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Plan

- Why you should like axions as inflatons

- Not only cosines

- Axion inflaton coupled to U(1) gauge fields: phenomenology

- Axion inflaton coupled to U(1) gauge fields: strong backreaction

- (Some) other situations



Inflation and radiative stability

- it is approximately flat

- in first approximation it is homogeneous and isotropic

5 BIG FACTS ABOUT THE UNIVERSE

- it is old and very large

- structure grew out of small, scale invariant perturbations

- spectrum of primordial perturbations was gaussian

…can all be explained by primordial inflation!



Inflation and radiative stability

How to make sure that radiative effects 
are under control?

A classical inflationary potential will receive

radiative corrections



Inflation and radiative stability

The situation is actually not so horrible...

If we have a 4d theory where φ interacts only with gravity
then perturbative quantum gravity corrections are not a problem!

Smolin 80, Linde 88

Indeed: for potential V(φ),  quantum gravity effects are

O(1) V(φ)2/MP4     and    O(1) V’’(φ) V(φ)/MP2 

negligible during inflation

However, in general there will be couplings to other fields

reheating

Softly broken  

shift s
ymmetry!

moduli in 

string th



Inflation and radiative stability

How to guarantee radiative stability?

Impose the shift symmetry!

(Naturally realized if the inflaton is a

pseudo-Nambu—Goldstone boson)

pNGb≡ALP≡axion

(more general than QCD axion)



Inflation and radiative stability

Incidentally…

For the same reason why axions

are good inflaton candidates, 


they are excellent quintessence candidates

(bonus: they do not mediate fifth forces!)

Back to inflation…

Carroll 98



Inflation and radiative stability

 
V(φ)

π0

2µ4

φ/f

Freese et al 1990
Natural inflation

V(φ)=μ4 [ cos(φ/f)+1]



Inflation and radiative stability

BICEP/Keck 2021
But data… 8

FIG. 5. Constraints in the r vs. ns plane for the Planck
2018 baseline analysis, and when also adding BICEP/Keck
data through the end of the 2018 season plus BAO data to
improve the constraint on ns. The constraint on r tightens
from r0.05 < 0.11 to r0.05 < 0.035. This figure is adapted from
Fig. 28 of Ref. [2] with the green contours being identical.
Some additional inflationary models are added from Fig. 8 of
Ref. [35] with the purple region being natural inflation.
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FIG. 6. Expectation values and noise uncertainties of the
` ⇠ 80 BB bandpower in the BICEP/Keck field. The solid
and dashed black lines show the expected signal power of
lensed-⇤CDM and r0.05 = 0.01. Since CMB units are used,
the levels corresponding to these are flat with frequency. The
blue bands show the 1 and 2� ranges of dust, and the red
shaded region shows the 95% upper limit on synchrotron in
the baseline analysis including the uncertainties in the am-
plitude and frequency spectral index parameters (Async,23,�s

and Ad,353,�d). The BICEP/Keck auto-spectrum noise un-
certainties are shown as large blue circles, and the noise un-
certainties of the used WMAP/Planck single-frequency spec-
tra evaluated in the BICEP/Keck field are shown in black.
The blue crosses show the noise uncertainty of selected cross-
spectra, and are plotted at horizontal positions such that they
can be compared vertically with the dust and sync curves.
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Natural inflation

…but let’s keep pressing! 💪 



Stringy models of natural inflation?

Inflation and radiative stability

YES! 

(in principle) 


(string theory contains a plethora of axions)

String Theory appears to require f<MP

Banks, Dine, Fox and Gorbatov 03

Arkani-Hamed, Motl, Nicolis, Vafa 06

However

(not only disfavored by data, if f<MP the cosine potential cannot sustain inflation at all!)

Liam’s talk



Inflation and radiative stability

Ways out?

Kim, Nilles and Peloso 2004

- Use two axions

...all based on multi field dynamics
- ...

- Use axions and moduli
Blanco-Pillado et al 2004

- Use many axions
Dimopoulos et al 2005

(nota bene: “string inspired”≠ “string theoretical” )

Sourced scalar perturbations and chiral GW

Amplified gauge fields source scalar and tensor perturbations
Barnaby, MP ’10

δA δφ , δgTT

• GWs are chiral, δgTT
L ! δgTT
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Planck Collaboration: Constraints on Inflation

Fig. 7. Marginalized joint two-dimensional 68 % and 95 % CL regions for combinations of (ε1 , ε2 , ε3) (upper panels) and (εV , ηV , ξ2V )
(lower panels) for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK15 (blue
contours).

Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc−1 from Planck alone and in combination with
BK15 or BK15+BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized joint
68 % and 95 % CL regions assume dns/d ln k = 0.

data we use the full constraining power of Planck, i.e., Planck
TT,TE,EE+lowE+lensing, in combination with BK15.

The ∆χ2 and the Bayesian evidence values for a selec-
tion of inflationary models with respect to the R2 model

17

Are we speaking about a null set? (Is axion inflation still viable?)

Natural inflation
Are we speaking about a null set? (Is axion inflation still viable?)

Natural inflation

Are we speaking about a null set? (Is axion inflation still viable?)

Natural inflation

N = 50

N = 60

Are we speaking about a null set? (Is axion inflation still viable?)

Natural inflation

N = 50

N = 60

Are we speaking about a null set? (Is axion inflation still viable?)

Natural inflation

N = 50

N = 60

Growing f

Are we speaking about a null set? (Is axion inflation still viable?)

Natural inflation

Common to identify axion inflation with “natural inflation”

Freese, Frieman, Olinto ’90

V = Λ4
[
1− cos

(
φ

f

)]

N = 50

N = 60

Growing f

m2φ2

r < 0.03

Planck ’18

Are we speaking about a null set? (Is axion inflation still viable?)

Natural inflation

Common to identify axion inflation with “natural inflation”

Freese, Frieman, Olinto ’90

V = Λ4
[
1− cos

(
φ

f

)]

N = 50

N = 60

Growing f

m2φ2

m2φ2

m2φ2

Are we speaking about a null set? (Is axion inflation still viable?)

Natural inflation

Common to identify axion inflation with “natural inflation”

Freese, Frieman, Olinto ’90

V = Λ4
[
1− cos

(
φ

f

)]

N = 50

N = 60

Growing f

m2φ2

r <∼ 0.03

Planck ’18

Sourced scalar perturbations and chiral GW

Amplified gauge fields source scalar and tensor perturbations
Barnaby, MP ’10

δA δφ , δgTT

• GWs are chiral, δgTT
L ! δgTT

R Sorbo ’11

• Sourced signals for

5 ∼ ξ ≡
CA φ̇

2fH

$
√

ε

2

CAMp

f
⇒

f

cA
$ 10−2Mp

Problems with natural inflation

Common to identify axion

inflation ≡ “natural inflation”

Freese, Frieman, Olinto ’90

V = Λ4
[
1− cos

(
φ

f

)]

Ruled out

f > Mp in range shown

Sourced scalar perturbations and chiral GW

Amplified gauge fields source scalar and tensor perturbations
Barnaby, MP ’10

δA δφ , δgTT

• GWs are chiral, δgTT
L ! δgTT

R Sorbo ’11

• Sourced signals for

5 ∼ ξ ≡
CA φ̇

2fH

$
√

ε

2

CAMp

f
⇒

f

cA
$ 10−2Mp

Problems with natural inflation

Common to identify axion

inflation ≡ “natural inflation”

Freese, Frieman, Olinto ’90

V = Λ4
[
1− cos

(
φ

f

)]

Ruled out

f > Mp in range shown

Aligned natural inflation

Kim, Nilles, MP ’05

-7.5 -5 -2.5 0 2.5 5 7.5
-10

-5

0

5

10

Aligned Natural Inflation

Kim, Nilles, MP ’05

Aligned Natural Inflation

Kim, Nilles, MP ’05

V = Λ4
1

[
1− cos

(
θ

f1
+

ρ

g1

)]
+ Λ4

2

[
1− cos

(
θ

f2
+

ρ

g2

)]

• For exact alignment
f1
g1

=
f2
g2

, one linear combination drops out of the potential

⇒ Can obtain feff # fi , gi in the nearly aligned case.

• Can have feff > Mp even if fi, gi sub-Planckian (issue 1)

• Full phenomenology in MP, Unal ’15. New solutions in 1σ CMB contour
(issue 2)

Notation:

• f >∼ 7Mp needed in V = Λ4
[
1+ cos

(
φ
f

)]
. Values f " 10−2Mp relevant for

models with sub-Planckian axion scale, but effective ∆φ > Mp

• f ∼ 10−2Mp relevant for models with sub-Planckian axion scale,

but effective ∆φ > Mp, e.g. aligned inflation, N-flation, monodromy...

E.g., Monodromy, N-flation, Aligned Natural Inflation

Kim, Nilles, MP ’05
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Inflation and radiative stability

Or, just forget about periodic potentials!
McAllister, Silverstein, Westphal 08

Monodromy:
wrapped brane is the DBI action, given in terms of the embedding coordinates X

M(⇠) as s

SDBI = �

Z
d

p+1
⇠

(2⇡)p
↵
0�(p+1)/2

e
��

q
det (GMN + BMN) @↵XM@�XN (1.1)

where we have omitted the corresponding Chern-Simons term, which will be unimportant

for our considerations. A key example is a D5-brane wrapped on a two-cycle ⌃(2) of size

`
p

↵0, which yields a potential

V (b) =
✏

gs(2⇡)5↵02

p
`4 + b2 (1.2)

that is linear in the axion field b at large b. (Here we have included a factor ✏ to represent

the e↵ects of warping, which we describe more carefully below.) Similarly, an NS5-brane

wrapped on ⌃(2)
I introduces a monodromy in the cI direction.

Monodromy is a common phenomenon in string compactifications. In the past, it has been

studied extensively in the context of particle states in field theory [11] and the corresponding

non-space-filling wrapped branes of string theory [12]. The present case of monodromy in the

potential energy arises when a would-be periodic direction � is “unwrapped” by the inclusion

of an additional space-filling ingredient whose potential energy grows as one moves in the

� direction, extending the kinematic range of the corresponding scalar field. Because the

wrapped branes are space-filling, their charge must be cancelled within the compactification.

We will do so with an antibrane wrapped on a distant, homologous two-cycle as depicted in

Fig. 2 in §4 below.

In the bulk of this paper, we analyze the conditions under which this yields controlled

large-field inflation in string theory. We find a reasonably natural class of viable models. As

is usually the case in inflationary model building from string theory, much of the challenge is

to gain systematic control of Planck-suppressed corrections to the e↵ective action. After en-

suring that our candidate inflaton potential does not destabilize the compactification moduli,

and that fluxes do not a↵ect the structure of our candidate inflaton potential, we establish

that instanton e↵ects, which produce sinusoidal contributions to the axion potential, can be

naturally suppressed. We assess these conditions for both perturbative and nonperturbative

stabilization mechanisms, drawing examples based both on Calabi-Yau compactifications

and on more general compactifications that break supersymmetry at the Kaluza-Klein scale.

In the case of nonperturbative stabilization mechanisms in type IIB string theory, we find

a controlled set of models for the RR two-form axions cI , while perturbative stabilization

mechanisms suggest opportunities for inflating in the bI as well as in the cI directions. These

varied implementations of our axion monodromy mechanism give identical predictions for the

overall tilt and tensor to scalar ratio in the CMB, as they are all well-described by a linear

potential for a canonically-normalized inflaton.1 Our prediction for these quantities lies well

1There may also be novel signatures from finer details of the power spectrum originating in the repeated
circuits of the fundamental axion period, as we discuss further below.

4

NS5

NS5D4-brane

Figure 1: T-dual, “brane box”, description of this configuration, in which the fractional D3-

brane becomes a D4-brane stretched between two NS5-branes on a T-dual circle. Moving

in the b direction through multiple periods in closed string moduli space in the original

description corresponds to moving one of the NS5-branes around the circle, dragging the

D4-brane around with it so as to introduce multiple wrappings.

where we indicated corrections which we will analyze below, suppressing them using sym-

metries, warping, and the natural exponential suppression of nonperturbative e↵ects.

In order to obtain 60 e-folds of accelerated expansion, inflation must start at �a ⇠ 11MP .

In addition, the quantum fluctuations of the inflaton must generate a level of scalar curvature

perturbation �R|60 ' 5.4⇥ 10�5, with

�R|Ne
=

s
1

12⇡2

V 3

M
6
PV 02

�����
Ne

(2.19)

This requires

µa ⇠ 6⇥ 10�4
MP (2.20)

Given fa = �a/a and the above results, the number of circuits of the fundamental axion

period (2⇡)2
fa required for inflation is

Nw = 11
MP

fa(2⇡)2
(2.21)

We will compute this number of circuits in each of the specific models below. In the very

simple case with all cycles of the same size, this gives, using (2.15),

Nw ⇠ 11
p

6
L

2

(2⇡)2
(one scale) (2.22)

for b, while the requisite number of circuits for an RR inflaton c is larger by a factor 1/gs.

2.4 Constraints on Corrections to the Slow-Roll Parameters

Our next task is to ensure that the inflaton potential Vinf ⇡ µ
3
a�a is the primary term in

the axion potential. All other contributions to the axion potential must make negligible

8

energy depends on number 

of times brane looped around a cycle



Inflation and radiative stability

A four-dimensional incarnation
Kaloper, LS 08

Di Vecchia and Veneziano 1980
Quevedo and Trugenberger 1996

Dvali and Vilenkin 2001
Beasley and Witten 2002

Dvali 2005

Fμνρλ=∂[μ Aνρλ]

Action invariant under shift symmetry:

(φ is an axion!)

under φ → φ + c, L → L + c μ εμνρλ Fμνρλ/24

total derivative!



Inflation and radiative stability

A four-dimensional incarnation
Kaloper, LS 08

Variation of 
the action {∇μ(Fμνρλ-μ εμνρλ φ)=0

∇2φ+μ εμνρλ Fμνρλ/24=0

After simple 
manipulations {∇2φ-μ2 (φ+q/μ)=0

Fμνρλ= εμνρλ (q + μ φ)

q = integration constant

Shift s
ymmetric

  

action 

describes massive field!



Inflation and radiative stability

A four-dimensional incarnation

Shift s
ymmetric

  

action 

describes massive field! But isn’t m2φ2 inflation ruled out?

Yes, but corrections can flatten out potential 

at large φ D’Amico, Kaloper, Lawrence 17



Moving to phenomenology…



Axion inflation
Pseudoscalar, quasi-shift symmetric inflaton, radiatively stable 


theoretically very attractive

<latexit sha1_base64="KHXZHwMZni+r7IdBnB12gwH9kOA="></latexit>
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EOM for helicity-λ   

modes of photon

Coupling to U(1) gauge fields:
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for λ=-, the “mass term” is negative 
and large for ~1 Hubble time:

Exponential amplification of left-handed modes only 
(parity violation)
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Phenomenology



A (large) population of chiral vector fields

during inflation


potential for a very rich phenomenology!

Phenomenology



Phenomenology

Cosmological magnetic fields

(Observed up to ~Mpc scales, ~10-17G, uncertain origin) 

Blue spectrum, B(k)∝k2 
too weak at large scales 

…but inverse cascade 

(MHD effect for chiral gauge fields, 

amplifying large scale spectrum) 

Carroll, Field, Garretson 93

Anber, LS 06


Durrer et al 10
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FIG. 1. Top panel ⌘bar vs ⇠, the bottom panel ⌘bar vs Hinf .
For instance, the observed value of baryon asymmetry ⌘bar =
10�10 can be obtained for ⇠ = 1 and Hinf = 6.3⇥ 1010 GeV.

FIG. 2. Hinf vs ⇠ for ⌘bar = 10�10.

not extrapolate our results for values of ⌘bar & 1 as the
perturbative calculation breaks down.

Discussion.—A simple example of pseudoscalar infla-
tion is natural inflation [3] in which a shift symmetry � !
�+ C is broken down to a discrete subset � ! �+ 2⇡f
resulting in the potential V = ⇤4 [1 + cos(�/f)]. We re-
call that the slow roll conditions are satisfied provided
that m2

� < H
2
inf. Using Friedmann’s equation 3m̄2

p
H

2
inf =

V ⇠= ⇤4, where m̄p = mp/
p
8⇡, and m

2
�

⇠= ⇤4
/f

2, we
obtain f >

p
3m̄p. The scalar fluctuation power spec-

trum is given by P⇣ = P
h
1 + 7.5⇥ 10�5P e

4⇡⇠

⇠6

i
, where

P1/2 ⌘ H
2
inf

2⇡|�̇| [19]. This power spectrum is probed by

the CMB observations with amplitude given by the Cos-
mic Background Explorer (COBE) normalization P⇣

⇠=

25⇥ 10�10. Using the equation of motion of the inflaton
during the slow roll regime 3Hinf�̇ ⇠= @V/@� = ⇤4

/f ,
we find Hinff

⇠= 10�4
m̄

2
p
. Setting f ⇠ m̄p, we obtain

Hinf
⇠= 1014 GeV. Such a large Hubble parameter dur-

ing inflation will result in baryon asymmetry overpro-
duction for values of ⇠ & 1. One way out is that the
coupling between the hypercharge gauge field and the in-
flaton is very weak, ↵ ⌧ 1, such that no hypercharge
field can be produced during inflation. Such fundamen-
tally very small values of ↵ appear to be contrived since
one expects ↵ & 1 as a consequence of the ”gravity as
the weakest force” conjecture [20]. Moreover, a consis-
tent theory of quantum gravity disfavors values of the
axion constant f & m̄p. The latter problem can be solved
within the framework of N-flation [21]. In this scenario,
one assumes that there are N di↵erent axions with con-
stants fi ⌘ fsingle < m̄p and that all these axions couple
equally to the U(1)

Y
hypercharge gauge field such that

e↵ectively we have f =
p
Nfsingle > m̄p [8]. Demanding

that f . m̄p one finds that N ⇠ O(100) removes the con-
flict with quantum gravity. On the other hand, lowering
the inflation scale, Hinf . 6.3⇥1010 GeV, guarantees the
production of the observed baryon asymmetry for ⇠ & 1.
Such low inflationary scales will require invoking curva-
tons in order to respect the COBE normalization [22–24].
One of the key predictions of natural inflation, apart

from the cosmological data, is the maximally helical hy-
permagnetic field generated via the dimension-5 opera-
tor of the form (�/f)Yµ⌫ Ỹ

µ⌫ , which is expected from
e↵ective field theory considerations. In this letter, we
showed that the dramatic consequence of this coupling
is the overproduction of baryon asymmetry that severely
constrains models of natural inflation with large Hubble
parameter, Hinf & 6.3 ⇥ 1010 GeV. Note, however, that
we assumed the primordial plasma to be turbulent be-
tween Trh & T & 10 TeV. If the plasma ceases to be tur-
bulent during the course of baryon number generation,
the contribution from the hypercharge sector might be-
come less e�cient due to the di↵usion of hypermagnetic
field. Meanwhile, weak sphalerons can wash out the ex-
cess baryon number. However, we note that this scenario
is not likely as the magnetic Reynolds number tends to
increase after reheating [12]. To conclude, for parameters
Hinf . 6.3⇥ 1010 GeV and ⇠ ⇠ 1, the observed BAU can
be achieved. Yet another prediction in this case would
be the relic magnetic fields with right handed helicity
(h > 0). It was pointed out in Refs. [15, 25, 26] that the
magnetic helicity is proportional to the baryon number.
In this work, we explicitly showed this to be case. A re-
cent analysis of the di↵use gamma ray data hints towards
a global CP violation, which could be due to primor-
dial magnetic fields with non zero helicity [27]. It would
be a boon to find an observational correlation between
the topology of these primordial magnetic fields and the
baryon number. This will be a smoking gun evidence for
a link between inflation and the BAU.
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FIG. 1. An `-space configuration of the CMB trispectrum and
its mirrored one. If these two trispectra have odd parity as in
Eq. (10), they take di↵erent signs with the same amplitude.
A similar argument is established for the bispectrum case [30].

B. All-sky formalism

Using Eq. (5), the all-sky form is expressed as
*

4Y

n=1

a`nmn

+
=

"
4Y

n=1

4⇡i`n
Z
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(2⇡)3
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#
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Z

d3K�(3)(k1 + k2 +K)

�(3)(k3 + k4 �K)tk1k2
k3k4

(K)

+(23 perm) . (16)

This is computed following the same procedure as
Refs. [8, 57, 62]. We start by expressing the angle-
dependent quantities with spherical harmonics. Using
the identities

PL(q̂1 · q̂2) =
4⇡

2L+ 1

X

M

Y ⇤
LM (q̂1)YLM (q̂2) , (17)

i (q̂1 ⇥ q̂2) · q̂3 =
p

6

✓
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3

◆3/2 X

M1M2M3

Y1M1(q̂1)Y1M2(q̂2)Y1M3(q̂3)✓
1 1 1
M1 M2 M3

◆
, (18)

and the law of the addition of spherical harmonics, we
rewrite the parity-odd trispectrum (4) as

tk1k2
k3k4

(K) = P⇣(k1)P⇣(k3)P⇣(K)
X

n

doddn

X
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0
3LK

Gn
L0

1L
0
3LK

X

M 0
1M

0
3MK

Y ⇤
L0

1M
0
1
(k̂1)Y

⇤
L0

3M
0
3
(k̂3)

Y ⇤
LKMK

(K̂)

✓
L0
1 L0

3 LK

M 0
1 M 0

3 MK

◆
, (19)

where
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1L
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, (20)

with hl1l2l3 ⌘

q
(2l1+1)(2l2+1)(2l3+1)

4⇡

✓
l1 l2 l3
0 0 0

◆
. The

selection rules of hl1l2l3 and the Kronecker delta restrict
L0
1, L

0
3 and LK to |n ± 1| or 1. The delta functions are

also decomposed according to

�(3)
 

3X
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qn
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= 8

Z 1

0
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We next perform the angular integrals of the products of
spherical harmonics employing the identities

Z
d2q̂

2Y

n=1

YLnMn(q̂) = (�1)M1�L1,L2�M1,�M2 , (22)

Z
d2q̂

3Y

n=1

YLnMn(q̂) = hL1L2L3

✓
L1 L2 L3

M1 M2 M3

◆
.(23)

Finally, summing over the angular momenta in the resul-
tant Wigner symbols, we obtain
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where
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X

L1L

X

L3L0

O`1`2;L1L
`3`4;L3L0(J, n)

Z 1

0
r2dr

Z 1

0
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FIG. 1: Values of parameters leading to the observed COBE
normalization of the power spectrum (red line), and reference
values for the nongaussianity parameter fequil

NL = 10, 266, 8000
along this curve. See the main text for details.

strong, then it will affect the inflaton dynamics. The re-
gion of parameter space where this occurs is above the
black solid line (P1/2 > 13ξ3/2 e−πξ) shown in Figure 1.
We have also disregarded the impact of the energy den-
sity of the produced quanta on the expansion rate, H .
This is justified provided e2πξ/ξ3 ! 2 · 104M2

p/H
2. This

constraint is not expressed in terms of ξ and P1/2, so
we have not included it in Figure 1. However, it can be
studied on a case-by-case basis.
The gauge quanta also source gravity waves (GW). It

is customary to normalize the power of GW to that of
the density perturbations. Proceeding analogously to the
computation of the density perturbations, we find

r ≡
PGW

Pζ
= 8.1 ·107

H2

M2
p

[

1 + 4.3 · 10−7 H2

M2
p

e4πξ

ξ6

]

(10)

The tensor-to-scalar ratio, r, is an important quantity to
discriminate between different inflationary models. The
current observational limit is r <∼ 0.2 [14], and activity is
underway to probe r >∼ 0.01 [15].

III. PREDICTIONS FOR SPECIFIC MODELS

We now focus our attention on the power-law potential

V (φ) = µ4−pφp (11)

which subsumes many interesting scenarios. Inflation
proceeds at large field values φ >∼ Mp and ends when
φ ∼ Mp. For this model, the values of H , φ̇ and ns

are uniquely determined by the number of e-foldings of
observable inflation Ne, according to the standard slow
roll inflaton evolution (ε, η ! 1). In the following, we fix
Ne = 60, which is the typical value taken in large field
models. Once we do so, we are left with the two param-
eters f/α, and µ. For any given value of f/α, the mass
scale µ is uniquely determined by fixing the power spec-
trum (8) to the COBE value. We can then plot the other
observational predictions as a function of f/α only. We

do so in Figure 2, where we take p = 1, 2 for illustration.
In both cases, backreaction effects can be neglected.
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FIG. 2: Observational predictions for the large-field power-
law inflation model (11) with p = 1, 2 and assuming Ne

∼= 60.
The spectral index is ns = 0.975, 0.967 for p = 1, 2. At small
f/α the coupling of φ to FF̃ is stronger and nongaussianity is
large. The tensor-to-scalar ratio decreases at strong coupling;
however, the decrease is important only at values of f/α which
are ruled out by the current bound on fequil

NL .

Figure 2 shows that large nongaussianity is rather
generic for large-field axion inflation. The current bound
is saturated for decay constants f/α <∼ 10−2Mp, which is
natural in a model that admits a UV completion. Cur-
rent limits on nongaussianity therefore provide an upper
bound on the strongest couplings of the type φFF̃ be-
tween the inflaton and any gauge field.
We see also that r decreases at strong coupling. This

modifies the usual predictions of large field inflation and
implies, for example, that p = 4 could be made compati-
ble with observation, at the level of the 2-point function.
Natural Inflation: The original natural inflation

model [1] was based on the potential (1). If we require
ns

>∼ 0.95, as suggested by recent data [14], then the
model requires a large decay constant f >∼ 5Mp [17]. In
this regime inflation proceeds near the minimum φ = 0
and is indistinguishable from the model (11) with p = 2.
Large values of f weaken the coupling of φ to FF̃ , hence
inverse decay is negligible unless α >∼ 200, whereas we
expect α = O(1) in the simplest (single-axion) scenario.
On the other hand, f >∼ Mp may be problematic and it
seems that a UV completion of axion inflation requires
f < Mp. We now turn our attention to such scenarios.
Axion Monodromy: In [5] an explicit, controlled

realization of axion inflation was obtained from string
theory. The potential has the form V (φ) = µ3φ +
Λ4 cos(φ/f) where the linear contribution arises because
the shift symmetry is broken by wrapping an NS5-brane
on an appropriate 2-cycle, and the periodic modulation
is due to nonperturbative effects. The former typically
dominates [5, 6] so we have the model (11) with p = 1,
to first approximation. The decay constant is bounded

[5] as 0.06V−1/2g1/4s < f/Mp < 0.9gs with gs < 1 the

When effect of photons 

is large enough, fNL~104

LARGE AXION INDUCED 
TENSORS AT CMB SCALES 

RULED OUT
(at least in simple models)



Field σ (≠φ) coupled to gauge fields rolls only for a finite number of 
efoldings


its effects will be visible only on a finite range of multipoles 

Phenomenology

How about an axion in a transient roll?

Nongaussianities in the T fluctuations are weakly 
constrained because of cosmic variance
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for a recent analysis)

the field � evolves in a given potential. The simplest potential for an axion field,

V� (�) =
⇤4

2


cos

✓
�

f

◆
+ 1

�
, (1.2)

allows for a very small �̇ both at early and late times, when � is, respectively, close to the
maximum (� = 0) and the minimum of the potential (� = f⇡). The speed has a peak
at an intermediate time, when � is between the maximum and the minimum (we assume
that V� is subdominant with respect to the inflaton potential; moreover, we assume that the
inflaton potential is very flat, so that the Hubble rate H can be treated as constant; this is
the most interesting regime for our discussion, since a very flat inflaton potential corresponds

to unobservable vacuum GW). The peak lasts for a number of e-folds roughly of O
⇣
H

2

m2

⌘
,

where m is the curvature of (1.2). So, remarkably, the simplest axion potential is a perfect
candidate for generating a visible GW signal, while keeping the �� production under control.
In this work we show that this is indeed the case through explicit computations.

We present some specific examples (namely, some choice of parameters in the model)
for which the sourced tensor mode strongly dominates over the vacuum one at large scales,
leading to observable B modes of the CMB polarization. The GW signal also leads to a
marginally observable TB correlation (as a consequence of the broken parity invariance of
the mechanism) and to a well observable (high signal-to-noise ratio) BBB correlation. At
the same time, in such examples we find no statistically significant signatures in the TT, and
TTT temperature correlators.

The plan of the work is the following. In Section 2 we present the model, the background
evolution, and the vector field production. In Section 3 we study the cosmological pertur-
bations (scalar and tensor modes) sourced by the vector field. In Section 4 we summarize
our results for the two- and three-point scalar and tensor perturbations, and we discuss their
phenomenology. In Section 5 we present our conclusions. The work is complemented by six
appendices. In Appendix A we compute (in WKB approximation) the gauge field produced
in the case of nonconstant �̇. In Appendix B we review the computation of scalar modes
produced in the case of constant �̇. In Appendices C and D we give details of, respectively,
the scalar and tensor mode computation. In Appendix E we present some properties of the
bispectra produced in the model. In Appendix F we estimate the departure from gaussianity
of the statistics of the sourced modes.

2 Model, background evolution, and vector field production

We will consider a system containing the inflaton � and a second rolling field � which interacts
with the U(1) gauge field Aµ via an axionic coupling, so that the lagrangian reads

L = �
1

2
(@�)2 �

1

2
(@�)2 � V (�, �)�

1

4
F 2

� ↵
�

4f
F F̃ . (2.1)

The rolling of � provides a time dependent background for the gauge field and amplifies
its vacuum fluctuations. Such a phenomenon, on a de Sitter Universe with expansion rate
H, is controlled by the dimensionless quantity

⇠ ⌘
↵ �̇

2 f H
, (2.2)

which must be larger than unity or so to give a significant e↵ect [32].

– 4 –
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How about an axion in a transient roll?
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Figure 5. Temperature-temperature CMB power spectrum. The final WMAP data [51, 52] are
compared against the theoretical curves, evaluated for ✏� = 10�5 and for � = 0.2 (left panel) and
� = 0.5 (right panel). In each panel we show the theoretical curves for three di↵erent values of k⇤
(corresponding to three di↵erent locations of the peak of the sourced signal) and for the limiting value
⇠⇤ = ⇠⇤,limit, obtained as explained in the text.

scales than the WMAP ones, and for this reason we do not vary such parameters. As we
show below, in most cases the values of ⇠⇤,limit obtained with this procedure already provide
a visible GW signal, which is the goal of this present analysis (in summary, we are not
interested in providing precise Bayesian limits on ⇠⇤ within this model - for which we should
provide priors, marginalize over all the other parameters and include smaller scales data -
but only in the goal specified at the beginning of this subsection).

In Figure 4 we present the value of ⇠⇤,limit obtained with this procedure as a function
of the slow roll parameter ✏�. In the left (right) panel of the figure we set � = 0.2 (0.5),
corresponding to a significant �̇ for about 5 (2) e-folds. In each panel we fix k⇤ = 7 ⇥

10�5Mpc�1 , k⇤ = 5⇥10�4Mpc�1 , and k⇤ = 5⇥10�3Mpc�1, producing a bump, respectively
at the very largest angular scales (` <

⇠ 5), on the rise of the first peak, and in the region
around the first two peaks. 17 In the same figure we also show with black dashed lines the

ratio P
(1)
⇣

/P(0)
⇣

at the peak of the GW bump. We see that the allowed amount of scalar
signal strongly depends on the scale. In the examples with the bump at the largest scales,
the sourced signal can be as large as the vacuum one at the peak, due to the large cosmic
variance present at those scales. A significantly smaller fraction, O (1%� 10%), is allowed in
the examples in which the signal a↵ects the acoustic peaks.

By comparing the left and right panel of Figure 4 we again see that, for any fixed value
of ⇠⇤, the sourced signal is stronger at small values of �.

In Figure 5 we show the TT power spectrum obtained for the same choices of � and k⇤
as in Figure 4, for ✏� = 10�5, and for the corresponding value of ⇠⇤ = ⇠⇤,limit. The theoretical
curves present a bump due to the sourced scalar modes. As we already mentioned, the bump
ranges from the lowest ` multipoles (for the smallest k⇤ chosen) to ' the first two acoustic
peaks (for the largest k⇤ chosen).

In Figure 6 we show the self-correlations between the B modes of the CMB polarizations
(BB) sourced by the tensor modes when ⇠⇤ = ⇠⇤,limit. The parameters ✏�, �, and k⇤ are chosen
as in the two previous figures. For comparison we also show with black dashed lines the BB
correlation obtained for a scale invariant r of 0.1, 10�2, and 10�3 (from top to bottom,

17We verified that, apart from the
�
� = 0.5, k⇤ = 7⇥ 10�5 Mpc�1

 
case, the sourced GW give a negligible

contribution to the TT signal, and in all the other cases the limits shown in the figure are due to ⇣sourced.
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Figure 6. First row: Forecasted signal-to-noise ratio for the detection of the B-mode auto power
spectrum in a realistic CMB experiment with Planck-like sensitivity (Colored solid lines), and in a
cosmic variance limited (namely ideal noise-free) CMB experiment (Black dotted line), as a function
of the maximum multipole ` included in the analysis. Second row: CBB

l coe�cients. The model
parameters are chosen as in the previous figure.

respectively). As we already mentioned in the Introduction, the proposed stage 4 CMB
experiments claim an expected statistical uncertainty � (r) = 10�3 or below [2] in the scale
invariant case. If this is achieved, the theoretical curves chosen in Figure 6 appear to be within
observational reach. We recall that ✏� = 10�5 corresponds to a vacuum tensor-to-scalar ratio
rvac ' 1.6 · 10�4. Therefore, the enhancement of the BB signal visible in the figure is entirely
due to the sourced tensor modes. The enhancement is present at progressively larger ` for
increasing values of k⇤ shown (namely for bumps of gauge field production at progressively
smaller scales). By comparing the left and the right panel of Figure 6 we observe that BB can
reach greater values at increasing �. This is consistent with what we have already mentioned:
at fixed ⇠⇤, both the sourced scalar and tensor modes decrease with increasing �. However,
the scalar mode decreases more. Therefore, at larger values of �, larger values of ⇠⇤ can be
compatible with the WMAP TT bounds (cf. Figure 4). Such values lead to a larger amount
of sourced tensor modes.

The signal-to-noise (S/N) ratio shown in the figure is evaluated through

✓
S

N

◆2

BB

=
`maxX

`=2

2`+ 1

2

 
CBB

`

CBB

`,dat

!2

. (4.10)

Here, (CBB

`
)2 corresponds to the signal given by our theory, while the other terms in this

relation account for the uncertainty of the BB power spectrum in a given experiment. For

– 17 –

(S
/N

) T
B

lmax

(ξ*, k* [Mpc-1]) = (4.5, 7×10-5)
(4.4, 5×10-4)
(4.3, 5×10-3)

10-4

10-3

10-2

10-1

100

101

 10  100

(δ, εφ) = (0.2, 10-5)

(S
/N

) T
B

lmax

(ξ*, k* [Mpc-1]) = (5.3, 7×10-5)
(5.1, 5×10-4)
(4.9, 5×10-3)

10-4

10-3

10-2

10-1

100

101

 10  100

(δ, εφ) = (0.5, 10-5)

l (
l+

1)
 C

TB l  
 / 

(2
π)

 ×
 T

2 0 
[µ

K2 ]

l

(ξ*, k* [Mpc-1]) = (4.5, 7×10-5)
(4.4, 5×10-4)
(4.3, 5×10-3)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 10  100  1000

(δ, εφ) = (0.2, 10-5) l (
l+

1)
 C

TB l  
 / 

(2
π)

 ×
 T

2 0 
[µ

K2 ]

l

(ξ*, k* [Mpc-1]) = (5.3, 7×10-5)
(5.1, 5×10-4)
(4.9, 5×10-3)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 10  100  1000

(δ, εφ) = (0.5, 10-5)

Figure 7. First row: Forecasted signal-to-noise ratio for the detection of the TB correlation in a
realistic CMB experiment with Planck-like sensitivity (Colored solid lines), and in a cosmic variance
limited, CMB experiment (Colored dotted lines), as a function of the maximum multipole ` included
in the analysis. Second row: TB spectra. The parameters are chosen as in the previous figures.

simplicity, we here (and also in the other S/N estimations) assume a full-sky isotropic CMB
measurement, thus, the summations in terms of m disappear in the S/N formula. The data
spectrum in a given experiment is regarded as the sum of the signal and instrumental noise,
reading CBB

`,dat = CBB

`
+NBB

`
. In the paper, we analyze two di↵erent types of measurements: a

realistic measurement including a Planck-level noise spectrum [55] (as described in Appendix
A of [56]) and an ideal noise-free cosmic variance dominated measurement (i.e., NBB

`
= 0).

The results are shown in the upper panels of Figure 6. In the cosmic variance limited
case, because of CBB

`
/CBB

`,dat = 1, S/N becomes a simple increasing function: (S/N)BB =p
(`max + 3)(`max � 1)/2 (black dotted lines), independently of the shape of CBB

`
and the

values of input model parameters. The S/N is lower in the Planck-like realistic experiment;
however it can exceed one in the examples with the smallest values of k⇤ shown. A greater
BB signal can be obtained at larger values of �.

The sourced GW signal breaks parity, generating a nonvanishing correlation between
the CMB temperature anisotropy and B-mode polarization (TB) [35–38, 57]. In Figure 7 we
compute the forecasted signal-to-noise ratio for the detection of such signal:

✓
S

N

◆2

TB

=
`maxX

`=2

(2`+ 1)

�
CTB

`

�2

CTT

`
CBB

`,dat

, (4.11)

in the Planck-like realistic experiment and the ideal cosmic variance-limited experiment. In
the Planck-like measurement, we can neglect the noise spectrum of temperature mode NTT

`
,
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Important! Constraints on fNL on CMB scales only!
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GWs at smaller scales

Inflationary gravitational waves for LIGO (LISA…)?
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FIG. 5: ⌦GW h2 as function of the frequency f , for N = 60 e-foldings of observable inflation, a linear slow roll inflaton potential,
and ⇠CMB = 0, 2.33, 2.66 (the value of ⇠ when the large scale CMB modes left the horizon). For reference we also show the
expected sensitivity of LISA, Advanced LIGO/VIRGO and Einstein Telescope (at their most sensitive frequency).
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FIG. 6: Region in the {NCMB , ⇠CMB} plane (values assumed by these quantities when the large scale CMB modes left the
horizon) for which the gravity wave signal is detectable at Advanced LIGO/VIRGO and Einstein Telescope. The left and right
panel refer to a linear and quadratic inflaton potential, respectively.

IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction e↵ects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction e↵ects start to play an important role in determining the evolution
of the homogeneous background, �(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ⇠CMB as small
as 2.33 (equivalent to f/(Mp↵)  0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mp↵)  0.031) in the case of a quadratic potential.

Barnaby Pajer Peloso 11

Important! Constraints on fNL on CMB scales only!



Is parity violation in stochastic GWs 
detectable by interferometers?

Not as long as system is Z2-symmetric!

≡

Seto Taruya 07

Phenomenology



The presence of cosmic GW background 

dipole breaks the symmetry

Is parity violation in stochastic GWs 
detectable by interferometers?
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,

(40)

where f⇤ = (2⇡L)�1
' .02Hz.

The final expression for the signal-to-noise ratio, for a scale invariant ⌦�
GW , is thus

SNR =
9H2

0
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v

�����
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�����


2
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cos2 ↵(x) dx
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. (41)

Next, we have to estimate the integral
R T

1 year

0 cos2 ↵(x) dx. LISA will be orbiting the Sun with its
normal vector at 30o with respect to the ecliptic plane, pointing south [36]. Placing the ecliptic
on the xy plane, and approximating that the orbit of the Earth with a circle, the unit vector
normal to LISA’s plane has components

n =

 p
3

2
cos

✓
2⇡

t

1 year

◆
,

p
3

2
sin

✓
2⇡

t

1 year

◆
,�

1

2

!
. (42)

Parametrizing the velocity vector as v = v(cos ✓v sin�v, cos ✓v cos�v, sin ✓v), we have

cos↵ = n · v =

p
3

2
sin

✓
2⇡

t

1 year
+ �v

◆
cos ✓v �

sin ✓v
2

. (43)

The integral of cos2 ↵ over 1 year gives the result

Z 1

0
cos2 ↵(x) dx

�1/2
=

p
5 + cos(2✓v)

4
, (44)

that, depending on the value of cos ✓v, ranges between .5 and .61. The value of the integral over
the total time T of observation, which appears in eq (41), can then be found multiplying the
result of eq (44) by

p
T/(1 year).

Thus, approximating
hR 1

0 cos2 ↵(x) dx
i1/2

' .5, the total SNR turns out to be given approxi-

mately by

SNR '

⇣ v

10�3

⌘ ����

P
� �⌦�

GWh2

1.4 · 10�11

����

s
T

3 years
. (45)

This is one order of magnitude larger than the estimate obtained in [25].
For definiteness, given that we use a di↵erent notation, we present in Appendix B a detailed

comparison among our computation and Seto’s results of [25]. On the other hand, we stress that
for our analysis we use the most up-to-date LISA instrument specifications, and more complete
formulas valid for the entire frequency band of the interferometer.
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for LISA

Seto 06, Domcke et al 19

Additional detectors break the Z2

symmetry

for maximal chirality need ΩGW~10-8 
for LIGO/Virgo/Kagra


(already ruled out)

Crowder et al 12

Domcke et al 19

Figure 5: The location of all existing detectors on Earth, together with a LIGO-India detector in
Maharashtra, and a hypothetical optimal-for-chiral-SGWB detector in Perth. We also show the
antipodes of the LIGO-Livingston detector (green dot), which is not far from the Perth detector.
We note that the Figure shows the point of view of an observer at a specific location in space,
who sees less than half of the Earth. Lighter lines (red dots) are used to indicate continents
(interferometers) that are not seen by this observer.

halfway between the two detectors. As a consequence, a right-handed gravitational wave coming
from one side of this plane is indistinguishable from a left-handed one coming from the opposite
direction, so that the system, after selecting the isotropic monopole contribution, is insensitive to
chirality. This argument is analogous to, and generalizes, that given in [24], where it was shown
that coplanar detectors are insensitive to chirality (in that case, the symmetry plane coincided
with the plane of the two detectors).

In particular, if the detectors are located at the antipodes (� = ⇡), the absolute value of
eq. (58) is maximized and reduces to

�Mantipodes =
�2 j0 () +

�
3� 2

�
j2 ()

6
sin [2 (↵+ �)] . (59)

In what comes next, using our formulas we discuss more quantitatively the best choices of location
for antipodal ground based detectors in order to detect parity violating e↵ects in the SGWB.
Similar considerations can also be found in [22,23].

Choice of Earth location for optimal detection of a chiral SGWB

If we search for the antipodes of the four known detectors (Hanford, Livingston, Virgo, KAGRA),
we see that all of them fall in the Ocean (Pacific, Atlantic and Indian). The antipode of LIGO-
Livingston (L) falls in the Indian Ocean near Australia. The closest large city to it is Perth

20
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but nonzero angular sensitivity 

Angular correlations  
of energy in GWs 
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Figure 9: Estimated LISA sensitivity to a given multipole ` of the SGWB, for multipoles

up to ` = 10. Even (odd) multipoles are shown with solid (dashed) lines. The sensitivity is

obtained by optimally summing over the LISA channels, see Eqs. (4.42) and (4.43).

The functions of frequency M , Q, D, control respectively the contributions of kinematic

e↵ects to the monopole, dipole, and quadrupole of GW energy density in the detector

frame. They read

M(f) =
�2

6
(8 + n⌦ (n⌦ � 6) + ↵⌦) , (4.46)

D(f) = � (4 � n⌦) , (4.47)

Q(f) = �2
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⌦

2
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↵⌦

2

◆
. (4.48)

In analogy with CMB literature, we introduce the SGWB spectral tilts

n⌦(f) =
d ln ⌦0

GW
(f)

d ln f
, (4.49)

↵⌦(f) =
d n⌦(f)

d ln f
. (4.50)
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Other features? Corba’ LS 24

Two sources of correlation

Φ Aμ
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Angular correlations  
of energy in GWs 
with scalar CMB  
perturbations?

for ⇠ & 3 and in the regime P⇣,S ⌧ P⇣,V. In the regime of large ⇠, where P⇣,S � P⇣,V, f equil
NL

converges to a value of the order of 104, which exceeds by a O(103) factor the constraints from
Planck. This limits severely the value ⇠CMB taken by ⇠ when Cosmic Microwave Background
scales are leaving the horizon, leading to ⇠CMB . 2.5 [33, 34].

The excited modes of the vector field are also a source of gravitational waves. To leading
order, production of gravitational waves via this process is described by the equation

H 00
ij(q, ⌧) + q2Hij(q, ⌧)�

2

⌧2
Hij(q, ⌧)

=
H ⌧

MP

Z
dp

(2⇡)3/2
�
A0

i(p, ⌧)A
0
j(q� p, ⌧)� Fik(p, ⌧)Fjk(q� p, ⌧)

�
, (2.24)

where Fij(p, ⌧) ⌘ ipiAj(p, ⌧)� ipjAi(p, ⌧). As a consequence of the functional dependence
of A+ on k ⌧ and on ⇠, the electric field is stronger than the magnetic field by a factor ⇠ ⇠ & 1.
For this reason we will neglect the term Fik(p, ⌧)Fjk(q�p, ⌧) in eq. (2.24). Using again the
Green’s function (2.20) we eventually obtain

Hij,S(q, ⌧) ⌘

Z
d⌧ 0Gq(⌧, ⌧

0)
H ⌧ 0

MP

Z
dp

(2⇡)3/2
A0

i(p, ⌧
0)A0

j(q� p, ⌧ 0) . (2.25)

The resulting power spectrum for the tensor modes reads [5]

Ph = Ph,V + Ph, S '
2H2

⇡2M2
P

+ 8.7⇥ 10�8 H
4

M4
P

e4⇡⇠

⇠6
. (2.26)

It is worth stressing that the sourced component of the gravitational waves is almost fully
chiral, as a consequence of the fact that only the + helicity of the gauge field is excited. While
this fact can lead to a rich and interesting phenomenology, we will not be concerned with it
here.

The constraint on the parameter ⇠ coming from the limits on nongaussianities implies
that Ph,V � Ph, S. This constraint, however, holds only for the value ⇠CMB taken by ⇠ when
CMB scales left the horizon. The quantity ⇠ is slowly evolving, typically increasing, during
inflation. Since the sourced component of the gravitational wave spectrum has an exponential
dependence on ⇠, it is possible that at later times Ph,V is actually overwhelmed by Ph, S. We
will denote by ⇠INT > ⇠CMB the value taken by ⇠ at this later stage, where the subscript INT

refers to the fact that we are thinking of frequencies probed by gravitational interferometers.
In particular, this leads to the possibility that gravitational waves sourced by the vector
field have such large amplitude to be directly detectable by current or future gravitational
detectors [6].

In the next section we will describe two mechanisms that induce correlation between the
curvature perturbation and the gravitational waves produced in axion inflation.

3 The correlator between scalar fluctuations and gravitational waves

We define the normalized correlator of scalar fluctuations and gravitational waves as

C⌦⇣(k, t0) ⌘
1

⌦INT
GW

q
PCMB
⇣

k3

2⇡2

Z
dy e�iky

h⌦GW (x+ y, t0) ⇣(x, t0)i

=
1

⌦INT
GW

q
PCMB
⇣

k3

2⇡2
h⌦GW (k, t0) ⇣(�k, t0)i

0 , (3.1)
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Assuming �̇0 > 0, V 0 < 0, we have
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where we have defined as usual the slow-roll parameters as

✏ =
M2

P

2

V 02

V 2
, ⌘ = M2

P

V 00

V
. (3.8)

The correlator therefore becomes

(C⌦⇣)V = �

p
P⇣

12H2
0 ⌦

INT
GW

Z
dp

p3
⇠ (2✏� ⌘) T̂ (p)2 Ph, S(p) . (3.9)

To proceed we note that, since typically the amplitude of the induced tensor modes in-
creases as inflation progresses, the integral in eq. (3.5) is dominated by the largest frequencies,
that are typically close to those probed by the interferometers. For those wavelengths, that
re-entered the horizon well into the radiation dominated regime, we have

T̂ (p)2 Ph, S(p)

12H2
0 ⌦

INT
GW

=
Ph, S(p)

Ph, S(pINT)
. (3.10)

Using again the fact that the integral in eq. (3.5) is dominated by values of p of the order of
pINT, we can estimate

(C⌦⇣)V ' �4⇡ ⇠�N⇤ (2✏� ⌘)
p
P⇣ , (3.11)

where both ⇠ and the slow-roll parameters ✏ and ⌘ are evaluated at the time when the scales
probed by interferometers have left the horizon. In eq. (3.11) the parameter �N⇤ accounts for
the number of efoldings during which the tensor power spectrum is approximately constant.
Numerical simulations indicate that this is the case in the strong backreaction regime, which
usually lasts �N⇤ ' 10 ÷ 30 efoldings. At this stage the parameter ⇠ takes values that are
typically of the order of 5 ÷ 10. The quantity (2✏ � ⌘) has to be smaller than unity and
is typically of the order of 10�2

÷ 10�1. So by putting everything together we obtain that
(C⌦⇣)V is typically of the order of 10�4

÷ 10�2.

3.2 Correlation with sourced scalar fluctuations

In order to calculate the correlator between the sourced scalar and tensor fluctuations, that we
denote as (C⌦⇣)S, we use eqs. (2.4), (2.19) and (2.25) to find hhab, S(k1, ⌧)hab, S(k2, ⌧) ⇣S(k3, ⌧)i
in terms of the canonically normalized perturbations as
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+(q3, ⌧3)A+(|k3 � q3|, ⌧3)i ,

(3.12)
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Angular anisotropies  
in ΩGW

Two sources of correlation

Φ Aμ
hμν

δΦ

Φ+δΦ Aμ +δAμ hμν+δhμν

Dominant
3 The correlator of the gravitational wave energy densities

The normalized correlator of the gravitational wave energy densities is defined as

C⌦⌦(k) =
1

⌦ 2
GW

k3

2⇡2

Z
dy e�iky

h⌦GW (x+ y, t0)⌦GW (x, t0)i

=
1

⌦ 2
GW

k3

2⇡2
h⌦GW (k, t0)⌦GW (�k, t0)i

0 , (3.1)

where t0 is the present value of the cosmic time, ⌦GW '
⌦0

rad
24 Ph(kINT) with ⌦0

rad ' 8.2⇥10�5

is the fractional energy in gravitational waves at interferometer frequencies [6] and h. . . i0

represents the correlator stripped of the Dirac delta. Considering the explicit expression
⌦GW (k, t0) =

1
12H2

0

R
dp

(2⇡)3/2
|k�p| p hab(k�p, t0)hab(p, t0) for the gravitational wave energy

density, and defining ⌦ = 12H2
0 ⌦GW , the correlator becomes

C⌦⌦(k) =
1

⌦2

k3

2⇡2

Z
dp1 dp2

(2⇡)3
|k� p1| p1 |k+ p2| p2

⇥ hhab(k� p1, t0)hab(p1, t0)hcd(�k� p2, t0)hcd(p2, t0)i
0 . (3.2)

The current gravitational wave amplitude is related to its primordial value, calculated at the
time te when inflation ends, through the transfer function: hab(k, t0) = T (k)hab(k, te). For
simplicity, from now on we will write hab(k, te) simply as hab(k), with the understanding
that it refers to the value the tensor mode takes at the end of inflation. If we further define
T̂ (k) = k T (k), we can eventually express the correlator as

C⌦⌦(k) =
1

⌦2

k3

2⇡2

Z
dp1 dp2

(2⇡)3
T̂ (k1) T̂ (k2) T̂ (k3) T̂ (k4) hhab(k1)hab(k2)hcd(k3)hcd(k4)i

0 ,

(3.3)

with k1 = k� p1, k2 = p1, k3 = �k� p2 and k4 = p2. The integration must be performed
in the regime of large momenta, i.e. p � keq, where keq is the scale that reentered the
horizon at matter-radiation equality [6], since these are the momenta to which gravitational
wave detectors are sensitive. For these modes, which exited the horizon towards the end of
inflation and reentered during radiation domination, the transfer function takes the form

T̂ (k) = T̂r =
3H0

q
⌦0
rad

4
p
2

. (3.4)

In the following, when we explicitly evaluate the integrals in the large-momentum regime,
we will denote the corresponding correlator with the subscript l.m.. Finally, since we are
interested in large scales, the momentum k at which we evaluate the correlator is very small
compared to the momenta over which we integrate, and is of the order of the scalar large-scale
perturbation scale, i.e. k ⇠ kCMB.

4 Sourced correlator

For the normalized sourced correlator eq. (3.1) takes the form

C
S
⌦⌦(k) =

1

⌦ 2
GW,S

k3

2⇡2

Z
dy e�iky

h⌦GW,S(x+ y, t0)⌦GW,S(x, t0)i , (4.1)
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For large momenta, we use the parametrization (4.18) for the ⇠ functions in the expo-
nents, while in the denominators we approximate them as simply ⇠BR. The transfer function
takes the form (3.4), and we simplify the integral by neglecting the contribution of the small
k, wherever it appears. The scale-invariant correlator then takes the form

�
C
S.I.
⌦⌦ (k)

�
l.m.

=
H8 �(7)4 e8⇡ ⇠BR T̂ 4

r

⌦2
S 3

4 234M8
P
(2⇡)12 ⇠12

BR

 
2⇡

d⇠

d�0

�̇0

H

!2

P⇣,V ⇥ IS.I. , (4.27)

with the integral IS.I. given in (C.3). Using P⇣,V ' 2 ⇥ 10�9 and equations (3.4), (4.2) and
(4.3), we eventually obtain the correlator

�
C
S.I.
⌦⌦ (k)

�
l.m.

'
9.8⇥ 10�5

�2

 
2⇡

d⇠

d�0

�̇0

H

!2

. (4.28)

Considering (2.34) and the fact that the parameter � takes values in the interval 0.06 ÷ 0.2,
the sourced scale-invariant extrinsic correlator is found to lie within the range

�
C
S.I.
⌦⌦ (k)

�
l.m.

' 2.4⇥ 10�5
÷ 2.4⇥ 10�1 . (4.29)

This result will constitute the only relevant component of the sourced correlator, as it is
many orders of magnitude larger than the intrinsic correlator, studied in Subsection 4.1, and
all other contributions to the extrinsic correlator, which we present for completeness in the
next Subsection.

4.2.2 Extrinsic correlator: Terms C
E
⌦⌦,1(k), C

E
⌦⌦,2(k), C

E
⌦⌦,3(k)

0

In order to find all the other terms contributing to the extrinsic correlator, which we antici-
pated to be very small and unobservable, we start by expanding the terms C in (4.22) using
eqs. (4.13), (4.17) and (A.3). Using again the transfer function (3.4) and the parametrization
(4.18) we find

�
C
E
⌦⌦,1(k)

�
l.m.

=
k3H8 �(7)4 e8⇡ ⇠BR T̂ 4

r P⇣,V

⌦2
S 3

4 236M8
P
(2⇡)12 ⇠12

BR

 
2⇡

d⇠

d�0

�̇0

H

!2

⇥ IE,1 ' 5.5⇥ 10�1

✓
k

kBR

◆3

,

(4.30)

�
C
E
⌦⌦,2(k)

�
l.m.

=
k3H8 �(7)4 e8⇡ ⇠BR T̂ 4

r P⇣,V

⌦2
S 3

4 236M8
P
(2⇡)12 ⇠12

BR

 
2⇡

d⇠

d�0

�̇0

H

!2

⇥ IE,2 ' 4.9⇥ 10�1

✓
k

kBR

◆3

,

(4.31)

�
C
E
⌦⌦,3(k)

0�
l.m.

=
k3H8 �(7)4 e8⇡ ⇠BR T̂ 4

r P⇣,V

⌦2
S 3

4 234M8
P
(2⇡)12 ⇠12

BR

 
2⇡

d⇠

d�0

�̇0

H

!2

⇥ IE,3 ' 1.7

✓
k

kBR

◆3

, (4.32)

where in the final expressions we have used (2.34), (4.2), (4.3) and the integrals IE,1, IE,2
and IE,3 evaluated, respectively, in (C.6), (C.9), (C.13). These correlators are all very small
because of the presence of (k/kBR)3, as in the case of the intrinsic correlator.
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Figure 5. Scalar and tensor signals for a linear inflation potential. The solid lines show the signal
if N = 6 gauge fields are amplified. For comparison, the dashed lines show the signal when 1 gauge
field is amplified.

potential at all values of �, and the corresponding scalar and GW spectra at small scales.
We see that the relatively mild change of the potential results in very di↵erent signal for the
modes that exit the horizon at those scales, due to the exponential sensitivity of the gauge
field amplification to the parameter ⇠.

We see that the potential (3.7) can indeed result in a visible signal at LISA scales,
without violating bounds from PBH. Many other examples can be constructed. For instance,
in the next section we discuss how a localized event of gauge field amplification can be
obtained in a two field model.

3.2.2 Dependence on the number of gauge fields

Let us assume that N > 1 vector fields are amplified by the L = �
�

4f FiF̃i interaction
(i = 1, . . . , N ). For simplicity, we assume that all the fields have the same coupling to the
inflaton, as for instance will happen if the vectors are the di↵erent components of a non-
abelian group. This has several consequences: (i) an increased backcreaction, that will slow
the motion of the inflaton more than in the N = 1 case; (ii) an increased GW source: as the
di↵erent gauge fields are statistically uncorrelated with each other, the GW power spectrum
- for any given value of ⇠ - increases by N with respect to the case of a single vector field; 16

(iii) an analogous increase / N taking place for the power spectrum scalar perturbations,
schematically, for ⇣ /

PN
i=1

~Ei ·
~Bi, we have

h⇣⇣i /

X

i,j

D⇣
~Ei ·

~Bi

⌘⇣
~Ej ·

~Bj

⌘E
=

X

i

⌧⇣
~Ei ·

~Bi

⌘2
�

= N

⌧⇣
~E1 ·

~B1

⌘2
�

, (3.8)

(namely, the di↵erent sources are statistically uncorrelated, resulting in an N enhancement
with respect to the case of a single gauge field); this is contrasted by the fact that also the
second term in (3.5) increases by N . Therefore, as we can observe from (3.6), the scalar
power spectrum has a N enhancement in the ⇠ >

⇠ 1 regime, when � ' 1, while a 1/N
suppression [70] in the ⇠ � 1 regime, when the second term dominates in �. Therefore, in
the ⇠ � 1 regime, the ratio between the GW and the scalar power spectra scales as N 2. It is
reasonable to expect that even mild values of N can lead to an observable GW signal, while
respecting the PBH bound.

This is confirmed by Fig. 5, where the solid (dashed) lines show the scalar and tensor
power spectra generated if N = 6 (1) gauge fields are amplified. When comparing the solid

16For any given model and coupling, this does not imply a growth of the GW power spectrum by N , due
to the increase backreaction on the background.
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Strong backreaction regime:
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Strong backreaction
Exponentially large occupation numbers for vectors

backreaction becomes quickly important:



Strong backreaction

NOTE: strong backreaction happens quite generally 

towards the end  of inflation 


in phenomenologically interesting models

IMPORTANT 

that we understand it well!



Strong backreaction

Looking more carefully into the backreacted equations…

with
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FIG. 1: Evolution of the inflaton as a function of the number of e-foldings to the end of inflation, starting from |�CMB | =
�9.9Mp, with (red solid line) and without (green dashed line) the coupling to gauge fields. For the first line, the strength of
the inflaton-gauge field coupling is chosen so to lead to observable non-Gaussianity from inverse decay. For the second line, we
have shifted the number of e-foldings to make manifest that the two evolutions coincide at early times.

We obtained |�CMB | ' 9.9Mp ; this is smaller than the value (|�CMB | ' 10.9Mp) leading to 60 e-foldings of
inflation without gauge production, confirming that the backreaction of the produced quanta increases the amount of
inflation.

In figure 1 we show the evolution of the inflaton field as a function of the number of e-foldings to the end of inflation
for ⇠CMB = 2.5 (red solid curve) and for ⇠ = 0 (green dashed line), i.e the standard slow-roll case. The backreaction of
the produced quanta on the background evolution becomes noticible during the last ⇠ 25 e-foldings of inflation, while
it is negligible at earlier times. The two trajectories reach � = 0 at di↵erent times, showing that the backreaction
increases the duration of inflation by about 10 e-foldings.
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FIG. 2: Left panel: Friction terms in the equation of motion for �. Right panel: relative strength of the energy density of the
produced quanta; this term is neglected in the numerical evolution of the background equations.

This change in behavior during the last ⇠ 25 e-foldings of inflation is also visible in the left panel of figure 2, where
we show the evolution of the two friction terms in the inflaton equation as a function of the number of e-foldings
to the end of inflation. The standard Hubble friction controls the earliest stages, but the system gradually evolves
towards a regime in which the backreaction of the produced gauge quanta dominates the evolution. Namely, the
system approaches the strong backreaction regime studied in [32]. Let us stress that in the our case the observable

…an equation for φ only? 

Backreaction 

in action

Increases 

during inflation

Barnaby Pajer Peloso 11
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Strong backreaction

Cannot use single equation local in time, need numerics!
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(neglecting inflation gradients and non-amplified helicity of gauge field)

But remember
<latexit sha1_base64="WFZ0yB1NHr3bjIffim5X6nFSviA=">AAACRHicbVBdS8MwFE39nPOr6qMvwSEoyGj9fhHGRPBxgpvCOkeapltYmpYkFUbpj/PFH+Cbv8AXHxTxVcy6KnPzQsjJOedyb44bMSqVZT0bU9Mzs3PzhYXi4tLyyqq5tt6QYSwwqeOQheLWRZIwykldUcXIbSQIClxGbtze+UC/uSdC0pBfq35EWgHqcOpTjJSm2mbTYYh3GIGJ4/rwInWwF6oMV1NHZNIZdChXP4ad7O6lu6POXxI6e97dQf5qmyWrbGUFJ4GdgxLIq9Y2nxwvxHFAuMIMSdm0rUi1EiQUxYykRSeWJEK4hzqkqSFHAZGtJAshhdua8aAfCn30uhk72pGgQMp+4GpngFRXjmsD8j+tGSv/tJVQHsWKcDwc5McMqhAOEoUeFQQr1tcAYUH1rhB3kUBY6dyLOgR7/MuToLFfto/LR1eHpUo1j6MANsEW2AE2OAEVcAlqoA4weAAv4A28G4/Gq/FhfA6tU0beswH+lPH1DU+NsGk=</latexit>

hE ·Bi =
Z

E(k) ·B(k) d3k

where E(k, t) and B(k, t) depend on E(k, t’<t),  B(k, t’<t) 



Strong backreaction

Numerical result with uniform inflaton  
and one helicity of photon only
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Figure 6: Top: 1/f = 20. Bottom: 1/f = 25. The left panels show the numerical results of ⇢EB and h ~E ~Bi (solid lines)

compared to their analytical estimate (13), (14) (dashed lines). The vertical lines refer to the end of inflation in absence

of backreaction (black line) and for the full numerical analysis (red line). The right panels show the oscillatory behaviour

of the ⇠ parameter (solid black line) compared to its analytical result coming from the solution of the inflaton equation

of motion when the gauge field backreaction is given by (13) (dashed red line). For better visibility, we display only the

last ⇠ 20 e-folds of inflation.

The results of our analysis for 1/f = {20, 25} are shown in Fig. 6 where we compare the final

solution for h ~E ~Bi and ⇢EB = h
E

2+B
2

2 i with the analytical estimate of Eqs. (13) and (14). We also

plot the ⇠ parameter which shows that the oscillatory behaviour of the inflaton speed becomes more

apparent in case of strong backreaction.6 We see that the numerical solution including the backreaction

oscillates around the analytical estimate, with an oscillation period of �N⇠ ⇠ 3, in accordance with

our estimate in Sec. 3. For f = 1/25 the value of �
0 temporarily changes sign (at N ' 62). The reason

for this is the delay in gauge friction term discussed in Sec. 3. As |�
0
| drops, the gauge friction drops

and the opposite sign of �
0 (encoded by �) entails the opposite sign for the gauge friction term as one

would expect of a friction term. However, since the gauge friction term is dominated by modes which

are controlled by the value of �
0 some �N⇠ e-folds earlier, the sign change in the gauge friction term

is delayed, allowing �
0 to temporarily change sign.

Our results are in accordance with those previously found in Refs. [25–27], which reported oscilla-

tory features in the inflaton velocity with a period of 3� 5 e-folds. All these studies are based on fully

6At the maxima of these oscillations, the value of ⇠ exceeds the threshold ⇠ ' 4.7 bounding the perturbative regime

for approximately constant ⇠ [36, 37]. This threshold cannot be immediately applied to a strongly oscillating ⇠ and we

will comment on perturbativity constraints in more detail in Sec. 5.

13

Domcke, Guidetti, Welling, Westphal 20

?!?!!?



Strong backreaction

Where is this coming from?
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Strong backreaction

So…. why oscillations?

Baby example: try to solve 

Di↵erential equations with nonlocal terms
(Dated: January 22, 2024)

Contents

Start from a very simple one:

f
0
(t) = f(t+ q) . (1)

It is convenient to transform the shift in variable t+ q into a multiplicative factor. So let me define a new variable

y = e
t
=) t = log y , (2)

Then my equation becomes, with
d
dt =

dy
dt

d
dy = y

d
dy ,

y
d f(log y)

dy
= f(log(y) + q) = f(log(e

q
y)) , (3)

so that if I define g(y) ⌘ f(log y), I get

y g
0
(y) = g(e

q
y) . (4)

Now I look for a solution g(y) = Ay
↵
, and my equation becomes

A↵ y
↵
= A (e

q
y)

↵
(5)

that is indeed solved by any A provided ↵ = e
q ↵

.

In fact, going back to my original equation, I see that f(t) = Ae
↵t
, with ↵ = e

q ↵
, is the most general solution:

f
0
(t) = A↵ e

↵t
= f(t+ 1) = Ae

↵(t+q)
! (6)

What are the roots of ↵ = e
q ↵

? There is a couple of real ones for q small enough.

In fact if I compute the derivative of the function H(↵) = e
q ↵ � ↵, I get that it has an extremum at q e

q ↵
= 1, so

↵ = � 1
q log q, where H(� 1

q log q) =
1
q +

1
q log q =

1
q (1 + log q) which is below 0 for log q < �1, i.e., 0 < q < e

�1
. In

this case, since H(0) = 1 and H(↵ ! +1) ! +1, there are at least two real roots, let us call them ↵1 and ↵2

Since the equation is linear, any function

f(t) = A1 e
↵1t +A2 e

↵2t (7)

with arbitrary A1, 2 is a solution. So this is not a Cauchy problem! (Of course, in the limit q ! 0, I recover the

Cauchy solution, since in that limit ↵1 ! 0 and ↵2 ! 1.

Are there complex ↵s?

Let me write ↵ = ↵R + i↵I . Then my equation becomes

e
q ↵R+i q ↵I = e

q ↵R (cos(q ↵I) + i sin(q ↵I)) = ↵R + i↵I (8)

So I can separate the equation into

e
q ↵R cos(q ↵I) = ↵R ,

e
q ↵R sin(q ↵I) = ↵I , (9)

so that the second is solved by e
q ↵R =

↵I
sin(q ↵I)

and I get the first equation as

↵I

sin(q ↵I)
cos(q ↵I) = ↵R =

1

q
log

✓
↵I

sin(q ↵I)

◆
(10)

which I can try to solve numerically! But let me just consider the function

I(x) =
x

sin(q x)
cos(q x)� 1

q
log

✓
x

sin(q x)

◆
(11)

as x ! 0 this goes to I(x ! 0) =
1
q (1 + log(q)) while at q x !

�
⇡
2

��
it diverges to �1, so for 1 + log(q) > 0 I am

guaranteed at least one complex root.

 ,  with q real
solution f(t)=ea t, where a must satisfy a=ea q

Equation has two real roots a1, a2 for q<e-1

Looking for complex a=aR+i aI…

Infinite solutions!  
(with q aI≃π/2+n π at large n)
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!
but most importantly:
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Analytical study for small perturbations around φ(t)=Φ(t)…

where…

with the RHS computed assuming H, Φ(t)=const. 
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Figure 6: Top: 1/f = 20. Bottom: 1/f = 25. The left panels show the numerical results of ⇢EB and h ~E ~Bi (solid lines)

compared to their analytical estimate (13), (14) (dashed lines). The vertical lines refer to the end of inflation in absence

of backreaction (black line) and for the full numerical analysis (red line). The right panels show the oscillatory behaviour

of the ⇠ parameter (solid black line) compared to its analytical result coming from the solution of the inflaton equation

of motion when the gauge field backreaction is given by (13) (dashed red line). For better visibility, we display only the

last ⇠ 20 e-folds of inflation.

The results of our analysis for 1/f = {20, 25} are shown in Fig. 6 where we compare the final

solution for h ~E ~Bi and ⇢EB = h
E

2+B
2

2 i with the analytical estimate of Eqs. (13) and (14). We also

plot the ⇠ parameter which shows that the oscillatory behaviour of the inflaton speed becomes more

apparent in case of strong backreaction.6 We see that the numerical solution including the backreaction

oscillates around the analytical estimate, with an oscillation period of �N⇠ ⇠ 3, in accordance with

our estimate in Sec. 3. For f = 1/25 the value of �
0 temporarily changes sign (at N ' 62). The reason

for this is the delay in gauge friction term discussed in Sec. 3. As |�
0
| drops, the gauge friction drops

and the opposite sign of �
0 (encoded by �) entails the opposite sign for the gauge friction term as one

would expect of a friction term. However, since the gauge friction term is dominated by modes which

are controlled by the value of �
0 some �N⇠ e-folds earlier, the sign change in the gauge friction term

is delayed, allowing �
0 to temporarily change sign.

Our results are in accordance with those previously found in Refs. [25–27], which reported oscilla-

tory features in the inflaton velocity with a period of 3� 5 e-folds. All these studies are based on fully

6At the maxima of these oscillations, the value of ⇠ exceeds the threshold ⇠ ' 4.7 bounding the perturbative regime

for approximately constant ⇠ [36, 37]. This threshold cannot be immediately applied to a strongly oscillating ⇠ and we

will comment on perturbativity constraints in more detail in Sec. 5.
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Peloso, LS 223 Linearized system of perturbations

We now study analytically small departures from the AS solutions of the system (2.4). To
this goal, we decompose the inflaton and the gauge modes into the AS ones (those obtained
in the previous section) plus small perturbations,

� = �̄+ �� , A = Ā+ �A , (3.1)

and we solve the system (2.4) to first order in �� and �A. This procedure is not a complete
perturbative study on the stability of the AS solution, since we disregard metric perturbations
and spatial inhomogeneities of the inflaton. Nonetheless it captures the cases studied in the
works [12–16], where the stability was studied numerically also assuming a homogeneous
inflaton and no metric perturbations. It is hard to imagine that the inclusion of these two
ingredients can make the AS solution stable, if an instability will emerge from the present
analysis. In fact, the instability observed in [12–16] persists also in the lattice analysis of [17]
which does include spatial fluctuations in the inflaton.

At first order in the perturbations (3.1), the system (2.4) reads

��00 + 2aH��0 + a
2
V

00
�� = � ↵

fa2

Z
d
3
k

(2⇡)3
k

2

@

@⌧

⇥
Ā �A

⇤ + Ā
⇤
�A

⇤
,

�A
00 +

✓
k
2 � k �̄0

f

◆
�A =

↵ Ā

f
��0

, (3.2)

where we note that we are also disregarding perturbations of H. As done in the previous
section, we first formally solve the second equation for the gauge field modes as a functional
of the inflaton derivative. This can be done via the Green function method, resulting in

�A (⌧, k) =
↵ k

f

Z
⌧

d⌧
0
Gk

�
⌧, ⌧

0�
Ā
�
⌧
0
, k

�
��0 �

⌧
0�

, (3.3)

where the Green function Gk (⌧, ⌧ 0) is introduced and computed in Subsection 3.1. We then
insert this formal solution into the first of eqs. (3.2), that in this way becomes an integro-
di↵erential equation for the inflaton and its time derivatives

��00 + 2aH��0 + a
2
V

00
�� =� ↵

2

f2a2

Z
⌧

d⌧
0
��

�
⌧
0�

⇥ @

@⌧

Z
d
3
k

(2⇡)3
k
2

2

⇥
G

⇤
k

�
⌧, ⌧

0�
Ā (⌧) Ā⇤ �

⌧
0�+ c.c.

⇤
. (3.4)

In Subsection 3.2 we then work out the source term, and we obtain approximate ana-
lytical solutions for this equation.

3.1 Green function

Eq. (3.3) follows from eq. (3.2), with the Green function satisfying

@
2

@⌧2
+ k

2 � ↵ k�0

f

�
Gk

�
⌧, ⌧

0� = �
�
⌧ � ⌧

0�
, (3.5)

where � denotes the Dirac ��function. If Ā1,2 are two solutions of the associated homogeneous
equation, it is immediate to see that the combination

Gk

�
⌧, ⌧

0� = Ā1 (⌧) Ā2 (⌧ 0)� Ā1 (⌧ 0) Ā2 (⌧)

Ā
0
1 (⌧

0) Ā2 (⌧ 0)� Ā1 (⌧ 0) Ā0
2 (⌧

0)
✓
�
⌧ � ⌧

0�
, (3.6)
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writing

look for solution

Always at least one root with α complex

and Re[α]<-0!

Strong backreaction



Strong backreaction

Inflationary gravitational waves for LIGO (LISA…)?

PR(k) =
H2

⇥2 M2
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◆
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 ξ increases during inflation


large amplitude at short 

(interferometer) scales

How does this change with 
more realistic ξ(t)?



Garcia-Bellido, Papageorgiou, Peloso, LS 23

Need numerical solution of background
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Figure 1. Plot of the five branch potential defined in (4.1). The red vertical lines denote the field
value sixty e-folds before the end of inflation, and at the end of inflation respectively. The black
dashed lines denote the transition points between the various branches. The parameters in this
example are �̃0 = 57, �̃1 = 112, �̃2 = 186, �̃3 = 221, �̃4 = 317, c1 = 9.48 · 10�4, c2 = 2.39 · 10�6, c3 =
9.05 · 10�9, c4 = 3.97 · 10�11 and the two straight line slopes are c5 = 4.95 · 10�3 and c6 = 3.68 · 10�4,
respectively.

backreaction regime.

The first panel shows an early moment in time while the backreaction is negligible. The
evolution of the backreaction spectrum is relatively straightforward during the stage of negli-
gible backreaction, with the term dominated by the modes that have become unstable in the
moments immediately before the one shown, and that are therefore close to the cut-o↵. The
outmost left vertical solid (green) line corresponds to the horizon scale, k̃ = eNH̃ (N), while
the other vertical solid (red) line, k̃ = k̃thr (N), separates the unstable from the stable modes.
These lines monotonically move to the right in this stage, analogously to the dashed vertical
line k̃ = k̃reg (N), that indicates the upper limit of the modes included in the backreaction.
This dashed line is defined as the greatest value ever assumed by the second solid (red) line,
and therefore the two lines coincide as long as the second solid (red) line is moving mono-
tonically to the right. We recall that modes between the dashed and the dotted vertical line,
k̃ = k̃vac (N), are evolved by the code, but are not included in the backreaction, as these are
still vacuum modes that need to be renormalized away. Finally, the gray, horizontal, dashed
line is a visual reference point that denotes the value one in the vertical axis, to indicate
when backreaction becomes important.

The second and third panel are both taken at N ' 30. The backreaction term is now
dominant, as shown by the fact that the backreaction spectra have reached the horizontal
dashed line. We see from Figure 2 that at this moment the inflaton is experiencing a maximum
of its speed for the third time. These three times have created three peaks in the gauge field
spectrum, that in turn create the three peaks in the backreaction term that are visible in the
two panels. We notice from the second panel that the backreaction has started to decrease
the inflaton speed from this third maximum. This is testified by the fact that the vertical
red line (corresponding to the value of ⇠ / �̇ at the moment shown) has moved to the left of
the vertical dashed line (corresponding to the maximum value tht ⇠ / �̇ has ever attained

– 14 –
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Figure 2. The two upper panels display, respectively, the evolution of the Hubble rate H and the
Hubble slow-roll parameter ✏H for the model example described in the main text. The bottom panel
displays the evolution of the parameter ⇠ / �̇/H controlling the gauge field amplification. In all
panels, the black solid lines take properly into account the backreaction of the produced gauge fields,
while the black dashed lines show the evolution that would take place in the same potential if the
backreaction were incorrectly disregarded. The evolution is shown as a function of the number of
e-folds N ⌘ ln a, where the scale factor a is normalized to 1 at the start.

up to that moment).

The third panel corresponds to a moment �N = 0.1 subsequent to the second one.
The backreaction spectrum is nearly unchanged, but the red line has disappeared from the
figure. This is due to the fact that the backreaction actually causes the inflaton speed to
momentarily become negative for a very narrow interval of times around the one shown.
The backreaction term can indeed dominate and overwhelm the equation of motion of the
inflaton, practically eliminating its kinetic energy and in certain cases reversing its motion
for brief instances (this has previously been noticed by the numerical analyses [17, 20, 21]).

Lastly, the fourth panel corresponds to a late time in which the backreaction has again
become negligible. The backreaction spectrum exhibits a series of peaks corresponding to
number of times in which �̇ reached a maximum during its evolution. This is again a stage

of standard slow roll inflation, with ⇠ / �̇

H
monotonically increasing, as witnessed by the

superposition of the two red and dashed vertical lines.

We note that the di↵erent panels show a di↵erent range of momenta. We also note that,
at any fixed comoving momentum, the backreaction term decreases at late times (once the
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Example for steep-ish potential @ intermediate times 

Strong backreaction



Flashes of gravitational waves from axion inflation
Garcia-Bellido, Papageorgiou, Peloso, LS 23

Example for steep-ish potential @ intermediate times 

•Peaks! 
•Parity violation! 
•PTAs! 
•LISA!

Strong backreaction



But, lattice studies show that oscillations do not last
Caravano, Komatsu, Lozanov, Weller 22

Figueroa et al  23, 24

Sharma Brandenburg Subramanian Vikman 25

(see also Caravano Peloso 24)

Inflaton gradients 

appear to 


be large and to affect 

the dynamics


a lot! 

Only one oscillation 


or so in ξ
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FIG. 9. The energy components normalised to the total energy density, for the couplings ↵⇤ = 12, 14 and 18, representative,
respectively, of the weak, mild and strong backreaction regimes. Colours represent di↵erent components: black for potential,
red for kinetic, blue for gradients, and purple for electromagnetic. The solid vertical lines corresponds to the end of inflation
in each case. The dash-dotted line for ↵⇤ = 14 corresponds to the re-entering into the inflationary period.

↵⇤
�Nbr

linear (77) power-law (78) linear (79) power-law (80)

20 6.21±0.07 6.03+0.61
�0.57 5.9±0.1 5.85+0.45

�0.45

22.5 8.46±0.09 8.04+0.90
�0.83 7.9±0.2 8.88+0.81

�0.77

25 10.7±0.1 10.0+1.21
�1.08 9.9±0.2 12.06+1.20

�1.12

30 15.2±0.2 13.9+1.80
�1.67 13.8±0.3 18.75+2.11

�1.94

35 19.7±0.2 17.6+2.53
�2.16 17.8±0.4 25.76+3.15

�2.84

TABLE II. Estimated amount of extra e-folds in inflation
for selected couplings, obtained by extrapolating the fits of
Eq. (77)-(80).

suspect that the linear growth may slow down, mean-
ing that our extrapolations in Table II could be viewed
as upper bounds on the inflation extension for the given
couplings. Investigating this in detail requires however
larger computational resources than our present capabil-
ities.

The separation between di↵erent regimes and, in par-
ticular, the return to inflation during mild-backreaction
after N = 0, can be qualitatively understood by
analysing the inflationary parameter ✏H in terms of en-
ergy density components,

✏H = � Ḣ

H2
= 1 +

2⇢K � ⇢V + ⇢EM

⇢tot
. (81)

In Fig. 9 we show the evolution of di↵erent energy con-
tributions for couplings representative of each regime,
↵⇤ = 12, 14 and 18, which correspond (from left to right
in the figure), to the weak, mild and strong coupling
regimes, respectively. More specifically, we plot the evo-
lution of di↵erent energy densities with respect the total
one, where ⇢K/⇢tot is depicted in red, ⇢V/⇢tot in black,
⇢G/⇢tot in blue and ⇢EM/⇢tot in purple. The vertical grey

solid lines in each panel indicate the point where ✏H = 1,
signalling the end of inflation for each coupling.

In the left panel of Fig. 9, we see that in the weak
coupling regime the e↵ect of the electromagnetic energy
density is almost negligible during inflation; in the ex-
ample, it only reaches a value ⇠ 2 orders of magnitude
smaller than the kinetic at N = 0. In fact, if the electro-
magnetic contribution is neglected in Eq. (81), we observe
that 2⇢K = ⇢V corresponds to the end of inflation, which
coincides with the observed behaviour in the figure and
with the end of standard slow-roll. In this regime the
inflaton’s dynamics remain barely a↵ected by the growth
of the gauge field and follows the backreactionless trajec-
tory during inflation. It is in the post-inflationary period,
for N > 0, where the weight of the gauge field increases
considerably and backreacts on the inflaton and back-
ground dynamics. Similarly, we observe that in the weak
coupling regime, the inflaton gradients are not relevant
during inflation, but as with the electromagnetic part,
they become relevant afterwards. In fact, we see how
both growths are completely correlated.

In the middle panel of Fig. 9, we observe that in the
mild coupling regime the electromagnetic energy density
weights in earlier in the dynamics than in the weak cou-
pling regime. As indicated in Fig. 7, this regime ex-
hibits an interesting feature where ✏H = 1 is reached at
N ⇡ 0, but due to backreaction e↵ects, there is after-
wards another additional inflationary period that lasts
approximately ⇠ 1 efold. Contrary to the weak regime,
where inflation ends solely as a consequence of the growth
of the axion kinetic energy, in this regime ⇢EM can-
not longer be neglected and ✏H = 1 is obtained when
⇢V = 2⇢K+⇢EM is satisfied. Subsequently, ⇢EM surpasses
⇢K, which decreases considerably and becomes compara-
ble to ⇢G, both contributing around 5% percent to the
total energy density around N = 0.5. From then on the
second most dominant contribution becomes ⇢EM (after
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in each case. The dash-dotted line for ↵⇤ = 14 corresponds to the re-entering into the inflationary period.
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TABLE II. Estimated amount of extra e-folds in inflation
for selected couplings, obtained by extrapolating the fits of
Eq. (77)-(80).

suspect that the linear growth may slow down, mean-
ing that our extrapolations in Table II could be viewed
as upper bounds on the inflation extension for the given
couplings. Investigating this in detail requires however
larger computational resources than our present capabil-
ities.

The separation between di↵erent regimes and, in par-
ticular, the return to inflation during mild-backreaction
after N = 0, can be qualitatively understood by
analysing the inflationary parameter ✏H in terms of en-
ergy density components,

✏H = � Ḣ

H2
= 1 +

2⇢K � ⇢V + ⇢EM
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. (81)

In Fig. 9 we show the evolution of di↵erent energy con-
tributions for couplings representative of each regime,
↵⇤ = 12, 14 and 18, which correspond (from left to right
in the figure), to the weak, mild and strong coupling
regimes, respectively. More specifically, we plot the evo-
lution of di↵erent energy densities with respect the total
one, where ⇢K/⇢tot is depicted in red, ⇢V/⇢tot in black,
⇢G/⇢tot in blue and ⇢EM/⇢tot in purple. The vertical grey

solid lines in each panel indicate the point where ✏H = 1,
signalling the end of inflation for each coupling.

In the left panel of Fig. 9, we see that in the weak
coupling regime the e↵ect of the electromagnetic energy
density is almost negligible during inflation; in the ex-
ample, it only reaches a value ⇠ 2 orders of magnitude
smaller than the kinetic at N = 0. In fact, if the electro-
magnetic contribution is neglected in Eq. (81), we observe
that 2⇢K = ⇢V corresponds to the end of inflation, which
coincides with the observed behaviour in the figure and
with the end of standard slow-roll. In this regime the
inflaton’s dynamics remain barely a↵ected by the growth
of the gauge field and follows the backreactionless trajec-
tory during inflation. It is in the post-inflationary period,
for N > 0, where the weight of the gauge field increases
considerably and backreacts on the inflaton and back-
ground dynamics. Similarly, we observe that in the weak
coupling regime, the inflaton gradients are not relevant
during inflation, but as with the electromagnetic part,
they become relevant afterwards. In fact, we see how
both growths are completely correlated.

In the middle panel of Fig. 9, we observe that in the
mild coupling regime the electromagnetic energy density
weights in earlier in the dynamics than in the weak cou-
pling regime. As indicated in Fig. 7, this regime ex-
hibits an interesting feature where ✏H = 1 is reached at
N ⇡ 0, but due to backreaction e↵ects, there is after-
wards another additional inflationary period that lasts
approximately ⇠ 1 efold. Contrary to the weak regime,
where inflation ends solely as a consequence of the growth
of the axion kinetic energy, in this regime ⇢EM can-
not longer be neglected and ✏H = 1 is obtained when
⇢V = 2⇢K+⇢EM is satisfied. Subsequently, ⇢EM surpasses
⇢K, which decreases considerably and becomes compara-
ble to ⇢G, both contributing around 5% percent to the
total energy density around N = 0.5. From then on the
second most dominant contribution becomes ⇢EM (after
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FIG. 9. The energy components normalised to the total energy density, for the couplings ↵⇤ = 12, 14 and 18, representative,
respectively, of the weak, mild and strong backreaction regimes. Colours represent di↵erent components: black for potential,
red for kinetic, blue for gradients, and purple for electromagnetic. The solid vertical lines corresponds to the end of inflation
in each case. The dash-dotted line for ↵⇤ = 14 corresponds to the re-entering into the inflationary period.

↵⇤
�Nbr

linear (77) power-law (78) linear (79) power-law (80)

20 6.21±0.07 6.03+0.61
�0.57 5.9±0.1 5.85+0.45

�0.45

22.5 8.46±0.09 8.04+0.90
�0.83 7.9±0.2 8.88+0.81

�0.77

25 10.7±0.1 10.0+1.21
�1.08 9.9±0.2 12.06+1.20

�1.12

30 15.2±0.2 13.9+1.80
�1.67 13.8±0.3 18.75+2.11

�1.94

35 19.7±0.2 17.6+2.53
�2.16 17.8±0.4 25.76+3.15

�2.84

TABLE II. Estimated amount of extra e-folds in inflation
for selected couplings, obtained by extrapolating the fits of
Eq. (77)-(80).

suspect that the linear growth may slow down, mean-
ing that our extrapolations in Table II could be viewed
as upper bounds on the inflation extension for the given
couplings. Investigating this in detail requires however
larger computational resources than our present capabil-
ities.

The separation between di↵erent regimes and, in par-
ticular, the return to inflation during mild-backreaction
after N = 0, can be qualitatively understood by
analysing the inflationary parameter ✏H in terms of en-
ergy density components,

✏H = � Ḣ

H2
= 1 +

2⇢K � ⇢V + ⇢EM

⇢tot
. (81)

In Fig. 9 we show the evolution of di↵erent energy con-
tributions for couplings representative of each regime,
↵⇤ = 12, 14 and 18, which correspond (from left to right
in the figure), to the weak, mild and strong coupling
regimes, respectively. More specifically, we plot the evo-
lution of di↵erent energy densities with respect the total
one, where ⇢K/⇢tot is depicted in red, ⇢V/⇢tot in black,
⇢G/⇢tot in blue and ⇢EM/⇢tot in purple. The vertical grey

solid lines in each panel indicate the point where ✏H = 1,
signalling the end of inflation for each coupling.

In the left panel of Fig. 9, we see that in the weak
coupling regime the e↵ect of the electromagnetic energy
density is almost negligible during inflation; in the ex-
ample, it only reaches a value ⇠ 2 orders of magnitude
smaller than the kinetic at N = 0. In fact, if the electro-
magnetic contribution is neglected in Eq. (81), we observe
that 2⇢K = ⇢V corresponds to the end of inflation, which
coincides with the observed behaviour in the figure and
with the end of standard slow-roll. In this regime the
inflaton’s dynamics remain barely a↵ected by the growth
of the gauge field and follows the backreactionless trajec-
tory during inflation. It is in the post-inflationary period,
for N > 0, where the weight of the gauge field increases
considerably and backreacts on the inflaton and back-
ground dynamics. Similarly, we observe that in the weak
coupling regime, the inflaton gradients are not relevant
during inflation, but as with the electromagnetic part,
they become relevant afterwards. In fact, we see how
both growths are completely correlated.

In the middle panel of Fig. 9, we observe that in the
mild coupling regime the electromagnetic energy density
weights in earlier in the dynamics than in the weak cou-
pling regime. As indicated in Fig. 7, this regime ex-
hibits an interesting feature where ✏H = 1 is reached at
N ⇡ 0, but due to backreaction e↵ects, there is after-
wards another additional inflationary period that lasts
approximately ⇠ 1 efold. Contrary to the weak regime,
where inflation ends solely as a consequence of the growth
of the axion kinetic energy, in this regime ⇢EM can-
not longer be neglected and ✏H = 1 is obtained when
⇢V = 2⇢K+⇢EM is satisfied. Subsequently, ⇢EM surpasses
⇢K, which decreases considerably and becomes compara-
ble to ⇢G, both contributing around 5% percent to the
total energy density around N = 0.5. From then on the
second most dominant contribution becomes ⇢EM (after
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Example for steep-ish potential @ intermediate times 
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•Parity violation! 
•PTAs! 
•LISA!

Not clear what happens here
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Too many gravitational waves from the end of inflation?
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Strong backreaction

3

TABLE I. The specific parameters chosen for each inflationary model under consideration. We report the e↵ective inflaton
mass, the simulation box length, the number of e-folds before the end of inflation we start the simulation, the Hubble rate at
the end of inflation He, the ratio of the lattice’s infrared cuto↵ to the comoving Hubble scale at the end of inflation, equal to
(2⇡/L)/He, and the energy scale at the end of inflation. In addition, we list the tilt of the scalar power spectrum ns and the
tensor-to-scalar ratio r, evaluated at a pivot scale which left the horizon 60 e-folds before inflation ended.

Model m�/Mpl Lm� N0 He/m� kIR/He 4
p
⇢e/Mpl ns r

Chaotic (n = 2) 6.16⇥ 10�6 15 �2 0.51 0.82 2.3⇥ 10�3 0.966 0.13
Starobinsky (v = 10Mpl/3) 1.06⇥ 10�5 20 �2 0.37 0.85 2.6⇥ 10�3 0.969 0.016
Monodromy (�c = Mpl/10) 4.66⇥ 10�5 50 �2 0.15 0.84 3.5⇥ 10�3 0.975 0.067
Hilltop (p = 4, v = 4Mpl) 3.06⇥ 10�6 20 �2 0.24 1.3 1.1⇥ 10�3 0.951 1.4⇥ 10�4

Hilltop (p = 4, v = 2Mpl) 1.60⇥ 10�6 20 �1 0.15 2.1 6.5⇥ 10�4 0.949 9.8⇥ 10�6

D-brane (p = 2, v = Mpl/2) 4.90⇥ 10�5 40 �1 0.073 2.1 2.5⇥ 10�3 0.975 2.2⇥ 10�3

for reliable simulations of larger couplings ↵/f than in
Ref. [38] using higher-resolution grids with 3843 points
and a time step of �⌧ = �x/10 [32]. For details on our
procedure for setting initial conditions, refer to Appendix
B of Ref. [32].

Changing the shape of a scalar field’s potential changes
its e↵ective mass m� (defined by m

2
� = @

2
V/@�

2 evalu-
ated at the minimum of the potential), which sets the
oscillation timescale for the axion background and deter-
mines the wave numbers of importance during preheating.
In particular, the ratio of the Hubble rate at the end of
inflation to the axion’s e↵ective mass di↵ers from model
to model, requiring di↵erent comoving box sizes L for
su�cient long-wavelength resolution (listed in Table I).

In Fig. 1 we study the relationship between gravita-
tional wave production and the e�ciency of preheating,
quantified by the maximum fraction of energy in the
gauge fields over the simulation. The top panel shows
that the relationship between preheating e�ciency and
the coupling ↵/f follows a similar trend regardless of
the inflationary potential (though this trend manifests at
di↵erent values of ↵/f for di↵erent models). The bottom
panel of Fig. 1 shows that (at su�ciently high coupling)
preheating in all models produces gravitational waves
that would be probed by CMB-S4, while models with
tensor-to-scalar ratios r & 10�2 are already limited by
Planck data [30].

While all models exhibit a similar relationship between
preheating e�ciency and gravitational wave production,
some models result in larger overall ⌦gw,0h

2. This dif-
ference is due in part to the di↵ering location of the
peak of the gravitational wave source relative to the
horizon. Because lower-scale inflationary models require
larger couplings ↵/f for preheating to be comparably
e�cient to high-scale models, gauge-field modes deeper
within the horizon are more strongly amplified relative
to those in higher-scale models [32]. Following a “rule
of thumb” for cosmological stochastic gravitational wave
backgrounds [77], the peak amplitude of a gravitational
wave signal is suppressed if its source is further inside the
horizon. Consulting Table I, we observe that models with
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FIG. 1. Preheating e�ciency, quantified by the maximum
⇢gauge/⇢ over the simulation (top panel), and the total frac-
tional energy in gravitational waves today, ⌦gw,0h

2 (bottom
panel), as functions of axion-gauge coupling ↵/f . Lines indicat-
ing �Ne↵ bounds on ⌦gw,0h

2 from Planck and CMB-S4 from
Ref. [30] are plotted in solid and dashed black, respectively,
while the region between CMB-S4’s 1� and 2� projections [31]
is shaded grey.

large tensor-to-scalar ratios (r & 10�2) preheat e�ciently
at lower coupling, and subsequently exhibit higher lev-
els of gravitational wave production. Since r measures
the energy scale of inflation, models with smaller r re-
quire larger coupling for complete preheating, resulting in
smaller ⌦gw even if preheating itself is equally e�cient.

These results demonstrate that for inflationary poten-
tials whose tensor-to-scalar ratios would be observable
by CMB-S4 experiments, the entire regime of e�cient

If axion inflation ends in a very strong backreaction regime,

then GW can be overproduced at the end of inflation,


violating constraints from NEff

chaotic inflation

(but, model dependence during reheating!)
Kyohei talk yesterday



…but, are there other ingredients in the model?
Strong backreaction
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If the gauge field is the SM photon in interaction with SM matter,

then thermalization!

Domcke, Ema, Mukaida, Sato 19
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Schwinger pair production!
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FIG. 2. The ratio of the EM energy density ⇢EB ⌘ ⇢E+⇢B and
the plasma energy density ⇢� to the total energy density ⇢tot
in the simulation box for runs with ↵mPl/f = 60. The black
solid curve corresponds to a case without the Schwinger e↵ect
and the black-dashed curve to a case with the Schwinger ef-
fect and massless fermions. The corresponding plasma energy
density ratio is shown in red-solid. The EM energy density ra-
tio for fermion masses m = 10�4, 10�2 mPl are shown in solid
orange and blue, respectively.

where VA =
p

B2/(⇢tot + p) is the Alfvén veloc-
ity. The lower bound on the present-day magnetic
field strength depends on the coherence length as
Bbound ⇡ 2⇥ 10�17 G(Lc|0/0.2Mpc)1/2 [56]. The results
of [37] show that even without the Schwinger suppression
for ↵mPl/f � 60 and a coherence length Lc|0 ' 10�1–
10�2 pc, the primordial magnetic field has an amplitude
B

ph
rms|0 ' 10�14–10�15G, which is marginally consistent

with the observational lower bound of Bbound ' 10�14 G
for this coherence length. When the Schwinger e↵ect is
taken into account, it suppresses Brms by at least two
orders of magnitude for large couplings, and reduces
the EM energy density by approximately four orders
of magnitude. As a result, the ratio Brms/

p
⇢tot in

(19) remains well below unity, e↵ectively ruling out
magnetogenesis from axion inflation. This is shown in
Figure 2 for ↵/f = 60mP. We see that even though
in the absence of the Schwinger e↵ect the entirety
of the energy density ends up in EM fields, once the
Schwinger e↵ect is considered the relativistic plasma
takes a maximum of O(10%) of the energy density with
the EM fields being much more suppressed. Therefore
the inflaton keeps dominating (until it perturbatively
decays to photons). The produced B field reaches a
higher value if a di↵erent prescription of the Schwinger
current is employed, where the di↵erential equation for
@⌧J is solved numerically instead of relying on Eq. (7) [57]

Heavy fermion e↵ects. So far, we have neglected the
e↵ects arising from finite fermion masses. From (7) it
follows that a significant suppression of the Schwinger ef-
fect requires ⇡m

2
a
2
> e|Q|E or m

2
/Eph & O(1), where

Eph is the amplitude of the physical electric field. We are
focusing on the era close to the end of inflation, where
B

2
ph ' E

2
ph ⇠ 3H2

m
2
Pl/8⇡, or Eph ⇠ 0.1HmPl. The

masses of Standard Model (SM) fermions are given by
m = yh, where y is the Yukawa coupling and h is the
Higgs VEV, which is expected to be nonzero during infla-
tion, if the Higgs is a light field subject to de-Sitter fluc-
tuations. Among the electrically charged fermions, the
electron has the smallest Yukawa coupling, ye ' 3⇥10�6,
making it the lightest. Thus, if electrons are too heavy to
be e�ciently produced via the Schwinger e↵ect, all other
charged fermions will be even more suppressed. To sup-
press the Schwinger e↵ect, the fermion mass must satisfy

m
2 & 0.1HmPl . (21)

Figure 2 shows how the presence of a large electron mass
suppresses the Schwinger current and allows for the gen-
eration of a larger magnetic field. However, the con-
straint (21) implies a lower bound on the Higgs VEV
h & (0.3/ye)

p
HmPl ' 105mPl

p
H/mPl. To avoid super-

Planckian values for the Higgs field, one requires a low
inflationary scale: H . 10�10

mPl ⇠ 109 GeV. This pro-
vides a key result: a suppression of the Schwinger e↵ect
through fermion masses requires both low-scale inflation
and large (possibly Planckian) field excursions for the
Higgs. If one relies solely on de Sitter fluctuations to gen-
erate a Higgs VEV, one expects h ⇠ H�

�1/4, which leads
to H/mPl & 1012

p
�. This requirement is di�cult to sat-

isfy given observational upper bounds on H, unless we
consider an almost vanishing Higgs self-coupling. How-
ever, alternative mechanisms such as a direct coupling
between the Higgs and the inflaton, or a non-minimal
coupling to gravity can dynamically induce a large Higgs
VEV during inflation.

These considerations point to an intriguing model-
building challenge: any realistic suppression of the
Schwinger e↵ect involving SM fermions may lead to
observable consequences at collider experiments through
a modification of the Higgs sector. Before concluding,
we must note that all simulations presented here refer
to high-scale inflation, H ⇠ 10�6

mPl, and thus need to
be re-done for di↵erent Hubble scales. In particular,
Figure 2 shows that the Schwinger e↵ect is still active if
we consider large fermion masses, albeit weaker. That
being said, reducing the scale of inflaton allows for a
large hierarchy between the Hubble scale and thus the
possible electric field values are reduced, whereas the
fermions can be equally heavy, if we take the Higgs VEV
close to the Planck mass during inflation. Therefore, a

No Schwinger effect

Schwinger effect, 

massless fermions
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a very small inflaton field excursion. This is in fact what makes the dynamics in question blind to

global profile of the potential.

The choice of the potential remains instead paramount5 to satisfy CMB bounds. It is indeed

the preference for a natural potential together with the need to recover the appropriate scalar

power spectrum (and tilt) at CMB scales that leads us to the choice of the pure natural inflation

framework. We will show how the strong backreaction dynamics has the same general features

uncovered in [67], and acts as a mechanism for scalar induced gravitational waves and, possibly,

also PBH production.

Equipped with the PNI potential, we couple the axion to an SU(2) gauge sector and study in

detail the essentially inevitable transition between weak and strong backreaction regime during

inflation. We uncover striking features in a gravitational wave spectrum including a three-peak

structure which is robust to significant changes in the parameters. A peak-like structure also

arises in the scalar power spectrum and we discuss under what conditions it supports significant

PBH production. For a fiducial set of parameters, we show how the GW signal is detectable by

LISA and identify smoking-gun signatures related to the chiral properties of the GW spectrum.

This paper is organized as follows. In Section 2 we give an overview of the various regimes of

CNI-like models paying particular attention to analytic results in the weak and strong backreaction

attractors. In Section 3 we specify the choice of the potential, making the model concrete. In

Section 4 we explore in detail the phenomenology of our setup and calculate the observables

corresponding to a set of representative fiducial parameters. Finally, in Section 5 we draw our

conclusions and comment on future work. The main text is supplemented by several appendices

that contain lengthy but important derivations omitted from the main body.

2 The various regimes of Chromo-Natural Inflation

As briefly outlined in the Introduction, the CNI model exhibits a rich and interesting structure

characterized by a weak and strong backreaction regime. We devote this section to presenting the

model and reviewing the basic features of each regime. An underlying assumption is the existence

of a non-zero homogeneous gauge field background6

Aa

0 = 0 , Aa

i = �ai a(t)Q(t) , (2.1)

where Q(t) is a time-dependent function regulating the strength of the gauge field background.

The action of our model takes the form

S =

Z
d4x

p
�g

"
M2

p

2
R�

1

2
(@�)2 � V (�)�

1

4
F a

µ⌫F
aµ⌫ +

��

4f
F a

µ⌫F̃
aµ⌫

#
. (2.2)

5It has indeed proven rather di�cult to identify minimal models satisfying CMB constraints while displaying
interesting, testable, signatures. This has lead to intense research activity in theories equipped with spectator
axion sectors (see e.g.[68–71] and [41, 49, 52, 66, 72–87]), a well-motivated possibility in the context of the so-called
string-axiverse [25, 88–94].

6The line element is given by ds
2 = �dt

2 + a(t)2d~x2 = a(⌧)2
�
�d⌧

2 + d~x
2
�
in physical and conformal time

respectively. Indexes a = 1, 2, 3 and i = 1, 2, 3 are defined in SU(2) and SO(3) spaces respectively while index 0 is
reserved for time.

– 4 –
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FIG. 2. In this figure, we show the late-time value of ' ob-
tained from exact numerical integration of the reduced system
as a function of (m �

p
2).

At late times, the leading piece of the first term comes
from g2[Ai, [Ai, 0]], and the leading piece of the second
term is (g�/f)(@i�X )[Aj , Ak]✏ijk; thus one finds

 i

0 =
�

gf
@i�X , (31)

leading to the relevant term in (28). The scalar curvature
perturbation that results is

R ⇡
H

⇢̄+ p̄
g 3 �

f

X̂

a
=

g 3

2H✏H

�

f

X̂

a
, (32)

where ✏H = �Ḣ/H2. The background has  3
'

�V,✓/(3g�H) and Ḣ ' V,✓ Ẋ/(6fH), where V,✓ is the
derivative of V w.r.t. ✓ = X/f , thus

R ⇡
�X

Ẋ/H
. (33)

Thus the axion is acting as the clock, as anticipated in
[1], and the perturbation analysis is simply finding the
magnitude of this perturbation. Note that the magni-
tude of the perturbation, �X , was naively estimated in [1]
to be O(H) as in usual single-clock inflationary models.
As the calculation sketched before shows, however, that
estimate was mistaken. As we can see from the discus-
sion preceding Eqn. 27, the multi-field scalar dynamics
play a large role in determining the final amplitude for
the axion perturbation; this is encoded in the function,
'(0), and an amplitude decay factor, ⇤. The upshot of
this, relative to usual inflationary result for scalars on de
Sitter, is that the magnitude of the �X perturbation is
reduced from H by a factor of ⇤, up to the increase due
to '(0). This decay in the amplitude of �X compensates
the reduction in the axion velocity by the same factor of
⇤ due to “magnetic drift”. Hence, in contrast with Ref.
[1], we do not need to invoke very low values of H to
produce acceptable curvature perturbations, even when
'(0) ⇠ 1.
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FIG. 3. Comparison of the tensor-to-scalar ratio, r, evalu-
ated at k = 0.002 h/Mpc and the spectral tilt, ns (evalu-
ated at k = 0.05 h/Mpc) for models drawn from a numerical
exploration of the g, f, µ,� parameter space with the corre-
sponding parameter constraints from Planck. The value for r
presented here includes the contributions from both gravita-
tional wave helicities and is computed numerically using the
gravitational wave mode functions. The open black circles
represent parameter combinations whose scalar power spec-
trum amplitudes are outside of the Planck error bars; blue
stars represent models with acceptable power spectrum am-
plitudes. The Planck one and two sigma contours are plotted
in red and pink, respectively. Note that the y-axis is logarith-
mic, and that in this model it is possible to have r > 1 due
to the chirally enhanced gravitational wave spectrum.

Putting it all together, we find that the scalar curva-
ture fluctuation is given by

R '
1

p
2k3

·
Hm '(0)
p
2(1 +m2

 
)

⇣�m V

�V,✓

⌘1/2
; (34)

(where in the reduced system, the scalar d.o.f.s are nor-
malized to unit amplitude in the far past). We use

✏H = �
Ḣ

H2
= �

(1 +m2
 
)V,✓

�m V
, (35)

⌘H = ✏H +
1

2

✏̇H
H✏H

= �
(m2

 
+ 1)V,✓✓

�m V,✓

�
(m2

 
� 1)V,✓

�m V
,

(recall ✓ ⌘ X/f) to write the curvature perturbation as

R '
1

p
2k3

·
H

p
2✏H

·
m '(0)

(1 +m2
 
)1/2

. (36)

Relative to the corresponding expressions for single-field
inflation, the slow-roll parameters (35) directly exhibit
the additional suppression of motion along the inflaton
potential by the coupling � to the gauge sector; and in the
perturbations, there is an additional enhancement from
'(0) when m is small enough. Di↵erentiating (36) with
respect to dN = �Hdt, one finds the spectral index

ns � 1 ' �2✏H + ⌘H + 2d log'(0)/dN . (37)

Ruled out ☹

…but can be revived if the rolling axion is not the inflaton!
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(and large chiral gravitational waves!)



To sum up…

Inflationary axion dynamics is well motivated and very rich


Motivates search in data!


