

Detecting Ultralight Dark Matter with Matter Effect

Speaker: Xucheng Gan

2504.11522 Collaborators: Da Liu, Di Liu, Xuheng Luo, Bingrong Yu

DESY, Hamburg

Quadratic Coupling

$\frac{1}{\sqrt{2}} \phi^2 \mathscr{O}_{SM} \longleftrightarrow G^2$

 $m_f \bar{f} f$

Shift Symmetry

 $\mathbb{Z}_2: \phi \to -\phi$

Xucheng Gan @ DESY

Axion

Hook et al. 2017, Kim et al. 2023, Beadle et al. 2023, ...

Dilaton

Damour et al. 1992, Sibiryakov et al. 2020, ...

pNGB

Brzeminski et al. 2020, Gan et al. 2023, ...

Quadratic Coupling

$\frac{1}{\Lambda^2} \phi^2 \mathscr{O}_{SM} \longleftrightarrow \overset{I}{G^2} \overset{G}{G^2}_{m_f \bar{f} f}$

Shift Symmetry

 $\mathbb{Z}_2: \phi \to -\phi$

Xucheng Gan @ DESY

Ordinary Matter

Effective Mass

Axion in Stockholm, July 3rd

Ordinary Matter

Effective Mass

Scattering Force

 $\sigma_{\rm T} \sim \frac{(m_{\rm M}^2 V_R)^2}{4\pi}$ Coherent Scattering

$\mathbf{F}_{\rm sc} \sim \sigma_{\rm T} \times \rho_{\phi} v_{\phi}^2$

$a \sim 10^{-13} \,\mathrm{m/s^2} \times \left(\frac{1 \,\mathrm{cm}}{R}\right) \times (m_{\mathrm{M}}R)^4$

Fukuda, Shirai, 2021, Day, Da, Luty et al. 2023, ...

Background-Induced Force

Background-Induced Force

$a \sim 10^{-13} \,\mathrm{m/s^2} \times \left(\frac{1 \mathrm{cm}}{R}\right) \times \frac{(m_{\mathrm{M}}R)^4}{(k_{\mathrm{d}}r)^2}$

Ferrer, Grifols, 2001, Hees, et al, 2018, Banerjee, et al., 2022, Van Tilburg, 2024, Barbosa, Fichet, 2024...

>20 Years

Experimental Sensitivity

Experiments

MICROSCOPE

Eot-Wash

Galileo Galilei Satellite

Deep Space Mission

Axion in Stockholm, July 3rd

Xucheng Gan @ DESY

Acceleration

 $\sim 10^{-14} \,\mathrm{m/s^2}$

 $\sim 10^{-15} \,\mathrm{m/s^2}$

 $\sim 10^{-16} \,\mathrm{m/s^2}$

 $\sim 10^{-18} \,\mathrm{m/s^2}$

Test Mass : $R \sim 1 \text{ cm} - 10 \text{ cm}$

Experimental Sensitivity

Scattering Force

Xucheng Gan @ DESY

Axion in Stockholm, July 3rd

Background-Induced Force

Axion in Stockholm, July 3rd

Xucheng Gan @ DESY

We need unified treatment!

We need to include the nonperturbative behavior!

Classification

Ferrer, Grifols, 2001, Barbosa, Fichet, 2024...

Van Tilburg, 2024

Hees, et al, 2018, Banerjee, et al., 2022

Classification

Region: A

Ferrer, Grifols, 2001, Barbosa, Fichet, 2024...

Van Tilburg, 2024

Regions: A+C

Hees, et al, 2018, Banerjee, et al., 2022 Our work A+B+C+D+E

Axion in Stockholm, July 3rd

Classification

Region: A

Ferrer, Grifols, 2001, Barbosa, Fichet, 2024...

Van Tilburg, 2024

Regions: A+C

Hees, et al, 2018, Banerjee, et al., 2022 Our work A+B+C +D+E

$\psi_{\text{tot}} = \psi_{\text{in}} + \psi_{\text{sc}}$

Xucheng Gan @ DESY

Axion in Stockholm, July 3rd

Partial Wave + Phase Space

Axion in Stockholm, July 3rd

Partial Wave + Phase Space

Forward Direction

Xucheng Gan @ DESY

Backward Direction

Forward Direction

Xucheng Gan @ DESY

Backward Direction

Axion in Stockholm, July 3rd

2. $m > 10^{-8} \text{eV}$, AC Force (1.6 hour)

Conclusions

1. The quadratic coupling arise in axion, dilaton, and pNGB models.

that can be measured using precision accelerometers.

space, including both perturbative and non-perturbative regimes.

background-induced force acting on the test mass.

- 2. Quadratic couplings can be probed via matter effects, which manifest as a scattering force and a background-induced force. Both forces produce accelerations of test masses
- 3. Previous studies were limited to specific regions of the parameter space. By employing partial wave analysis, we develop a unified framework that covers the entire parameter
- 4. We revisited the MICROSCOPE equivalence principle test and updated the constraints in the high-momentum regime. Additionally, we identified the AC component of the

Experimental Sensitivity

Experiments MICROSCOPE Eot-Wash Galileo Galilei Satellite **Deep Space Mission** $T \sim 10 \,\mathrm{K}, \quad Q \sim 10^8$ SQL, $Q \sim 10^8$

Xucheng Gan @ DESY

Axion in Stockholm, July 3rd

Acceleration $\sim 10^{-14} \,\mathrm{m/s^2}$ $\sim 10^{-15} \,\mathrm{m/s^2}$ $\sim 10^{-16} \,\mathrm{m/s^2}$ $\sim 10^{-18} \,\mathrm{m/s^2}$ $\sim 10^{-20} \,\mathrm{m/s^2}$ $\sim 10^{-27} \,\mathrm{m/s^2}$

Screening Effect

Xucheng Gan @ DESY

Descreening Effect

Xucheng Gan @ DESY

 $+ y^2/R_S$ x^2

Region E: $m_{M,S} = 10 R_S^{-1}, k = m_{M,S}/\tan(30^{\circ})$

Forward Direction

Xucheng Gan @ DESY

Backward Direction

Spherical Symmetric Ansatz

Xucheng Gan @ DESY

Axion in Stockholm, July 3rd

$\nabla^2 \psi_{\rm sph} = m_{\rm M}^2 \theta (R - r) \psi_{\rm sph}$

Screening Effect

Hees, et al, 2018, Banerjee, et al., 2022

Heavy Fermion

Heavy Scalar

Dark QCD Axion

Xucheng Gan @ DESY

UV Models: Scalar-Photon

 $\mathscr{L} \supset -\frac{y\alpha_{\rm em}Q_F^2\cos(c)}{6\sqrt{2\pi}M_F f_{\phi}}\phi^2 F_{\mu\nu}F^{\mu\nu}$

 $\mathscr{L} \supset -\frac{\lambda \alpha_{\rm em} \mathcal{Q}_{S}}{48\pi M_{e}^{2}} \phi^{2} F_{\mu\nu} F^{\mu\nu}$

 $\mathscr{L} \supset -\frac{\epsilon^2 \alpha'}{192\pi f_a^2} a^2 F_{\mu\nu} F^{\mu\nu} + \delta_{\rm iso} \frac{\epsilon \alpha'}{4\pi f_a} \left(a F_{\mu\nu} \tilde{F}^{\prime\mu\nu} + \epsilon \, a F_{\mu\nu} \tilde{F}^{\mu\nu} \right)$

