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What is the Schwinger effect?

Spontaneous creation of charged particle–antiparticle pairs from
vacuum in extreme electric fields.

Foundations:

Sauter (1931): tunneling picture
Heisenberg and Euler (1936): effective action approach
Schwinger (1951): full QED derivation

Requires near-critical field: Ec ∼ 1018 V/m

Credit: F. Gelis & N. Tanji, Prog. Part. Nucl. Phys. 87, 1 (2016).
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Schwinger pair production rate

In a constant electric field [Heisenberg & Euler’36, Weisskopf’36, Schwinger’51]

Γ

V
= g

(eE )2

8π3
exp

(
− πm2

|eE |
)
,

where g = 1 for scalars and g = 2 for spin-1/2 fermions.
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In a constant electric field [Heisenberg & Euler’36, Weisskopf’36, Schwinger’51]

Γ

V
= g

(eE )2

8π3
exp

(
− πm2

|eE |
)
,

where g = 1 for scalars and g = 2 for spin-1/2 fermions.

In collinear constant electric & magnetic fields [Schwinger’54, Nikishov’69]

Γ

V
= g

(eE )(eB)

8π2
f
(
π
B

E

)
exp

(
− πm2

|eE |
)
,

where

f (x) =

{
1/ sinh(x), for scalars;
coth(x), for spin-1/2 fermions.

O. Sobol (UniMS, TSNUK) Schwinger effect June 24, 2025 5 / 40



Schwinger pair production rate

In a constant electric field [Heisenberg & Euler’36, Weisskopf’36, Schwinger’51]

Γ

V
= g

(eE )2

8π3
exp

(
− πm2

|eE |
)
,

where g = 1 for scalars and g = 2 for spin-1/2 fermions.

In collinear constant electric & magnetic fields [Schwinger’54, Nikishov’69]

Γ

V
= g

(eE )(eB)

8π2
f
(
π
B

E

)
exp

(
− πm2

|eE |
)
,

where

f (x) =

{
1/ sinh(x), for scalars;
coth(x), for spin-1/2 fermions.

In non-collinear electric and magnetic fields — boost to the collinear
frame and compute Γ/V there.
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Induced current

Production of charged particles, which are than accelerated by the
electric field, generates electric current (t ≫ m/|eE |, 1/

√
|eE |):

∂t j = 2e × Γ

V
sign(eE ) = const.
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∂t j = 2e × Γ

V
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4π2
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π
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Production of charged particles, which are than accelerated by the
electric field, generates electric current (t ≫ m/|eE |, 1/

√
|eE |):

∂t j = 2e × Γ

V
sign(eE ) = const.

In collinear constant electric & magnetic fields [Warringa’12, Gavrilov’08]

j = g
e3EB

4π2
f
(
π
B

E

)
exp

(
− πm2

|eE |
)
sign(eE )× t,

where

f (x) =

{
1/ sinh(x), for scalars;
coth(x), for spin-1/2 fermions.

So, the current can grow indefinitely in time since new and new
pairs are constantly produced.
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Experimental observation of the Schwinger effect in QED

Still unobserved due to huge field strength
Future advanced laser systems approaching near-critical intensities
(boosted light in the UR electron’s reference frame, colliding PW
laser beams, light boosting by plasma mirrors) [Turcu et al.’19]:

Extreme Light Infrastructure (ELI), Romania — 10 PW
Station of Extreme Light (SEL), China — 100 PW

Dynamically assisted Schwinger effect: strong/slow + fast/weak
pulses [Schützhold et al.’08, Dunne et al.’09, Torgrimsson et al.’16]
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Other possibilities

Analogues in condensed-matter systems with Dirac spectrum:
graphene with Ec ∼ 107 V/m [Berdyugin et al.’22, Schmitt et al.’23]

Heavy-ion collisions:
QED effects (e−e+ production if total charge of nuclei exceeds the
critical one) [Gershtein & Zeldovich’70, Rafelski et al.’71]

QCD effects (parton fragmentation, qq̄ production by the
chromoelectric field) [Casher et al.’79, Kajantie et al.’85, Andersson et al.’83]

Astrophysics: near magnetars [Kim et al.’21], black holes [Treves&Turolla’99]

Early Universe: induced by primordial gauge fields
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Schwinger effect during inflation

 
 
 
 

Inflaton 
field 

FLRW spacetime 

[Starobinsky’80]

[Guth’81]

[Linde’82]

[Starobinsky’82]

[Albrecht’82]

[Linde’83]
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Schwinger effect during inflation
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Scalar perturbations: 
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Tensor perturbations: 
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Schwinger effect during inflation
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field 
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Scalar perturbations: 
• inflaton 
• metric 

 

Tensor perturbations: 
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PBHs 

Stochastic GW 
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structure 
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anisotropy 
Credit: O. Shmahalo, D. Harvey, R. Massey, H. Ebeling,J.-P. Kneib, Millenium Simulation Project, NASA, ESA, Planck Collaboration 
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Schwinger effect during inflation
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Schwinger effect during inflation
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Schwinger effect during inflation

Inflaton 
field 

Gauge 
fields 

kinetic/axial 
coupling 

production 
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Scalar perturbations: 
• inflaton
• metric
• gauge field

Tensor perturbations: 
• metric
• gauge field

PBHs 

Stochastic GW 
background Dark Matter Large-scale

structure 
CMB 

anisotropy 
Credit: O. Shmahalo, D. Harvey, R. Massey, H. Ebeling,J.-P. Kneib, Millenium Simulation Project, NASA, ESA, Planck Collaboration 

Magnetic fields 
in voids (?) 

Universe reheating 

Fermion production 

BAU 

Our aim:
To consistently
describe the
Schwinger pair
production and
its impact on
the evolution of
the gauge field.
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Schwinger effect in dS in a constant electric field

First-principles approach: exact solution for the quantum
scalar/fermion field in de Sitter with a classical constant electric field
[Kobayashi&Afshordi’14, Hayashinaka et al.’16, Bavarsad et al.’16, Stahl et al.’16]

Peculiarities in the weak-field regime |eE | ≪ H2:

Negative current for light
particles:

j ∝ e2E
[
ln

m2

H2
+(terms > 0)

]
This term may be absorbed
into the running of the gauge
coupling e(m) → e(H).
[Banyeres et al.’18]
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Schwinger effect in dS in a constant electric field

First-principles approach: exact solution for the quantum
scalar/fermion field in de Sitter with a classical constant electric field
[Kobayashi&Afshordi’14, Hayashinaka et al.’16, Bavarsad et al.’16, Stahl et al.’16]

Peculiarities in the weak-field regime |eE | ≪ H2:

Infrared hyperconductivity
for light scalars:

j ∝ 1/E , for m ≪ |eE |/H

This comes from the higgsing
of the gauge field

M2
A = e2⟨χ∗χ⟩ = 3e2

4π2

H4

m2 + (eE)2

H2
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Schwinger effect in dS in a constant electric field

First-principles approach: exact solution for the quantum
scalar/fermion field in de Sitter with a classical constant electric field
[Kobayashi&Afshordi’14, Hayashinaka et al.’16, Bavarsad et al.’16, Stahl et al.’16]

Peculiarities in the weak-field regime |eE | ≪ H2:

Terms, not suppressed
exponentially at large m:

j ∝ EH3/m2, E 3H/m4, . . .

Originate from nonlinear
corrections to Maxwell’s
action (Euler&Heisenberg)
[Banyeres et al.’18]. Do not
describe pair creation.
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Schwinger effect in dS in a constant electric field

First-principles approach: exact solution for the quantum
scalar/fermion field in de Sitter with a classical constant electric field
[Kobayashi&Afshordi’14, Hayashinaka et al.’16, Bavarsad et al.’16, Stahl et al.’16]

Familiar features in the strong-field regime |eE | ≫ H2:

Exponential suppression:

j ∝ exp
(
− πm2

|eE |
)

Similar behavior to the case
of Minkowski spacetime.
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Induced current in the strong-field regime

Constant electric field in Minkowski spacetime
[Warringa’12, Gavrilov et al.’08]

j = g
e3E 2

4π3
exp

(
− πm2

|eE |
)
sign(eE )× t

Collinear electric and magnetic fields in Minkowski spacetime
[Warringa’12, Gavrilov et al.’08]

j = g
e3EB

4π2
f
(
π
B

E

)
exp

(
− πm2

|eE |
)
sign(eE )× t
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Induced current in the strong-field regime

Constant electric field in de Sitter spacetime
[Kobayashi&Afshordi’14, Hayashinaka et al.’16, Bavarsad et al.’16, Stahl et al.’16]

j = g
e3E 2

4π3
exp

(
− πm2

|eE |
)
sign(eE )× 1

3H

Collinear electric and magnetic fields in de Sitter spacetime
[Bavarsad et al.’18, Domcke et al.’18, Domcke et al.’20]

j = g
e3EB

4π2
f
(
π
B

E

)
exp

(
− πm2

|eE |
)
sign(eE )× 1

3H

Produced particles only inside the Hubble horizon contribute to the
current.
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Question:

How to maintain the constant electric
and magnetic fields during inflation?
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Axion inflation

For successful slow-roll inflation we need the inflaton potential to be
sufficiently flat. However, the radiative corrections may break this
flatness and spoil inflation.

This usually happens unless the flatness of the potential is protected
by a shift symmetry ϕ → ϕ+ const.
E.g., natural inflation model [Freese et al., PRL 65 (1990)]

Interaction terms with matter fields should also be shift-symmetric.
The simplest choice for the gauge field is [Garretson et al., PRD 46 (1992)]

SGF =

∫
d4x

√−g

[
−1

4
FµνF

µν − β

4
ϕFµν F̃

µν

]
.

Such scalar field ϕ is often called axion (or axion-like field).
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Gauge-field generation during axion inflation

S =

∫
d4x

√−g
[1
2
∂µϕ∂µϕ− V (ϕ)︸ ︷︷ ︸

pseudoscalar

inflaton

− 1

4
FµνF

µν︸ ︷︷ ︸
free

gauge field

− β

4MP
ϕFµν F̃

µν︸ ︷︷ ︸
axion coupling

of GF to inflaton

+ Lch(Aν , χ)︸ ︷︷ ︸
charged field

(Schwinger eff.)

]

W/o the Schwinger effect, EoM for the
mode function with circular polarization
λ = ±

A′′
λ(η, k) + [k2 − λkI ′η]Aλ(η, k) = 0.

Only one of the two polarizations is
amplified. Therefore, the generated MF
will be helical! H ∼

∫
k3(|A+|2−|A−|2)dk ̸= 0.
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Equations of motion

S =

∫
d4x

√−g
[1
2
∂µϕ∂µϕ− V (ϕ)︸ ︷︷ ︸

pseudoscalar

inflaton

− 1

4
FµνF

µν︸ ︷︷ ︸
free

gauge field

− β

4MP
ϕFµν F̃

µν︸ ︷︷ ︸
axion coupling

of GF to inflaton

+ Lch(Aν , χ)︸ ︷︷ ︸
charged field

(Schwinger eff.)

]

Equations of motion:

Friedmann eq.: H2 =
1

3M2
P

[1
2
ϕ̇2 + V (ϕ) +

1

2

〈
E 2 + B2

〉
+ ρχ

]
Klein-Gordon eq.: ϕ̈+ 3Hϕ̇+ V ′(ϕ) =

β

MP
⟨E · B⟩

Maxwell equations:

Ė + 2HE − 1

a
rotB +

β

MP
ϕ̇B + j = 0,

Ḃ + 2HB +
1

a
rotE = 0, divE = 0, divB = 0.

Eq. for charged particles: ρ̇χ + 4Hρχ = j · E .
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Question:

How to incorporate the current

j =
|e|3
6π2

|B|E
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)

into EoM’s for axion inflation?
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Schwinger induced current: different representations

1) Electric picture:

j = σEE , σE =
|e|3
6π2

|B|
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)
;
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2) Magnetic picture:

j = σBB, σB =
|e|3
6π2
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H
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Schwinger induced current: different representations

1) Electric picture:

j = σEE , σE =
|e|3
6π2

|B|
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)
;

2) Magnetic picture:

j = σBB, σB =
|e|3
6π2

|E |
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)
sign (EB) ;

3) Mixed picture:

j = σEE + σBB =
|e|3
6π2

|B|E
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)
.
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Schwinger induced current: different representations

1) Electric picture:

j = σEE , σE =
|e|3
6π2

|B|
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)
;

2) Magnetic picture:

j = σBB, σB =
|e|3
6π2

|E |
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)
sign (EB) ;

3) Mixed picture:

j = σEE + σBB =
|e|3
6π2

|B|E
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)
.

No difference at the classical level and for collinear electric and magnetic
fields.
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Questions:

1 What is the expression if the electric and magnetic fields are not
collinear?

2 How to incorporate this classical current into the Maxwell equation
for the quantum gauge field?
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Schwinger induced current: different representations

Typical approach: current is linear in gauge-field operators with
conductivities being classical functions (depend on mean fields). Then,
three pictures appear to be inequivalent!
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Schwinger induced current: different representations

Typical approach: current is linear in gauge-field operators with
conductivities being classical functions (depend on mean fields). Then,
three pictures appear to be inequivalent!

1) Electric picture [Kobayashi, JHEP 10 (2014); Gorbar, PRD 104 (2021)]:

ĵ = σE Ê , σE =
|e|3
6π2

|B|
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)
;

2) Magnetic picture [Domcke, JHEP 11 (2018); JHEP 02 (2020)]:

ĵ = σBB̂, σB =
|e|3
6π2

|E |
H

coth
(π|B|

|E |
)
exp

(
− πm2

|eE |
)
sign (EB) ;

3) Mixed picture [von Eckardstein, JHEP 02 (2025)]:

ĵ = σE Ê + σBB̂ σE , σB − ?
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Schwinger induced current: vector decomposition 

𝑬𝑬 
𝑩𝑩 

Lab frame 
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Schwinger induced current: vector decomposition 

𝑬𝑬 
𝑩𝑩 

𝑩𝑩′ 𝑬𝑬′ 

𝒋𝒋 𝒋𝒋′ = 𝒋𝒋 

boost 

𝒗𝒗 = 𝜅𝜅[𝑬𝑬 × 𝑩𝑩] 
𝒗𝒗 ⊥ 𝒋𝒋 

Lab frame Collinear frame 

ĵ = σE Ê + σBB̂

σE =

[ |e|3
6π2

|B ′|
H

coth
(π|B ′|

|E ′|
)
exp

(
− πm2

|eE ′|
)]

γ(1− κB2) ;

σB =

[ |e|3
6π2

|B ′|
H

coth
(π|B ′|

|E ′|
)
exp

(
− πm2

|eE ′|
)]

γκE · B .
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Question:

Does the Schwinger suppression of the gauge-field
Fourier modes depend on their momentum scale?
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Relevant scales

1) Tachyonic instability scale:

kh(t) = max
t′≤t

(
max
k

k : Ω2(k, t ′) < 0
)
.

Maximal momentum of the Fourier mode which undergoes (or underwent
in the past) tachyonic instability: A′′

k +Ω2(k , t)Ak = 0, Ω2 < 0.
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kh(t) = max
t′≤t

(
max
k

k : Ω2(k, t ′) < 0
)
.

Maximal momentum of the Fourier mode which undergoes (or underwent
in the past) tachyonic instability: A′′

k +Ω2(k , t)Ak = 0, Ω2 < 0.
2) Pair-creation scale:

kS(t) = a(t)
√
|eE ′(t)|

Modes with wavelengths much shorter than λS ∼ 1/kS cannot feel the
presence of a conducting medium.
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Relevant scales

1) Tachyonic instability scale:

kh(t) = max
t′≤t

(
max
k

k : Ω2(k, t ′) < 0
)
.

Maximal momentum of the Fourier mode which undergoes (or underwent
in the past) tachyonic instability: A′′

k +Ω2(k , t)Ak = 0, Ω2 < 0.
2) Pair-creation scale:

kS(t) = a(t)
√
|eE ′(t)|

Modes with wavelengths much shorter than λS ∼ 1/kS cannot feel the
presence of a conducting medium.
3) Curvature (Hubble) scale:

kH(t) = a(t)H(t)

If kS ≪ kH , i.e., |eE ′| ≪ H2, the Schwinger pair production is not
effective, but also irrelevant for the gauge-field evolution.
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Scale-dependent damping

One must track the evolution of all relevant scales and “turn on” the
Schwinger conductivities in the right moments of time (depending on the
momentum).
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Gradient-expansion formalism

[Gorbar, Schmitz, OS, Vilchinskii, PRD 104 (2021); PRD 105 (2022)]

We introduce an infinite set of quantities:

E(n) =
1

an
⟨E · rotnE ⟩ , G(n) = − 1

an
⟨E · rotnB⟩ , B(n) =

1

an
⟨B · rotnB⟩ .

They satisfy the following chain of equations (ξ ≡ βϕ̇/(2HMp)):

Ė(n) + (n + 4)H E(n) − 4Hξ G(n) + 2G(n+1) = [Ė(n)]b,

Ġ(n) + (n + 4)H G(n) − E(n+1) + B(n+1) − 2Hξ B(n) = [Ġ(n)]b,

Ḃ(n) + (n + 4)H B(n) − 2G(n+1) = [Ḃ(n)]b.
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Gradient-expansion formalism

[Gorbar, Schmitz, OS, Vilchinskii, PRD 104 (2021); PRD 105 (2022)]

We introduce an infinite set of quantities:

E(n) =
1

an
⟨E · rotnE ⟩ , G(n) = − 1

an
⟨E · rotnB⟩ , B(n) =

1

an
⟨B · rotnB⟩ .

They satisfy the following chain of equations (ξ ≡ βϕ̇/(2HMp)):

Ė(n) + [(n + 4)H+2σE ] E(n) − [4Hξ+2σB ]G(n) + 2G(n+1) = [Ė(n)]b,

Ġ(n) + [(n + 4)H+σE ]G(n) − E(n+1) + B(n+1) − [2Hξ+σB ]B(n) = [Ġ(n)]b,

Ḃ(n) + (n + 4)H B(n) − 2G(n+1) = [Ḃ(n)]b.

Thus, we trade an infinite number of Fourier-modes for an infinite set
of scalar functions in the coordinate space – what’s the gain?

The chain can be truncated!
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Boundary terms

Any function X (n) has the following spectral decomposition:

X =

∫ kh(t)

0

dk

k

dX

d ln k
.

There are two sources of time dependence:

The spectral density depends of Aλ(k, t) and its derivatives.

The upper integration limit kh(t) is time dependent!
E.g., w/o Schwinger effect, kh(t) = 2a(t)H(t)|ξ(t)|.

Boundary terms describe the latter time dependence, i.e., they take into
account the fact that the number of physically relevant modes grows
in time during inflation.

(Ẋ )b =
dX

d ln k

∣∣∣∣
k=kh

· d ln kh
dt

.

They are expressed in terms of Whittaker functions.
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Impact of the Schwinger effect: general idea

0.95

0.9

A benchmark model for numerical analysis:

V (ϕ) =
m2ϕ2

2
, I (ϕ) = β

ϕ

Mp
, β – free parameter.

The backreaction becomes important for the large value of
axion–vector coupling β ∼ 15− 25.

The Schwinger effect suppresses the produced gauge field by a few
orders of magnitude and lifts the backreaction!
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A comment on the backreaction regime
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Lattice simulations by [Figueroa et al., arXiv:2303.17436].
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Comparison of different approaches: old vs new

“Old” approach: j = σEE (electric), damping of all gauge-field modes.
“New” approach: j = σEE + σBB (mixed), damping only for k ≤ kS(t).
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Comparison of different approaches: three pictures
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Comparison of different types of scale-dependence
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Tensor perturbations induced by a U(1) gauge field

Transverse-traceless perturbations on top of the FLRW metric:

ds2 = a2(η){dη2 − [δij + hTTij (η, x)]dx idx j}.

The gauge field introduces anisotropic stresses

T i
j = −pδij − Σi

j , p =
1

6
(E 2 + B2), Σij = −(EiEj + BiBj).

The Einstein equations imply the following EoM for tensor
perturbations:

( ∂2

∂η2
+ 2

a′

a

∂

∂η
−∇2

)
hTTij (η, x) = −2

a2

M2
P

(EiEj + BiBj)
TT .

Thus, the gauge field may source primordial gravitational waves!
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Tensor power spectrum and GW abundance

For the mode of perturbations with momentum k and polarization λ:( d2

dη2
+ 2

a′

a

d

dη
+ k2

)
hλ(η, k) = −2

a2

M2
P

Πij
λ(k)(EiEj + BiBj)

TT .

Two statistically independent contributions in the power spectrum:

vacuum Pvac
T ,λ(η, k) =

k2

π2 |hvacλ (η, k)|2;
induced:

P ind
T ,λ(η, k) =

k3

2π2M4
P

∫
d3p
(2π)3

∑
α,β=±1

∣∣∣1 + λα
k · p
kp

∣∣∣2∣∣∣1 + λα
(k − p) · p
|k − p|p

∣∣∣2

×

∣∣∣∣∣
η∫

−∞

dη′Gk(η, η
′)

a2(η′)

[
A′

α(p, η
′)A′

β(|k − p|, η′) + αβp|k − p|Aα(p, η
′)Aβ(|k − p|, η′)

]∣∣∣∣∣
2

.

GW spectrum (frequency f = k/2πa0):

ΩGW(f ) =
π2f 2

3H2
0

|TGW(f )|2PT (k, ηk) = Ωvac
GW(f ) + Ωind

GW(f ).
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Numerical results for GW spectra (preliminary)

“Sterile” GF (no SE):
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With the Schwinger effect:
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Open question

What about GW’s induced by the charged particles?

Energy density of the produced particles is greater than the
gauge-field energy density at the end of inflation: is it the same for
the anisotropic stress?

Can one effectively represent Σch. part.
ij in terms of the gauge field (the

same idea as with the electric current)?

How to compute Σch. part.
ij from the first principles?

To be continued...
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Question:

How can the Schwinger effect be described
if the growth of the gauge field is not adiabatically slow?

Let us consider the case where the magnetic field is subdominant and only
the electric field is important (e.g., in the dilatonic coupling model

L = −(1/4)f 2(ϕ)FµνF
µν
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[Gorbar, Momot, OS, Vilchinskii (2019)]

Kinetic approach

Boltzmann kinetic equation:

∂F
∂t

+eE
∂F
∂p∥

−Hp
∂F
∂p

= S[F ]+C[F ]

Schwinger source term (constructed
phenomenologically):

S[F ]=(1±2F)
√

|eE | exp
[
−π

p2 +m2

|eE (t)|

]
Collision integral (τ -approximation):

C[F ] = −1

τ

(
F − F (eq)

)
The induced current:

j = 2g

∫
d3p
(2π)3

[
p∥
ϵp

F + ϵp
S[F ]

eE (t)

]
.

Hydrodynamical approach

EoM for the number density

dn

dt
+ 3Hn = 2gΓ−

n − n(eq)
τ

,

the energy density

dρ

dt
+ 4Hρ = eE (jcond + jpol),

and the induced current

djcond
dt

+

(
3H +

1

τ

)
jcond = eE

n2 − j2cond
ρ

Advantages: ODEs, simplicity.

Disadvantages: approximate
truncation rule, does not take into
account quantum statistics.
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Schwinger source from the first principles

The kinetic approach can be improved by deriving the Schwinger
source from the first principles using QFT methods. [OS et al.’20]

The mode function of a charged scalar field (whose particles are
generated by the Schwinger effect) satisfies EoM

χ̈k(t) + Ω2
k(t)χk(t) = 0, Ω2

k(t) = m2 +
(k − eA(t))2

a2
− H2

4
− Ḣ

2
.

This is the equation of an oscillator with variable frequency.

Using the formalism of Bogolyubov coefficients, we can find the
equation for the distribution function of produced particles:[

∂

∂t
+ (eE − Hp)

∂

∂p

]
F(t,p) = Q(t,p)G(t,p),

where Q(t,p) = Ω̇/Ω, and the source G(t,p) can be determined
from another two kinetic equations.
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Physical implications

β=6
ρE

ρχ

ρtot
eeff j||

a (arb. units)
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ρ
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4

In a variable electric field, the current has a non-Markovian
character and is not described by Ohm’s law.

A qualitatively new effect is that the current is retarded w.r.t. the
electric field, which leads to oscillatory behavior of both quantities
(fig. on the left).

The energy density of the generated charged particles can constitute a
significant fraction of the total energy density – Schwinger
reheating (fig. on the right).
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Comparison of different approaches

β=6
Kinetic

OhmicHydro

120 130 140 150 160 170
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4

The Schwinger current in Ohmic
form (local in time), j = σ(E ) · E –
leads to a fast damping of the
electric field (green curve).

Hydrodynamical approach: predicts oscillatory behavior of the electric
field (blue curve), but does not take into account the effects of
quantum statistics (underestimates the current for scalars).

Kinetic approach: the Schwinger source is nonlocal in time and
momentum space; takes into account the effects of quantum statistics
and the expansion of the universe (red curve). The current is
retarded w.r.t. the electric field, oscillatory behavior of both
quantities.

Note, that such a treatment for the axion inflation is still missing!
O. Sobol (UniMS, TSNUK) Schwinger effect June 24, 2025 39 / 40



Conclusions

1 The Schwinger effect is a strong-field QED
phenomenon of great interest.

2 Although it has not been observed in lab, it may
be important for the physics of the early Universe.

3 In axion inflation with Abelian gauge fields, the
Schwinger effect is extremely efficient, suppressing
gauge-field production to a large extent.

4 A proper description in an evolving inflationary
background is still missing.

5 Further directions of study:

dynamics of created particles;
induced scalar and tensor perturbations;
thermalization of particles;
chiral asymmetry production and evolution;
...
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Thank you very much for your attention!

Peace to all of us!
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