03/07/2025, Axions in Stockholm

Kinetic/Acoustic Misalignment and baryon asymmetry

Keisuke Harigaya (UChicago)

Spontaneously broken continuous symmetry * PQ symmetry: strong CP problem * Lepton symmetry : neutrino mass models * Flavor symmetry: flavor hierarchy *

(Pseudo) Nambu-Goldstone bosons are predicted Axions

 $\theta = a/f_a$

Summary

- * Rotation of axion in the field space can create matterantimatter asymmetry
- Rotation produces axion dark matter through phonon mode excitation from cosmic perturbations or through parametric resonance
- * Axions couplings are predicted to be larger than the prediction of the misalignment mechanism
- * Gravitational waves may be affected or created

Outline

* Axion rotation and baryon asymmetry

* Axion rotation and dark matter

* Gravitational waves

* Summary

Outline

* Axion rotation and baryon asymmetry

* Axion rotation and dark matter

* Gravitational waves

* Summary

Axion rotation

Non-zero angular momentum / U(1) charge

$$n_{\theta} = \dot{\theta} r^2$$

Similar to Affleck-Dine mechanism (1985) with rotating super-partners of quarks and leptons

Consider the dynamics of the radial direction

 $P = \mathbf{r} \exp(i \, \boldsymbol{\theta})$

$P = r \times \exp(i\theta)$

minimum $|P| \sim f_a$

Assume a large initial radial field value

$P = r \times \exp(i\theta)$

Assume a large initial radial field value

Higher order terms $V \sim P^n \sim r^n \cos(n\theta)$

may be effective

Such terms are expected to be present if the PQ symmetry is an accidental one

e.g., Kolb+ (1992), Barr and Seckel (1992), Kamionkovski and March-Russel (1992), Dine (1992), KH+ (2013, 2015), Quilez+ (2018),

$P = r \times \exp(i\theta)$

Assume a large initial radial field value

Higher order terms $V \sim P^n \sim r^n \cos(n\theta)$

may be effective

Angular motion is induced by the potential gradient

$P = r \times \exp(i\theta)$

r decreases by expansion of the universe

P continues to rotate, conserving the angular momentum

 $n_{\theta} = \dot{\theta} r^2 \propto R^{-3}$

Thermalization Co and KH (2019) Assume P couples to the thermal bath radial angular P P P Conserved Dissipated The motion becomes circular

Rotation as a BEC

Rotation = U(I) charge in the zero-mode

Bose-Einstein Condensate

Can it evaporate into excitations at high temperature in the early universe?

Stability of the rotation Co and KH (2019)

Rotation

particile-antiparticle asymmetry in the bath

chemical eq.

 $\mu_{\rm rot} \sim \frac{\dot{\theta}^2 r^2}{\dot{\theta} r^2} = \dot{\theta}$

 $\mu_{\rm bath} \sim \dot{\theta}$

 $n_{\rm rot} = \dot{\theta} r^2$

 $n_{\rm bath} \sim \dot{\theta} T^2$

as long as $r \gg T$

Axiogenesis

Co and KH (2019)

QCD, electroweak, yukawa, BSM interactions

c.f. Leptogeneis Lepton Baryon

Minimal axiogenesis

Co and KH (2019)

Baryon

Chiral charge

U(I) Axion-SM Transfer processes are effective before the electroweak phase transition. B at thermal eq.

 $\mu_{\rm rot} \sim \frac{\dot{\theta}^2 r^2}{\dot{A}r^2} = \dot{\theta}$

 $\mu_B \sim \dot{\theta}$ $n_B \sim \dot{\theta} T^2$

Weak

Minimal axiogenesis

Co and KH (2019)

Baryon

Chiral charge

Transfer processes are effective before the electroweak phase transition. B at thermal eq.

 $\frac{n_B}{s} \simeq \frac{\dot{\theta}T^2}{s}$

Axion-SM

U(I)

 $= n_{\theta} \times \frac{T_{\rm EW}^2}{f_a^2}$

Weak

Axiogenesis and BSM

Chiral charge

U(I) Axion-SM

other BSM Axion

2006.05687, 2107.09679, 2108.04293, 2109.08605, 2110.05487, 2208.07878, 2307.14121, 2311.09005, 2402.10263, 2404.10283, 2405.07003

Majorana

Baryon

neutrino mass

Reparity violation

Outline

* Axion rotation and baryon asymmetry

* Axion rotation and dark matter

* Gravitational waves

* Summary

Co, Hall and KH(2019)

Misalignment mechanism

 $\dot{\theta}_i = 0$

Non-zero kinetic energy

 $\dot{\theta}_i \neq 0$

 $V \qquad \qquad V+K$ If the kinetic energy goes to axion dark matter, axion dark matter abundance will be enhanced

Two sources of axion dark matter:

*Kinetic misalignment mechanism

Co, Hall and KH(2019), Co, Hall, Olive, Verner (2020) Eroncel, Sato, Servant and Sorensen (2022)

Axion fluctuations are produced when the axion mass becomes non-negligible

* Acoustic misalignment mechanism

Bodas, Co, Ghalsasi, KH and Wang (2025) Eroncel, Gouttenoire, Sato, Servant and Simakachorn (2025)

U(1)

Axion fluctuations are produced from cosmic perturbations of the U(1) charge

Two sources of axion dark matter:

* Kinetic misalignment mechanism

Co, Hall and KH(2019), Co, Hall, Olive, Verner (2020) Eroncel, Sato, Servant and Sorensen (2022)

Axion fluctuations are produced when the axion mass becomes non-negligible

lignment mechanism

D(1)

U(1)

* Acoustic misalignment mechanism

Bodas, Co, Ghalsasi, KH and Wang (2025) Eroncel, Gouttenoire, Sato, Servant and Simakachorn (2025)

Axion fluctuations are produced from cosmic perturbations of the U(1) charge

Axion fragmentation

Fonseca, Morgante, Sato, Servant (2019) Morgante, Ratzinger, Sato, Stefanek (2021)

$$V(a) = m_a^2 f_a^2 (1 - \cos\frac{a}{f_a})$$

$$a \rightarrow \dot{\theta}t + a(t, x)$$

EOM of the fluctuation at the linear level:

$$\ddot{a}_k + \left(k^2 + m_a^2 \cos\dot{\theta}t\right)a_k = 0$$

oscillating frequency

Resonance at a natural frequency $k_{PR} \sim \dot{\theta}$

$$n_{a,\text{PR}} = \frac{\rho_{\text{rot}}}{k_{\text{PR}}} \simeq \frac{\dot{\theta}^2 f_a^2}{\dot{\theta}} = \dot{\theta} f_a^2 = n_{\theta}$$
Co, KH and Pierce (2021)

Eroncel, Sato, Servant and Sorensen (2022) Axion number density $\simeq U(I)$ charge density It's important to determine the relation precisely (2507.01822 just appeared today)

Dark matter

Bodas, Co, Ghalsasi, KH and Wang (2025)

In the orange-shaded region with "KMM", the observed dark matter density can be explained by kinetic misalignment

Cogenesis of DM and baryon

Bodas, Co, Ghalsasi, KH and Wang (2025) Co, Hall and KHH (2020)

On the green line, kinetic misalignment and axiogenesis by an electroweak process can explain both dark matter and baryon asymmetry

 $n_{a,\mathrm{PR}} \sim n_{\theta}$

Exact relation?

Two sources of axion dark matter:

*Kinetic misalignment mechanism

Co, Hall and KH(2019), Co, Hall, Olive, Verner (2020) Eroncel, Sato, Servant and Sorensen (2022)

Axions are produced when the axion mass becomes non-negligible

U(1)

* Acoustic misalignment mechanism

Bodas, Co, Ghalsasi, KH and Wang (2025) Eroncel, Gouttenoire, Sato, Servant and Simakachorn (2025)

Axion fluctuations are produced from cosmic perturbations of the U(1) charge

Phonon mode

 $U(1) \times \text{time translation} \qquad \begin{bmatrix} \theta \to \theta + \alpha \\ t \to t + \delta \end{bmatrix}$

 $\begin{aligned} \theta &\to \theta - \omega \delta \\ t &\to t + \delta \end{aligned}$

One Nambu-Goldstone mode is predicted

Phonon

Phonon mode

Dispersion relation

Bodas, Co, Ghalsasi, KH and Wang (2025)

Sound velocity $c_s^2 = \frac{V_{rr} - V_r/r}{V_{rr} + 3V_r/r}$

At the minimum, where $V_r = 0$, $c_s = 1$: axion

Phonon mode

Dispersion relation

Bodas, Co, Ghalsasi, KH and Wang (2025)

Sound velocity $c_s^2 = \frac{V_{rr} - V_r/r}{V_{rr} + 3V_r/r}$

At the minimum, where $V_r = 0$, $c_s = 1$: axion

Phonon production

Bodas, Co, Ghalsasi, KH and Wang (2025)

Inflaton perturbation (curvature perturbation)

Axion perturbation (isocurvature perturbation) Perturbation of U(1) charge density = phonon (i.e., sound wave)

Axions

Acoustic misalignment

Cosmic expansion

Evolution of perturbations

Co, Dunsky, Fernandez, Ghalsasi, Hall, KH and Shelton (2021) Co, Fernandez, Ghalsasi, KH and Shelton (2021)

The axion abundance is sensitive to the equation of state of rotation and the sound velocity of the phonon mode Ex. $V(r) \propto (r^2 - f_a^2)^2$

Radiation-like:

 $w = c_s^2 = 1/3$ No growth of fluctuations

Kination

Evolution of perturbations

Co, Dunsky, Fernandez, Ghalsasi, Hall, KH and Shelton (2021) Co, Fernandez, Ghalsasi, KH and Shelton (2021)

The axion abundance is sensitive to the equation of state of rotation and the sound velocity of the phonon mode Ex. Supersymmetric model with $V(r) \propto m_r^2 r^2$ for $r \gg f_a$

Matter-like:

 $w \simeq c_S^2 \ll 1$ Growth of fluctuations if the rotation dominates the universe

Kination

Evolution should be carefully computed using cosmological perturbation theory

Dark matter

A supersymmetric model

Two-field model: $N_{\text{DW}} = 1, r_P \rightarrow 1$ 10^{-9} Helioscopes 10^{-10} Haloscopes Astrophysics 10^{-11} $g_{a\gamma\gamma} ({
m GeV}^{-1})$ AMN 10^{-14} Ports CO ventional misalignment 10^{-15} 10^{-16} 10^{-10} 10^{-2} 10^{-8} 10^{-6} 10^{-4} m_a (eV)

Bodas, Co, Ghalsasi, KH and Wang (2025)

In the orange-shaded region with "AMM", the observed dark matter density can be explained by acoustic misalignment

Outside the region, thermalization is not efficient or baryon asymmetry is overproduced by chiral plasma instability

Inflaton perturbation is assumed to be the only source of perturbations

Cogenesis of DM and baryon

A supersymmetric model

Bodas, Co, Ghalsasi, KH and Wang (2025)

In the green-shaded region, acoustic misalignment and axiogenesis by an electroweak process can explain both dark matter and baryon asymmetry

Outline

* Axion rotation and baryon asymmetry

* Axion rotation and dark matter

* Gravitational waves

* Summary

Equation of state

In a class of models (e.g. supersymmetric theories),

Matter and Kination domination

Primordial gravitational waves

Fluctuation of energy density Quantum fluctuation during inflation

figure from ipmu.jp

Evolution/production of them depends on how the universe expanded, which is sensitive to axion kination

Spectrum

A sample point for an ALP

Summary

- * Rotation of axion in the field space can create matterantimatter asymmetry
- Rotation produces axion dark matter through phonon mode excitation from cosmic perturbations or through parametric resonance
- * Axions couplings are predicted to be larger than the prediction of the misalignment mechanism
- * Gravitational waves may be affected or created

Backup

Supersymmetric models

Log-potential model $V(P) = \frac{1}{2}m_r^2 |P|^2 \left(\ln \frac{2|P|^2}{f_a^2} - 1 \right)$

Two-field model

 $W = \lambda X (P\bar{P} - v_{PQ}^2), \quad V_{soft}(P) = m_P^2 |P|^2 + m_{\bar{P}}^2 |\bar{P}|^2.$ $r_P \equiv m_{\bar{P}}/m_P$

Evolution of energy density Co and KH (2019)

Classical mechanics

Angular momentum conservation (up to dilution by cosmic expansion)

Evolution of energy density Co and KH (2019) V(r) $= \dot{\theta}^2 r$ dr $m_P^2 r = \dot{\theta}^2 r \rightarrow \dot{\theta} = m_P$ $\dot{\theta}r^2 \propto R^{-3}$ $\rightarrow r^2 \propto R^{-3}$ $V(r) \sim \frac{1}{2} m_P^2 r^2$ (supersymmetric theory) $\rho \sim m_p^2 r^2 + \dot{\theta}^2 r^2 \propto R^{-3}$ matter

Evolution of energy density Co and KH (2019) $\frac{dV}{dr} = \dot{\theta}^2 r$ $\rightarrow \dot{\theta} \text{ decreases}$

r is nearly fixed

 $\dot{\theta}r^2 \propto R^{-3}$ $\rightarrow \dot{\theta} \propto R^{-3}$

 $\rho = \dot{\theta}^2 r^2 \propto R^{-6}$ kination