

Searching for axion dark matter with Radio Telescopes

Luca Visinelli

Dipartmento di Fisica "E.R. Caianiello", Università di Salerno & INFN July 3, 2025 lvisinelli@unisa.it

- Axion Miniclusters in the Milky Way
- Axion-photon conversion in NS magnetospheres
- Searching for axions in M31 (Andromeda)
- Bonus: Direct detection of the axion at INFN Frascati National Labs

The QCD Axion: foundations

We introduce the QCD axion ϕ through the Lagrangian terms: $\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi$

The QCD theta term is minimized dynamically to $\langle \phi/f_a \rangle = -\theta$

This makes the neutron electric dipole moment (EDM) vanish PQ mechanism [Peccei & Quinn 1977; Wilczek 1978; Weinberg 1978]

QCD axion mass [Weinberg 1978]

$$m_{a} = \frac{\Lambda_{\rm QCD}^{3/2}}{f_{a}} \sqrt{\frac{m_{u}m_{d}}{m_{u} + m_{d}}} \approx 5.7 \,\mu \text{eV}\left(\frac{10^{12}\,\text{GeV}}{f_{a}}\right)$$

$$b - \frac{\alpha_s}{8\pi} \frac{\phi}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a$$

The QCD Axion: foundations

Effective Lagrangian below QCD, e.g. [Georgi+ 1986]:

Self-interacting

potential

Axion Miniclusters in the Milky Way

The QCD Axion: Role as the Dark Matter

Luca Visinelli

"Axion Dark Matter" Snowmass 2021 White Paper 2203.14923

Typical minicluster mass: $M_{\rm mc} = \frac{4\pi}{3} L_{\rm osc}^3 \rho_{\rm DM} \sim 10^{-10} \, M_{\odot}$ [Hogan & Rees 1988; Kolb & Tkachev 1994]

Density profile from collapse: $\rho_{\rm mc}(r) \propto r^{-9/4}$

After MR, miniclusters merge hierarchically to form halos with NFW-like profiles [Vaguero+ 2019] Luca Visinelli

In post-inflation symmetry breaking, fluctuations are $\mathcal{O}(1)$ for $k \gg 2\pi/L_{\rm osc}$ $L_{\rm osc} \sim 1/[a_{\rm osc} H(T_{\rm osc})] \sim 10^{-3} \,{\rm pc}$

Axion miniclusters abundance today

The abundance of miniclusters in galaxies is assessed via Monte Carlo simulations of tidal stripping

Bradley Kavanagh

Thomas Edwards

Christoph Weniger

See also [Tinyakov+ <u>1512.02884;</u> Dokuchaev+ <u>1710.09586</u>] + more numeric papers afterwards (DSouza+)

Luca Visinelli

Kavanagh+ (with **LV**) <u>2011.05377</u>

8

Schematic modeling of a spiral Galaxy

Schematic modeling of a spiral Galaxy

Schematic modeling of a spiral Galaxy

+ spherical DM halo (NFW)

Luca Visinelli

The AMC orbit is specified by three parameters:

- semi-major axis **(**
- eccentricity \mathcal{E}
- Inclination w.r.t. Galactic plane ψ

$$n_{\rm AMC}(r) = f_{\rm AMC} \frac{\rho_{\rm DM}(r)}{\langle M_{\rm AMC} \rangle}$$
$$f_{\rm AMC} \approx 100\%$$
$$\langle M_{\rm AMC} \rangle \approx 10^{-14} M_{\odot}$$

Caveat: we do not deal with concurrent structure formation, stellar formation & AMC disruption

AMC mass function

$$\frac{\mathrm{d}n_0}{\mathrm{d}M}(M,z) = f(\nu) \frac{\bar{\rho}_c}{M} \frac{\mathrm{d}}{\mathrm{d}z}$$

[Fairbairn et al., <u>1707.03310]</u>

Lower cutoff set by the Jeans mass

Upper cutoff from hierarchical growth

Luca Visinelli

Axion minicluster halo at z = 99

[Eggemeier et al., <u>1911.09417</u>]

Monte Carlo procedure

[github.com/bradkav/axion-miniclusters]

Remove AMC from simulation

But! Need to know the response of an AMC to stellar perturbations...

Generate sample of AMCs (with correct density distribution but *log-flat* mass function)

14

Axion miniclusters abundance today

Kavanagh+ (with **LV**) <u>2011.05377</u>

We assume a **Goldreich-Julian** (GJ) model for the NS magnetosphere

NS **B** field described in the magnetic dipole approximation:

$$\mathbf{B} = rac{1}{r^3} \left[3(\mu \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \mu
ight]$$

Maxwell-Faraday law: $\mathbf{E} + rac{\mathbf{\Omega} imes \mathbf{r}}{c} imes \mathbf{B} =$

Leads to the charge density In the magnetosphere:

$$\rho_{\rm GJ} = \frac{1}{4\pi} \nabla \cdot \mathbf{E} \approx -\frac{\mathbf{\Omega} \cdot \mathbf{B}}{2\pi c}$$

We might look for axion-photon conversion from an individual NS

Assume axion dark matter falling into the gravity potential of the NS.

Axion-photon conversion

Emitted radio power: –

on occurs with probability
$$P_{a \to \gamma} = \frac{\pi}{2v_c^2} \left(\frac{g_{a\gamma\gamma}B}{\sin\theta}\right)^2 |\partial_\ell k_\gamma|^{-1} \frac{1}{\sin^2\theta}$$

$$\frac{dP_a}{d\Omega} \sim \frac{\pi}{3} g_{a\gamma\gamma}^2 B_0^2 \frac{R_{\rm NS}^6}{R_c^3} \frac{\rho_c}{m_a}$$

(Hook et al., 1804.03145; Safdi et al., 1811.01020)
on magnetosphere properties, es, anisotropy...

Plenty of uncertainties conversion probabilitie

Luca Visinelli

[Battye et al., <u>1910.11907</u>; Leroy et al., <u>1912.08815</u>]

18

We might look for axion-photon conversion from an individual NS

Assume axion dark matter falling into the gravity potential of the NS.

Axion-photon conversion occurs with probabili

Emitted radio power: –

$$\frac{\mathrm{d}\mathcal{P}_a}{\mathrm{d}\Omega} \sim \frac{\pi}{3} g_{a\gamma\gamma}^2 B_0^2 \frac{R_\mathrm{N}}{R_\mathrm{A}}$$

[Hook et al., <u>1804.03145;</u> Safdi et al., <u>1811.01020</u>]

Plenty of uncertainties on magnetosphere properties, conversion probabilities, anisotropy...

Luca Visinelli

[Battye et al., <u>1910.11907</u>; Leroy et al., <u>1912.08815</u>]

Width of the conversion shell

ity
$$P_{a \to \gamma} = \frac{\pi}{2v_c^2} \left(\frac{g_{a\gamma\gamma} B}{\sin \theta} \right)^2 \left| \partial_\ell k_\gamma \right|^{-1} \frac{1}{\sin^2 \theta}$$

 $\frac{\sqrt{8}}{3}$ ho_c

19

 \mathcal{O}

Question: Can we exploit the environment within axion miniclusters?

 $rac{\mathrm{d}\mathcal{P}_a}{\mathrm{d}\Omega}\sim rac{\pi}{3}\,g_{a'}^2$

Transient enhancements to ρ_c from AMC encounters Edwards+ (with LV), PRL 2021 2011.05378

Frequency of emitted photon in the GHz:

 $f_{\gamma} = 9$

can be picked up at Earth by radio telescopes

$$\frac{2}{n\gamma\gamma}B_0^2 \frac{R_{\rm NS}^6}{R_c^3} \frac{\rho_c}{m_a}$$

$$9.7\,\mathrm{GHz}\;\frac{m_a}{40\,\mathrm{\mu eV}}$$

Based on velocity dispersion of AMC, expect an *incredibly narrow line*. $\frac{1}{\mathrm{BW}} \frac{1}{4\pi s^2} \frac{\mathrm{d}\mathcal{P}_a}{\mathrm{d}\Omega}$ The mean flux density (relevant for radio searches) is: $\mathcal{S}=$

Instead, fix bandwidth $BW = 1 \, kHz$ (based on telescope resolution).

Searching for axions in M31

Can we pick up this signal in radio?

Bradley Johnson

Liam Walters

Jordan E. Shroyer

Madeleine Edenton

Luca Visinelli

Prakamya Agrawal

David Marsh

2 grant proposals accepted by the <u>Green Bank Telescope</u> We have observed Andromeda The diameters give the telescope beam size at 1.4 arcmin angular resolution

2022: X-band observation (8-12 GHz) 2023: C-band observation (4-8 GHz)

Can we pick up this signal in radio?

Expected spectral flux densities (SFDs) from NS-AMC encounters

Luca Visinelli

120

Axion mass: $m_a = 40 \,\mu \text{eV}$ Minicluster mass: $M_{\rm AMC} = 10^{-10} M_{\odot}$ Simulate 20 encounters with a NS of Period: $P = 1 \,\text{s}$ B field: $B_0 = 10^{14} \,\text{G}$ Signal lasting min to hour

Walters+ (with **LV**) <u>2407.13060</u>

24

Can we pick up this signal in radio?

How would a signal look like?

Luca Visinelli

Hydrogen recombination line at 8.483 GHz when not accounting for M31 blueshift.

Possibly, an emission from a molecular cloud in the MW

Signals are filtered with an excess kurtosis test to disqualify radio interferences. Known emission spectral lines disqualify By comparison with Splatalogue

25

Results

Luca Visinelli

(Dis)advantages w.r.t. lab:

Scan is much faster because all frequencies are picked up by the broad-band receiver.

However, astrophysics unknowns are severe (e.g. minicluster histories, shapes and abundances)

We see these as possible hints for excesses to be revealed in the lab.

Walters+ (with LV) <u>2407.13060</u>

Future and ongoing progresses

- Ongoing analysis of the 2023 data in C-band
- The UV group has secured funds via Jefferson
 Trust, to build a telescope operating at < 2GHz
- Ongoing evaluation for a radio telescope named **ASTRA** (Axion Search via Telescope for Radio Astronomy), to explore the axion mass range [40, 180] micro-eV

Future and ongoing progresses

Utkarsh Bhura

Fan Mountain observes the sky at a range of frequencies from 1 to 8 GHz. Using the PsrPopPy population model the sky map at 1 GHz would appear as follows:

David Marsh

Direct detection of the axion at INFN Frascati National Labs

Predictions for the DM mass of the QCD axion

Ciaran O'Hare, AxionLimits: <u>https://cajohare.github.io/AxionLimits/</u>

Predictions for the DM mass of the QCD axion

Ciaran O'Hare, AxionLimits: <u>https://cajohare.github.io/AxionLimits/</u>

Predictions for the DM mass of the QCD axion

Luca Visinelli

lµe m_{a} New physics in the form of entropy release, modified cosmology, new particles... make lighter axions suitable DM candidates

See the talk of G. Gelmini

Visinelli & Gondolo 0912.0015

Direct searches: Haloscope

Power transfer from axion DM to the cavity

Weak coupling Takes many swings to fully transfer the wave amplitude.

Number of swings is equivalent to cavity Quality factor (Q).

Narrowband cavity response \rightarrow iterative scan through frequency space.

$$k_a = (m_a, 10^{-6} m_a)$$

$$k_\gamma = (\omega, \omega) \longrightarrow Q \sim 10^6$$

Luca Visinelli

See the talk of R. Maruyama for more

Direct searches: Haloscope

Recall the effective Lagrangian below QCD:

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) + \frac{1}{4} g_{a\gamma\gamma} \phi \tilde{F}_{\mu\nu} F^{\mu\nu} + c_e \frac{\partial_{\mu} \phi}{2f_a} \bar{e} \gamma^{\mu} \gamma_5 e + c_N \frac{\partial_{\mu} \phi}{2f_a} \bar{N} \gamma^{\mu} \gamma_5 N$$

The axion-photon coupling modifies Maxwell's equations [Sikivie 83; 85]

Significant enhancement when $2\pi\nu_c = m_a \pm m_a/Q_L$

 $P_{\rm sig} = \left(g_{a\gamma\gamma}^2 n_a\right) \times \left(Q_L B_0^2 V C_{nml}\right)$

 Q_L Quality factor V Cavity volume B_0 Magnetic field C_{nml} Geometric factor

Direct searches with INFN-LNF FLASH

Cavity search at INFN Frascati National Labs

FLASH cavity search with **Claudio Gatti**'s group (INFN-LNF) Alesini+ 2309.00351, with LV

Contents lists available at ScienceDirect

Physics of the Dark Universe

journal homepage: www.elsevier.com/locate/dark

Full Length Article

The future search for low-frequency axions and new physics with the FLASH resonant cavity experiment at Frascati National Laboratories

David Alesini^a, Danilo Babusci^a, Paolo Beltrame^b, Fabio Bossi^a, Paolo Ciambrone^a, Alessandro D'Elia^{a,*}, Daniele Di Gioacchino^a, Giampiero Di Pirro^a, Babette Döbrich^c, Paolo Falferi^d, Claudio Gatti^a, Maurizio Giannotti^{e,f}, Paola Gianotti^a, Gianluca Lamanna^g, Carlo Ligi^a, Giovanni Maccarrone^a, Giovanni Mazzitelli^a, Alessandro Mirizzi^{h,i}, Michael Mueck^j, Enrico Nardi^{a,k}, Federico Nguyen¹, Alessio Rettaroli^a, Javad Rezvani^{m,a}, Francesco Enrico Teofiloⁿ, Simone Tocci^a, Sandro Tomassini^a, Luca Visinelli^{o,p}, Michael Zantedeschi^{o,p}

Partial overlap with BabyIAXO reaches when used as a haloscope [2306.17243]

See also CADEx, PAS

Summary

AMC-NS radio transients

- Lasting days to years
- Within reach of current searches
- Expect O(1) bright event on the sky at all times
- Explored in Andromeda through GBT
- More developments to come soon

Please re-cast the results and re-use the code!

2011.05377, 2011.05378 github.com/bradkav/axion-miniclusters Luca Visinelli

Direct searches

- Road to lab detection @ INFN-LNF
- Dawn of HFGW searches
- For details, see FLASH CDR 2309.00351

Thank you!

