

E:=6,0=05(AN=~2)
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Suppression of non-Gaussianity

weak backreaction strong backreaction

10—2_

10—4_

owil}

1079 -

-5.0 =25 0.0 2.5 5.0 7.5 10.0
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Key result: backreaction is important in the PTA range

N =-1.7
N=-12

N =-0.6

- N=-0.0
— N=051
—— N =1.09
— N=1.78
—— N =224
—— N =282
— N=340
—— N =3.68
— N =4.09
- = analytical

P¢(k)
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We compared full lattice results with
homogeneous backreaction techniques
(Gradient Expansion)

[Albouy, AC, von Eckardstein,
Peloso, Renaux-Petel,
Schmitz, Sobol (in prep.)]
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Lattice simulations of axion inflation

Strong BR, f = 0.1, a = 28.1935, § = 0.3
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Gauge
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Axion gradients are important,
even if their energy is subdominant
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 Axion inflation is an interesting model with multi-scale signatures

e Lattice simulations are emerging as a crucial tool in understanding
these models:

 Understanding complicated background dynamics

 (Gaussianization process — relaxes 10+ years old PBH bounds

Next steps:

Use the simulation to calculate the observables
(e.g. GW spectra, late-time non-Gaussianity

Improve on the strong backreaction regime
New lattice techniques (e.g. zoom-in techniques)

Look at other models: for example SU(2) gauge fields

Couple the simulation with analytical understanding

Lattice simulations of axion inflation A. Caravano @ Axions in Stockholm ‘25



