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Work in progress:

• Dark matter abundance

Pamela anomaly from WIMP annihilation : σann ∼ 100× standard

→ too little DM relic abundance in standard cosmology

• Gravitino problem

Graviton more coupled to matter for A (φ) > 1.

Likely, same for gravitinos; gravitino problem worsened

Likely, analogous problem from SUSY partner of φ

Aµ = Bµ +
1

H
∂µ φ

gauge ∂µBT
µ = 0

λ
(

AµAµ − v2
)

Nonminimal coupling AµAµ R

• Higer curvature terms
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• Vector field, ⟨Az⟩ ≠ 0

Potential term V (AµAµ)
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For illustrative purposes, consider δAµ only

(same divergency when δgµν also included)

δAµ = (δ0, ∂xδ + v1, ∂yδ + v2, δ3)

δ3 = 0 due to lagrange multiplier; v⃗ decouples
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Computation in Himmetoglu et al ’09. Here, Stückelberg procedure:
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Moral: All the above above models introduce an “e↵ective mass term”

with “ wrong sign”, to sustain the vector field during inflation (anisotropic

inflation, magnetogenesis). U(1) invariance due to the V (A) term

generates a longitudinal mode, which, for the wrong sign, is a ghost.

Cure: search for models with unbroken U(1)
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Electric $ magnetic duality?? What does mean?

• n = ±4 produces scale-invariant and constant perturbations.

Each mode leaves the horizon with energy H
4, and then frozen.

• “Random walk” addition of the modes that have left the horizon

They add up to a classical homogeneous background. In scalar
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Here the background is a vector that points somewhere in space
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Planck Collaboration: Constraints on Inflation

Fig. 7. Marginalized joint two-dimensional 68 % and 95 % CL regions for combinations of (✏1 , ✏2 , ✏3) (upper panels) and (✏V , ⌘V , ⇠2V )
(lower panels) for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK15 (blue
contours).

0.94 0.96 0.98 1.00

Primordial tilt (ns)

0.
00

0.
05

0.
10

0.
15

0.
20

T
en
so
r-
to
-s
ca
la
r
ra
ti
o
(r

0
.0
0
2
)

Convex

Concave

TT,TE,EE+lowE+lensing

TT,TE,EE+lowE+lensing
+BK15

TT,TE,EE+lowE+lensing
+BK15+BAO

Natural inflation

Hilltop quartic model

� attractors

Power-law inflation

R2 inflation

V � �2

V � �4/3

V � �

V � �2/3

Low scale SB SUSY
N�=50

N�=60

Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK15 or BK15+BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized joint
68 % and 95 % CL regions assume dns/d ln k = 0.

data we use the full constraining power of Planck, i.e., Planck
TT,TE,EE+lowE+lensing, in combination with BK15.

The ��2 and the Bayesian evidence values for a selec-
tion of inflationary models with respect to the R2 model
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Figure 1. Contour plot of the potential as a function of the rescaled fields �̃ (horizontal direction)
and  ̃ (vertical direction). Due to the di↵erent rescaling for the 2�fields, the potential exhibits
comparable curvature in both directions. However, for |↵| ⌧ 1, the field  is significantly heavier
than �, and the evolution proceeds along trajectories where @V

@ ̃
= 0

under A ! A + 2⇡ , B ! B + 2⇡, we can divide the
n
�̃,  ̃

o
plane in an infinite number of

equivalent domains.
In Figure 1 we show one such domain, delimited by the lines A = 0, �2⇡ and B = 0, 2⇡.

The domain has the origin, with
n
�̃,  ̃

o
coordinates

O : {0, 0} , (2.13)

in one of its corners (the other three corners are three equivalent minima of the potential).
The central part of the domain is occupied by the maximum

M : ⇡

(
1

rf
+ rf ,

r
3
f
r⇤ � rf

1 + r
4
f
r⇤

)
. (2.14)

Finally, each of the four sides contains a saddle point, with equivalent saddle points on
opposite sides. We denote by SA and SB, respectively, the saddle point on the A = 0 and on
the B = 0 line. These points are marked in Figure 1, and they have coordinates

SA = ⇡

(
1

rf
,

r
3
f
r⇤

1 + r
4
f
r⇤

)
, SB = ⇡

(
rf , �

rf

1 + r
4
f
r⇤

)
. (2.15)

Without loss of generality, we can restrict the initial conditions for the fields to be in
this domain. Moreover - again due to the symmetry properties of the potential - we can
restrict the initial conditions to be along the valley that ends on O, or (when it exists) along
a valley that starts from one of the two saddle points SA,B. Such valleys are shown in Figure
2 and are studied in Section 3. Any other valley in the potential can be mapped to one of
these valleys.
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Figure 3. Contour plot of (2.10), for parameters in the 1
r4f

< r⇤ <
1
r2f

region, together with valleys

(green) and crests (magenta). The two red curves are two distinct inflationary trajectories in this
model. They are obtained from a numerical evolution of the exact model (2.5). Both evolutions
shown contain 60 e-folds of inflation plus a brief transient moment after inflation in which the system
reaches the minimum.

The evolution shown in the figure is characterized by N = 60 e-folds of inflation along the
valley connected to SB; the following phase, from the moment the system leaves the valley
to when it first reaches the minimum, lasts for ' 2.9 e-folds. During this second stage, the
equation of state oscillates with average wave ' �0.16. This phase should be understood as
the beginning of the post-inflationary reheating.

4 {ns � r} phenomenology

In this Section we study the CMB phenomenology of Aligned Natural Inflation in the {ns � r}
plane. As discussed in the previous Section, we find two classes of inflationary trajectories in
this model: those along valleys connected to a minimum, and those along valleys disconnected
from any minimum. In the first case, inflation ends as the fields approach the minimum of
the potential; in the second case inflation terminates at the end of the valley, due to an
instability in the heavy  direction. This second class of solutions exist only for r⇤ in the

1
r
4
f
,

1
r
2
f

�
interval. 9

9To be precise, such an evolution can also take place for r⇤ slightly greater than 1
r2f

, so that evolutions

where inflation ends due to instability in the  direction are possible for 1
r4f

< r⇤ < 1
r2f

+ ✏, with ✏ small.

The reason for this is that, for r⇤ = 1
r2f

, one finds @2V2
@ 2 = 0 at the precise point where the valley connects

with the crest shown in the figure, so that the fields do not bend along the valley, but escape from it (ending
inflation), and again reach the minimum shown on the top of the figure. This behavior rapidly disappears
as r⇤ increases slightly above 1

r2f
, since @V2

@ > 0 all along the valley in this case. For the parameters used in

Figure 3, we numerically found that ✏ ' 0.004 (while 1
r2f

' 0.4444).
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Figure 5. Predictions of Aligned Natural Inflation (with inflation along a trajectory connected to
a minimum) in the {ns � r} plane, confronted with the 1� and 2� Planck contour lines (specifically,
we choose to plot the more conservative red contour lines of Figure 12 of [1]). We fixed rf = 1.5 and
varied r⇤ as follows: the dashed lines, from bottom to top, are for r⇤ = 0.01, 0.07, 0.1, 0.19; the solid
lines, from top to bottom, are for r⇤ = 0.3, 0.4144, 0.5, 1, 3. The lowest theoretical curve, drawn as a
dotted line, is for Natural Inflation. All the theoretical curves are done for N = 60 e-folds of inflation.

explained by the analytic computation presented in Appendix A, where we show that Aligned
Natural Inflation reproduces Natural Inflation in the limit of very small r⇤. We then see that
increasing r⇤ in this interval leads to progressively greater values of r. This is particularly
true in the left portion of the curves shown in the figure. As we mentioned above, the top-
right part of the curves is obtained at relatively large f�, while f� decreases as one moves
towards the left of the curves. As f� decreases, �̃ needs to start closer and closer to the saddle
point. Eq. (A.6) gives the analytic form of the e↵ective 1�field potential close to this point.
We see from this relation that increasing r⇤ (in the r⇤ <

1
r
4
f
regime that we are considering

here) indeed results in a less flat potential, and so in a greater value of r, in agreement with
the dashed curves of the figure.

The two top solid theoretical curves shown in Figure 5 sample the 1
r
4
f
< r⇤ <

1
r
2
f
regime.

We recall that in this figure we only consider inflation in the valley connected to the minimum.
We see from the top-right panel of Figure 2 that this valley becomes a crest before reaching
a saddle point. For this reason, f� cannot be taken arbitrarily small, and, as a consequence,
the corresponding curve in the {ns, r} plane only extends for a finite interval. The length of
this interval decreases as we approach the r⇤ = 1

r
2
f
value. This is due to the fact that also the

fraction of the stable portion of the curve from SA to the minimum decreases as r⇤ ! 1
r
2
f
.

Finally, the three bottom solid theoretical curves shown in Figure 5 sample the r⇤ > r
2
f

region. At relatively small f� (left part of the curves), the evolution starts close to the saddle
point SB. Eq. (A.8) shows that the potential becomes progressively flatter as r⇤ increases
in this regime. This explains the behavior of the three bottom solid curves in the figure. We
see that the curve corresponding to the highest value of r⇤ shown also approaches that of
Natural Inflation. This is explained by the analytic computation presented in Appendix A,
where we show that Aligned Natural Inflation reproduces Natural Inflation in the limit of
very large r⇤.

We also performed computations for other values of rf , and we obtained results quali-
tatively similar to those of Figure 5. For brevity, we do not show them here.
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Figure 6. Predictions of Aligned Natural Inflation (with inflation along a trajectory disconnected
from a minimum) in the {ns � r} plane, confronted with the 1� and 2� Planck contour lines.
The theoretical lines have been obtained for rf = 1.5, and for r⇤, from bottom to top, equal to
0.25, 0.33, 0.38, 0.41, 0.43. All the theoretical curves are done for N = 60 e-folds of inflation.
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Figure 7. Predictions of Aligned Natural Inflation (with inflation along a trajectory disconnected
from a minimum) in the {ns � r} plane, confronted with the 1� and 2� Planck contour lines. The
theoretical solid lines have been obtained for rf = 8, and for r⇤, from bottom to top, equal to
0.005, 0.009, 0.012, 0.014, 0.015. The dotted line visible in the top-left corner is the theoretical predic-
tion of Natural Inflation. All the theoretical curves are done for N = 60 e-folds of inflation.

4.2 Inflation on valleys disconnected from minima

As we mentioned, in the 1
r
4
f

< r⇤ <
1
r
2
f

interval, inflation can occur on valleys that are

connected to the saddle point SB and that are disconnected from any minimum. Inflation ends
because the heavy direction becomes unstable. The tensor-to-scalar ratio in these trajectories
is significantly smaller than the one found for the valleys connected to a minimum. This is
visible in the two Figures 6 and 7, where, respectively, the two cases rf = 1.5 and rf = 8 are
studied (such values do not have any particular importance, and they have been chosen just
as a representative case of comparable axion scales, or somewhat hierarchical axion scales).

It is possible to reproduce analytically the results shown in these two figures with good
accuracy. Most of inflation occurs close to the saddle point, where the 1�field e↵ective
potential reads

V ' V0

2

41�
 
�̂

f̂

!2
3

5 , 0  �̂  �̂0 . (4.1)
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Figure 3. Field trajectory (left panel) and equation of state as a function of the number of e-folds (right
panel) for a di↵erent choice of parameters. The end of the metastable inflationary trajectory (occurring at
N = 0) is followed by oscillations about a new inflationary valley connected to the minimum O, by a second
inflationary stage of duration �N ' 4 about this valley, and, finally, by oscillations about the minimum.

this discrepancy does not reflect in the CMB estimates, which are essentially o↵-set only by 1 e-fold
along the N > 1 part of the inflationary trajectory. This translates into a small discrepancy in the
determination of the field values at CMB scales, and in the evaluation of the slow roll parameters
needed for the CMB predictions. Specifically, the numerical evolution leads to ns = 0.9648 and to
r = 2.1 ⇥ 10�3 through eqs. (5.4). The analytic result of eqs. (4.10) provides a relative discrepancy
of about 0.06% for the spectral tilt and of about 3% for the tensor-to-scalar ratio.

Figure 3 shows the evolutions of the two fields (left panel) and the equation of state as a function
of the number of e-folds (right panel) for a di↵erent example, characterized by n1 = 70

M2
p
, n2 = 500

M2
p
, � =

0.01, r⇤ = 0.25. Di↵erently from the previous example, the figure shows the evolution also after the
end of the metastable inflationary trajectory, that occurs at N = 0 (marked with a red star in the left
panel). Right after this moment, the trajectory reaches the position with greatest value of ✓̂ shown in
the figure, and then performs oscillations about a next inflationary valley connected to the minimum
O shown in the figure. When these oscillations are dumped by the expansion, the evolution proceeds
along the new inflationary valley, providing an extra amount of inflation of about �N ' 4. The fields
then reach the minimum O and start oscillating about it. The right panel shows the corresponding
evolution of the equation of state, that is close to �1 during the two stages of inflation, and that
oscillates while the trajectory is also oscillating. The first oscillation occurs about a negative value, as
the minimum value of the potential energy is greater than zero during those oscillations; the second
oscillation occurs about 0, as it is typical for the oscillations of massive fields.

This behaviour is markedly di↵erent from that of the previous example, in which the evolution
after the end of the metastable trajectory (not shown in the two previous figures) was characterized
by oscillations about the minimum, without a second inflationary stage. Also in this case, the analytic
result (4.10) for the spectral tilt and the tensor-to-ratio is extremely accurate. Specifically, the value
for these two quantities at N = 60 e-folds before the end of the first inflationary stage obtained
numerically (respectively, analytically) is ns = 0.962 (respectively, ns = 0.963) and r = 9.6 ⇥ 10�4

(respectively, r = 9.4 ⇥ 10�4). However, the presence of the second inflationary stage shifts the
position at which these quantities should be evaluated. For example, evaluating them numerically at
N = 60� 4 = 56 e-folds before the end of the metastable trajectory results in r = 1.1⇥ 10�3 (while
ns does not change at the third significant digit).

6 Summary results and CMB phenomenology

The model (2.1) of aligned axion inflation is characterized by 6 parameters: 2 potential scales and
4 axion scales. The scalar spectral tilt and tensor-to-scalar ratio are independent of the overall
normalization ⇤4 of the potential. Furthermore, the redundancy of the model under the internal
rotation (2.5) allows to express the results in terms of three combinations of the axions scales, see

– 12 –

Solved analytically: ns�1 and r given as analytic functions of the

model parameters and number of e-folds in Greco, MP ’24

Also shown that, after leaving the metastable inflationary valley,

system often reaches a stable inflationary valley, so two-stage inflation

Fast oscillations ! enhanced power at intermediate scales. Potential
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Guidetti, Lee, Momot, Ng,

Notari, Papageorgiou, MP, Rudenok, Schmitz, Sobol, Sorbo,

von Eckardstein, Tywoniuk, Vilchinskii, Welling, Westphal, . . .

AS

�N ⇠ 5

• Confirmed by full lattice simulation � (t, ~x) , A
µ (t, ~x)

Caravano, Komatsu, Lozanov, Weller ’22

• Interpreted as delayed e↵ect between the moment the gauge

quanta are produced and the moment they backreact on � (t).

Domcke, Guidetti, Welling, Westphal ’20

Homogeneous backreaction (homogeneous �)

Oscillations about AS from numerical integration of simplified system

simplified (homogeneous �) numerical integration

Cheng, Dall’Agata, Domcke, Durrer, González-Mart́ın, Garg, Gorbar,
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⇤
�A

⇤

�A
00 +

✓
k
2 �

k �̄
0

f

◆
�A =

cA Ā
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Ā

�
⌧
0
, k

�
��

0
�
⌧
0
�

,

• Insert solution in 1st eq ! integro-di↵erential eq for ��



• Analytical study: � (t) = �̄ (t) + �� (t) , A
µ
�
t,~k

�
= Ā
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Figure 1. Diagramatic representation of the GW (left diagram) and scalar (right diagram) power
spectra sourced by the enhanced tensor mode tL. While in the non-Abelian models the GW are
sourced already at the linearized level, the scalar modes are sourced at the nonlinear level. The right
diagram is the interaction studied in this work.

Ref. [16] studied instead the case in which the inflaton field interacts with a SU(2) triplet
of vector fields having nonvanishing spatial vevs. The vevs are arranged to be orthogonal to
each other and of equal magnitude, so to lead to isotropic expansion. This model, dubbed
“Chromo-Natural Inflation” shares several analogies with the model of “Gauge-Flation” [37],

where a pseudo-scalar inflaton is absent and inflation is due to a
⇣
FF̃

⌘2
operator. (In fact,

Gauge-Flation can be viewed as a specific limit of Chromo-Natural Inflation, in which the
axion inflaton can be integrated out [38, 39].) The linear theory of cosmological perturbations
in Chromo-Natural Inflation was first studied in [40] in a low-energy e↵ective description of
the model, and then in [41–43] in the full model. The main features emerged from these
linarized studies is that the model is unstable in a specific regime of parameters (mQ <

p
2,

where mQ is introduced in eq. (2.6)), while it is outside the allowed ns � r region in the
complementary regime (where ns is the spectral tilt, and r the tensor-to-scalar ratio). 1

Several works modified the original model of [16] so to be compatible with data, including
the presence of a second axion inflaton [45] or a dilaton [46], a di↵erent inflation potential
[47–49], realizations in which the axion field is not the inflaton [50, 51], and a spontaneous
breaking of the SU(2) symmetry [52].

The existing phenomenological studies of these models are based on linearized perturba-
tion theory, with the exception of [53–55] that studied the nonlinear interactions in the tensor
sector, and the resulting GW bispectrum. Based on the results of the U(1) models, one could
expect that nonlinearities can be of relevance also in the scalar sector. The computation in
the non-Abelian context is however significantly more involved than in its U(1) counterpart:
even disregarding scalar metric perturbations (which is shown to be a justified assumption
[41, 43] - see Section 3.2), Chromo-Natural Inflation has three scalar perturbations coupled
to each other at the linearized level; this set comprises of the inflation perturbation plus two
linear combinations of perturbations of the gauge fields. For this reason already the linearized
computation is significantly more involved in the non-Abelian vs. the Abelian case, and we
expect this to be true also at the nonlinear level.

With this in mind, in the present work we only perform a first step toward the full
nonlinear computation. Specifically, we consider one nonlinear interaction of the inflaton
perturbation; this mode is the dominant scalar perturbation in the super-horizon regime,
where it coincides (up to negligible corrections) with the adiabatic mode ⇣ ' �

H

�̇
��. In the

U(1) case, the motion of the inflaton significantly amplifies one gauge field polarization at
horizon crossing. In the present context, the background dynamics amplifies one polarization

1As a consequence, one should expect that also Gauge-Flation is incompatible with data, as confirmed by
the analysis of [44].
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�
g
L

t
L

�
g
L

;

�
�

t
L

t
L

�
�

F
ig
u
r
e
1.

D
iagram

atic
representation

of
the

G
W

(left
diagram

)
and

scalar
(right

diagram
)
pow

er

spectra
sourced

by
the

enhanced
tensor

m
ode

t
L .

W
hile

in
the

non-A
belian

m
odels

the
G
W

are

sourced
already

at
the

linearized
level, the

scalar
m
odes

are
sourced

at
the

nonlinear
level.

T
he

right

diagram
is
the

interaction
studied

in
this

w
ork.

R
ef.

[16] studied
instead

the
case

in
w
hich

the
inflaton

field
interacts

w
ith

a
SU

(2)
triplet

of
vector

fields
having

nonvanishing
spatial vevs.

T
he

vevs
are

arranged
to

be
orthogonal to

each
other

and
of

equal
m
agnitude,

so
to

lead
to

isotropic
expansion.

T
his

m
odel,

dubbed

“C
hrom

o-N
atural Inflation”

shares
several analogies

w
ith

the
m
odel of “G

auge-F
lation”

[37],

w
here

a
pseudo-scalar

inflaton
is
absent

and
inflation

is
due

to
a ⇣

F
F̃ ⌘

2
operator.

(In
fact,

G
auge-F

lation
can

be
view

ed
as

a
specific

lim
it
of

C
hrom

o-N
atural

Inflation,
in

w
hich

the

axion
inflaton

can
be

integrated
out

[38, 39].)
T
he

linear
theory

of cosm
ological perturbations

in
C
hrom

o-N
atural

Inflation
w
as

first
studied

in
[40]

in
a
low

-energy
e↵ective

description
of

the
m
odel,

and
then

in
[41–43]

in
the

full
m
odel.

T
he

m
ain

features
em

erged
from

these

linarized
studies

is
that

the
m
odel is

unstable
in

a
specific

regim
e
of
param

eters
(m

Q
<

p
2,

w
here

m
Q

is
introduced

in
eq.

(2.6)),
w
hile

it
is
outside

the
allow

ed
n
s
�
r
region

in
the

com
plem

entary
regim

e
(w
here

n
s
is
the

spectral tilt, and
r
the

tensor-to-scalar
ratio). 1

Several w
orks

m
odified

the
original m

odel of [16] so
to
be

com
patible

w
ith

data, including

the
presence

of
a
second

axion
inflaton

[45]
or

a
dilaton

[46],
a
di↵erent

inflation
potential

[47–49],
realizations

in
w
hich

the
axion

field
is
not

the
inflaton

[50,
51],

and
a
spontaneous

breaking
of
the

SU
(2)

sym
m
etry

[52].

T
he

existing
phenom

enological studies
of these

m
odels

are
based

on
linearized

perturba-

tion
theory, w

ith
the

exception
of [53–55] that

studied
the

nonlinear
interactions

in
the

tensor

sector, and
the

resulting
G
W

bispectrum
.
B
ased

on
the

results
of the

U
(1)

m
odels, one

could

expect
that

nonlinearities
can

be
of

relevance
also

in
the

scalar
sector.

T
he

com
putation

in

the
non-A

belian
context

is
how

ever
significantly

m
ore

involved
than

in
its

U
(1)

counterpart:

even
disregarding

scalar
m
etric

perturbations
(w
hich

is
show

n
to

be
a
justified

assum
ption

[41,
43]

-
see

Section
3.2),

C
hrom

o-N
atural

Inflation
has

three
scalar

perturbations
coupled

to
each

other
at

the
linearized

level; this
set

com
prises

of
the

inflation
perturbation

plus
tw
o

linear
com

binations
of perturbations

of the
gauge

fields.
For

this
reason

already
the

linearized

com
putation

is
significantly

m
ore

involved
in

the
non-A

belian
vs.

the
A
belian

case,
and

w
e

expect
this

to
be

true
also

at
the

nonlinear
level.

W
ith

this
in

m
ind,

in
the

present
w
ork

w
e
only

perform
a
first

step
tow

ard
the

full

nonlinear
com

putation.
Specifically,

w
e
consider

one
nonlinear

interaction
of

the
inflaton

perturbation;
this

m
ode

is
the

dom
inant

scalar
perturbation

in
the

super-horizon
regim

e,

w
here

it
coincides

(up
to

negligible
corrections)

w
ith

the
adiabatic

m
ode

⇣
'
�
H
�̇

�
�
.
In

the

U
(1)

case,
the

m
otion

of
the

inflaton
significantly

am
plifies

one
gauge

field
polarization

at

horizon
crossing.

In
the

present
context, the

background
dynam

ics
am

plifies
one

polarization

1
A
s
a
consequence,

one
should

expect
that

also
G
auge-F

lation
is
incom

patible
w
ith

data,
as

confirm
ed

by

the
analysis

of
[44].

–
2
–

Results in the weak backreaction regime

�̈+3H�̇+
dV

d�
=

cA

f

~E · ~B

H
2 =

1

3M2
p


1

2
�̇+ V +

~E
2 + ~B

2

2

�

⌘ negligible backreaction terms

on background dynamics

(electromgnetic notation)

• Analytic results in this regime based on several approximations:

constant ⇠ and H, specific UV regularization

�� A+

Barnaby, MP ’10

Results in the weak backreaction regime

�̈+3H�̇+
dV

d�
=

cA

f

~E · ~B

H
2 =

1

3M2
p


1

2
�̇+ V +

~E
2 + ~B

2

2

�

⌘ negligible backreaction terms

on background dynamics

(electromgnetic notation)

• Analytic results in this regime based on several approximations:

constant ⇠ and H, specific UV regularization

�� A+

Barnaby, MP ’10

Results in the weak backreaction regime

�̈+3H�̇+
dV

d�
=

cA

f

~E · ~B

H
2 =

1

3M2
p


1

2
�̇+ V +

~E
2 + ~B

2

2

�

⌘ negligible backreaction terms

on background dynamics

(electromgnetic notation)

• Analytic results in this regime based on several approximations:

constant ⇠ and H, specific UV regularization

�� A+

Barnaby, MP ’10

3

k/m

P⇣

k6B⇣

FIG. 2. (Top) Power spectrum of ⇣ in the case of weak back-
reaction. The shaded region, delimited by black dashed lines,
shows the analytical prediction of eq. (2). The blue dashed
line shows the vacuum contribution Pvac. (Bottom) Equilat-
eral bispectrum of ⇣ compared to the analytical prediction.

⇣/� Ne

FIG. 3. (Left) Normalized histograms of ⇣ in real space in
the case of weak backreaction. (Right) Time evolution of the
correlators defined in eq. (5).

find that 5 > 4 > 3 at late times. This means that
higher-order statistics are at least as important as the 3-
point function to characterize non-Gaussianity of ⇣. This
has observational consequences, as discussed below.

IV. STRONG BACKREACTION

We now turn to the case of strong backreaction. We
set the gauge coupling to ↵/f = 25, so that the imprints
of the Chern-Simons coupling on ⇣ are unobservable at

CMB scales2 [15–18]. Later during inflation, however, ⇠
increases and the universe eventually enters a nonlinear
phase.
We start the simulation when � = �5.5. With this

choice, the universe is still in the weak backreaction phase
at the beginning of the simulation. Then, after roughly
2 e-folds, the system enters a strong backreaction phase
where the bound of eq. (3) is violated and eq. (2) gives
P⇣ ⇠ 0.1, which indicates a breakdown of perturbativity.
We show results from a run with (N,L) = (256, 1.5/m),
but we tested our simulation also with other values of
(N,L) to ensure that our results are physical and do not
depend on the spatial resolution. Moreover, we ensured
the stability of the time integration by checking energy
conservation and time-step convergence.
In the right panel of fig. 1 we show the evolution of ⇠

during the simulation. We find the departure from the
slow-roll trajectory as an oscillatory behavior in ⇠. This
is intuitive, as one can see from eq. (4) that a strong
FF̃ leads to a depletion of the inflaton velocity; this low-
ers the value of ⇠ and reduces the backreaction, bringing
the system momentarily back to the slow-roll trajectory.
Oscillations of similar period and size were already pre-
dicted by previous studies [59, 64–66], which explored
backreaction e↵ects using semi-analytical tools. Another
consequence of the backreaction is that, after 6.5 e-folds
of evolution, the background inflaton value is � = �3.02.
This value would be reached after 5.4 e-folds of evolution
if the backreaction were negligible, which means that the
backreaction significantly delays the background dynam-
ics.

In fig. 4 we show the histograms of ⇣ and the evolu-
tion of the cumulants i. These plots show that the non-
Gaussianity of ⇣ substantially decreases during the strong
backreaction phase. At late times, it is mainly described
by a (small) negative 4, while the other cumulants are
negligible. Moreover, 5 shows oscillations. The suppres-
sion of non-Gaussianity in this regime is a consequence
of the central limit theorem, and it is caused by the fact
that the number of excited gauge field modes grows with
⇠. To understand this, we expand the source term FF̃ in
Fourier space as follows:

⇣
Fµ⌫ F̃

µ⌫
⌘
(k) =

X

k0

Fµ⌫(k
0) F̃µ⌫(k � k

0). (6)

This shows that each Fourier mode of FF̃ is the sum of
several non-Gaussian quantities. For ⇠ ⇠ 1, there are
few elements contributing to this sum due to the small
number of excited gauge field modes. For ⇠ � 1, the

2 The coupling can be constrained down to ↵/f . 15 using grav-
itational waves from preheating [52, 53]. Here we choose to fo-
cus only on bounds from inflationary physics. One motivation
is that, as explained for example in Refs. [53, 59], preheating
bounds strongly depend on the dynamics of the final e-folds of
inflation, which is still unknown for higher values of ↵/f .
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FIG. 1. Top Row: Evolution of the electromagnetic (purple) and inflaton potential (black), kinetic (red) and gradient (blue)
energy densities, all normalized to the total energy density of the system, for ↵⇤ = 15, 18, 20. Solid (dashed) lines correspond
to lattice simulations with inhomogeneous (homogeneous) backreaction. Bottom Row: Evolution of ⇠ for the same coupling
constants, corresponding to simulations with inhomogeneous (black solid) and homogeneous (black dashed) backreaction, and
to gradient expansion [58, 59] (green solid) and iterative method [19] (magenta dashed). Solid and dashed vertical lines signal
the end of inflation in each case. Evolution in the linear regime (black dash-dotted) is also shown for completeness.

ing limits, confirming the validity of the code.
We define the power spectrum of the gauge field as

�(�)
A

(k, t) ⌘ k
3

2⇡2P(�)
A

(k, t), where h ~A(�)(~k, t) ~A(�0)⇤(~k0, t)i
⌘ (2⇡)3P(�)

A
(k, t)���0�D(~k � ~k

0) represents an ensemble
average. In Fig. 2 we plot various power spectra for a
fiducial value ↵⇤ = 18, and compare the outcome of our
inhomogeneous treatment against the solutions of the ho-
mogeneous backreaction and linear regimes. In Fig. 3 we
also show the helicity imbalance measured through a nor-
malized spectral helicity observable defined as

H(k, t) ⌘ �(+)
A

��(�)
A

�(+)
A

+�(�)
A

. (7)

The inclusion of the inhomogeneous terms brings con-
siderable novelties into the dynamics:

1.- The gauge energy ⇢EM grows exponentially fast
during the linear regime, until it reaches a few % of ⇢K.
The latter, that had been previously slowly growing on a
slow-roll trajectory, starts then decreasing, signaling the
onset of backreaction. In the homogeneous case, ⇢EM and
⇢K may perform some large oscillations [19, 56], almost in
opposite phase. Such oscillations are however damped in

the inhomogeneous dynamics, where the gradient energy
⇢G is also significantly excited, with its contribution po-
tentially comparable or even higher than ⇢K. This could
never be captured in the homogeneous regime, where by
construction ⇢G = 0. In the homogeneous case, for some
couplings (e.g. ↵⇤ = 15) the first and largest oscillation
leads h�̇i to even flip its sign, with ⇠ crossing zero back
and forth (depicted in the figure by dotted lines), signal-
ing that the inflaton climbs its own potential. This, how-
ever, never happens in the inhomogeneous case, where
the growth of ⇢G damps the oscillation amplitude, and
prevents ⇠ from becoming negative.

2.- For all couplings considered, either in the homo-
geneous or inhomogeneous regimes, inflation ends when
⇢EM becomes comparable to ⇢V, resulting in a Universe
already reheated at that moment, which is actually con-
sistent with previous preheating studies for ↵⇤ . 15 [49–
53]. In the homogeneous case, the number of extra efold-
ings is �Nbr ⇡ 3 for all couplings considered. In con-
trast, in the inhomogeneous dynamics, the number of ex-
tra efoldings grows strongly and monotonically with ↵⇤,
from �Nbr ⇡ 2 for ↵⇤ = 15 to �Nbr ⇡ 8 for ↵⇤ = 20.
For ↵⇤ = 15 inflation actually ends earlier in the inho-
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Figure 5. Power spectrum of the axion field � in the case of weak backreaction. Di↵erent colors correspond
to di↵erent times during the lattice simulation, as indicated by the legend. The final simulation result is
compared with the analytical prediction from the WKB approximation (red dashed line), that we computed
in appendix A.

4.3 Axion perturbation

Power spectrum

In fig. 5, we show the evolution of the power spectrum of the axion field, introduced in Fourier space
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where �D is the Dirac delta and k = |~k|.
The / k2 profile visible at the earlier times corresponds to the Bunch-Davies vacuum initial

conditions (3.6). The axion field is then enhanced due to the exponential growth of the gauge field, with
the most significant growth occurring betweenN = 0 andN = 2. The final profile has an enhancement
(a “bump”) corresponding to the scales that left the horizon during the simulation, namely while the
axion had a significant roll. We compare the final time lattice result with the analytical estimate
for the power spectrum, depicted as a dashed red line. We observe that the analytical estimate
correctly predicts the amplitude of the power spectrum. However, the analytical solution predicts
a di↵erent scale dependence. This discrepancy arises because the analytical calculation neglects the
time dependence of H, resulting in a di↵erent time dependence for ⇠. Specifically, scalar modes
enhanced at the beginning of the simulation (small k) are expected to have a larger amplitude due to
the higher value of ⇠ (see fig. 2). Conversely, modes excited later (large k) should exhibit a smaller
amplitude, corresponding to the lower value of ⇠.

Non-Gaussianity

The simulation allows us to access the real-space field distribution of the axion, as shown in fig. 6.
These simulation boxes can be used to compute the non-Gaussianity of scalar statistics. In the left
panel of fig. 7 , we present the 1-point probability density function (PDF) of the axion field at di↵erent
times during the simulation. The distributions are calculated as normalized histograms of the field
values across the N3

pts lattice points. We observe that the field distribution deviates significantly from
Gaussian statistics. In particular, we notice an exponential tail in the distribution. This behavior is

16Details on how we compute power spectra from the lattice simulation can be found in Refs. [105, 108].
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Figure 13. Power spectrum of the axion field � in the scenario of strong backreaction, depicted at various
times during the lattice simulation. The final simulation result (blue) is compared with the prediction from
the WKB approximation (red dashed line).
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Figure 14. Same as fig. 6, but in the case of strong backreaction, showing values of the axion field � across
a 2D slice of the simulation.

5.4 Curvature perturbation

We now come to the results for the comoving curvature perturbation, that we compute from the
lattice using the linear relation ⇣ = ���H/�̇.

Power spectrum

In fig. 16, we present the power spectrum of ⇣ at various times during the lattice simulation and
compare it to the WKB approximation at the final time. The scalar power spectrum is significantly
suppressed relative to the analytical estimate. This suppression is a consequence of the reduced
gauge field growth due to strong backreaction. The sourced contribution is still much larger than the
standard vacuum contribution P⇣,vacuum = 2⇥ 10�9.

Non-Gaussianity

We now discuss the non-Gaussianity of ⇣. In fig. 17, we present 2D snapshots from the simulation.
From the full 3D simulation boxes, we extract the 1-point PDF of ⇣ and its cumulants, as shown
in fig. 18. Non-Gaussianity of the observable ⇣ on super-horizon scales is large and non-trivial. In
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similar to what occurs in the most minimal version of this model, where the inflaton coincides with
the axion [107].

To quantify the deviation from Gaussian statistics, we introduce the following dimensionless
cumulants [118]:
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,
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(4.3)

that all vanish in the Gaussian case. In the right panel of fig. 7, we show the evolution of these
cumulants during the simulation. We can see that higher-order cumulants are very large and do not
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includes an inset that provides a detailed view of the region N > 2.5.
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Figure 16. Power spectrum of ⇣ in the case of strong backreaction. Di↵erent colors correspond to di↵erent
simulation times, while the red dashed line shows the analytical calculation.

particular, we observe that a large amount of non-Gaussianity is encoded in cumulants beyond the 3rd
order. This implies that the bispectrum will carry limited information about the statistical properties
of the primordial curvature fluctuation. This has crucial phenomenological implication, as we discuss
in the Conclusion (section 6).

5.5 Energy contributions

Finally, in fig. 19, we show the evolution of the various contributions to the energy density, which
source the evolution of the Universe through the Friedmann equations. We can see that, even in the
strong backreaction regime, the energy density of the Universe is dominated by the background inflaton
field. However, in this scenario, the mean energy density of the gauge field becomes comparable to
the kinetic energy of the axion field K� around N = 2. This indicates that the gauge field cannot
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explanation of the di↵erent panels.
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This means that, for any fixed ✏�, the gauge field amplification results in an increase of the
tensor-to-scalar ratio. Another signature of this is the fact that there is now a region of
parameters, situated between the (blue) dashed line and (green) vertical dot-dashed line,
which is compatible with the non-Gaussianity limit and for which the sourced GW signal
dominates over the vacuum one. In the right panel, we show the case of cs,� = 0.05 where
such observationally interesting region is broadened.
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Figure 2. Total tensor-to-scalar-ratio r as a function of ⇠ and ✏�. The three panels correspond to
three di↵erent values of the sound speed, specified on the top of the panel. The value indicated next
to each line indicates the value of r along that line. Values of ⇠ on the right of the vertical green
dot-dashed line lead to a too large non-Gaussianity. The area above the red line r = 0.03 leads to a
too large tensor-to-scalar-ratio [66, 67]. Left panel: in all the area shown the vacuum GW signal is
greater than the sourced one. Central panel: in the area to the left (resp. right) of the blue dashed
line the vacuum (resp. sourced) GW signal is dominant. Right panel: the area where the sourced
GW signal is dominant and where the limits on non-Gaussianity and r are respected, becomes larger.
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Finally, let us consider the case in which �, the pseudo-scalar directly coupled to the gauge
field, is not the inflaton, but rather a spectator field. Instead, � plays the role of the in-
flaton and supports the final curvature perturbation ⇣ through Eq. (3.1). From Eqs. (2.24)
and (2.28), we find, to leading order in slow roll, the equations of motion
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Testing a chiral SGWB

3

(v) a CV-limited experiment. The corresponding in-
strumental parameters are given in Table I. Note that
the noise-equivalent temperature NET is related to the
temperature/polarization pixel-noise variances, σT/P , as

σ2
T /Npix = (NET)2/tobs, where σP =

√
2σT . We take

f0
sky = 1.0 (the fraction of the sky surveyed), and fsky =
0.7 (the fraction of the sky used in the analysis), for all ex-
periments, except for SPIDER, where f0

sky = fsky = 0.5.

FIG. 2: 1σ error on the gravitational chirality parameter ∆χ,
for five different CMB experiments, for the fiducial value of
∆χ = 0. The horizontal dotted line is at σ∆χ = 1 and repre-
sents maximal P violation. In the region above this line, the
chirality is non-detectable. The WMAP-5 curve lies entirely
above the non-detection line.

Fig. 2 shows the 1σ error of the estimate of ∆χ as
a function of tensor-to-scalar ratio r. The error in-
creases with decreasing r, which implies the existence
of a critical value of r below which a 1σ-level detection
becomes impossible even for maximal P violation (when
σ∆χ ≥ 1). This value is far above the current upper limit
for WMAP-5 (compare to Ref. [13]), and so WMAP-5
can give no constraints on chiral gravity. Prospects are
more optimistic for the next-generation CMB data re-
leases. The critical r is about 0.064 for SPIDER, 0.082
for Planck, 0.0079 for CMBPol, and 0.0023 for the CV-
limited experiment. If r is just below the current de-
tection limit of 0.22 [12], ∆χ will be detectable at the
1σ level if it is greater than 0.46, 0.51, 0.18, and 0.11
for these four instruments, respectively. If we consider
the 3σ confidence level, the corresponding minimum de-
tectable values are larger by a factor of ∼ 3.

To conclude this Section, we show how different mul-
tipoles l contribute to the sum of Eq. (6), separating the
contribution from TB and EB, in Fig. 3. In this plot, only
the TB/EB summands of Eq. (6) are plotted against l,
for r = 0.22, for SPIDER, Planck, and CMBPol. The off-

diagonal terms that contain the covariance between TB
and EB are negligible. The major contribution to σ−2

∆χ
for all five experiments comes from the TB power spec-
trum, from low multipoles, l ∼ 7. Thus, large angular
scales in TB (at l ≤ 10) contain most of the information
about gravitational chirality.

from TB
from EB

FIG. 3: Diagonal (TB,TB and EB,EB) summands of Eq. (6),
for r = 0.22, are plotted against the multipole l to show that
the constraint to ∆χ comes primarily from the TB power
spectrum at l ∼ 7.

III. CONSTRAINING COSMOLOGICAL
BIREFRINGENCE

Cosmological birefringence rotates the linear polariza-
tion at each point on the sky by an angle ∆α, and this
rotation induces TB/EB power spectra

CTB,rot
l = 2∆αCTE

l , CEB,rot
l = 2∆αCEE

l . (8)

The error σ∆α to which ∆α can be measured is given by

σ−2
∆α =

∑

l

∑

A,A′

∂CA
l

∂∆α

∂CA′

l

∂∆α
[Ξl

−1]AA′ . (9)

Using the same instrumental parameters as in §II B,
and for r = 0.22, we obtain the following 1σ errors for the
CB rotation angle: from WMAP-5, 3.2◦; from SPIDER,
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Domcke, Garćıa-Bellido, MP, Pieroni
Ricciardone, Sorbo, Tasinato ’19

(one order of magnitude greater than estimate in Seto ’06)

Circular Polarization and the Cosmic Dipole

hL hR

Circular Polarization and the Cosmic Dipole

hL hR

Net circular polarization and the cosmological dipole
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⇣
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Figure 6: Forecast error in the measurement of the polarization factor p as a function of
the fiducial amplitude ⌦̄0 for a total observation time of T = 10 yrs. and di↵erent networks.
The left (resp., right) panel assumes an unpolarized fiducial signal with ↵ = 2/3, (resp., a
fully circularly polarized scale-invariant signal). The vertical line indicates the current upper
bound on the amplitude of ⌦0 [6].

that if the SGWB saturates the current bound, the existing LIGO-Virgo-KAGRA network
at the designed sensitivity will barely be able to constrain even anisotropies of order one
significantly. On the other hand, the next generation detectors, such as Einstein Telescope
and Cosmic Explorer, might be able to probe a O

�
10�3

�
anisotropy at the largest angular

scales (lowest `; figure 4 shows how the sensitivity worsens for higher multipoles).
As a comparison, anisotropies in the astrophysical SGWB can be estimated to be of the

order of 10�2 [38, 39] The anisotropies due to the propagation of primordial GWs are expected
to be below this level [12, 18–20], with a quadrupole amplitude �GW

2m '
p
C2 ' 3⇥ 10�5 [32].

3 Finally, the kinematic dipole, induced by the peculiar motion of the Earth, is of O
�
10�3

�
,

as we already discussed above in relation to figure 3.
To summarize, the anisotropies induced by astrophysical sources and the kinematic

e↵ect might be probed by the Einstein Telescope - Cosmic Explorer combination, while
the measurement of the anisotropy from the cosmological propagation appears to be more
challenging. Significantly improving over this will require more than just decreasing the
instrumental noise. Even in the ideal limit of vanishing instrumental noise, the sensitivity to
the subdominant anisotropic component is limited by the variance of the dominant monopole
contribution [30]. The curves shown in figures 3 and 6 show a marked change in their slope
from the left part at small ⌦̄0 and the right part at large ⌦̄0. This change in the slope is due
to the transition between a regime in which the variance of the measurement is dominated
by the instrumental noise to a regime in which it is dominated by the signal.4 For the
network configurations we have discussed, the measurement is in the noise-dominated regime
once the signal is constrained to be below the current upper limit. Assuming that futuristic
experiments will reach an ideal level of negligible instrumental noise, the variance of their
measurements will be due solely to that of the signal. The sensitivity to the anisotropy will
then reach the level that can be seen from the high-⌦̄0 portion of our figures. Our results
assume an observation period of 10 years. Improving over these limits will then require
increasing the observation period T , or the number of detectors N [30]. We recall that the

3Cosmological perturbations might be greater in certain cases, see e.g. [40–42].
4While both contributions to the variance are fully included in the results presented in this section, in

subsection 5.2 we show that the variance can be written in terms of relatively simple analytical expressions
in the limits in which it is fully dominated by either contribution.
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Figure 1: Predicted (square root of the) Power Spectral Density (PSD) of Advanced LIGO,
Advanced Virgo, KAGRA, Einstein Telescope, and Cosmic Explorer as a function of the
frequency. Data were taken from ref. [31]

the Earth), which generalizes the more common isotropic studies in which only the monopole
term is assumed. Due to the normalization of the spherical harmonics, we fix �00 =

p
4⇡ so

that the coe�cients �GW
`m encode the relative strength of the various multipoles relative to

the monopole. In our explicit analysis, we assume that only one given multipole is present,
with a magnitude much smaller than one, corresponding to a nearly isotropic signal.

For each interferometer i in the network (and for each channel in the case of triangular-
shaped detectors, which are made of multiple instruments), we take the data stream mi(t)
that results from the superposition of the GW signal and instrumental noise,

mi(t) = si(t) + ni(t) . (2.2)

We (window-)Fourier transform these functions and take every possible cross-correlation of
the data streams at di↵erent sites. We then integrate the cross-correlations in time, using
the assumption of a stationary SGWB, so that the statistics underlying the response of the
network of detectors is periodic with period Te = 1 day. We apply optimal filters, building a
set of unbiased observables

Cij,m /
Z 1

�1
dfmi(f)mj(f)Qm(f) , i 6= j , (2.3)

whose expectation value depends on the parameters in eq. (2.1). We consider typical values
↵ = 0 (from cosmology) and ↵ = 2/3 (from astrophysics) for the tilt of the signal. We
construct a �2 as a function of the amplitude of the signal ⌦0 and of the anisotropy param-
eter �GW

`m under consideration (namely, for a specific choice of ` and m). From the �2, we
forecast the uncertainties under which the network will measure these two quantities under
consideration.
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Figure 3: Forecast error in the measurement of the anisotropic coe�cient �GW
`m as a function of

the fiducial amplitude ⌦̄0 of the signal for a total observation time of T = 10 yr and for di↵erent
networks. The left (resp. right) panels study the dipole coe�cient ` = m = 1 (resp., the quadrupole
coe�cient ` = m = 2). The upper (resp., lower) panels assume a scale-invariant signal (resp., a blue
signal with ↵ = 2/3). The horizontal and vertical lines indicate, respectively, the expected value of
the kinematic dipole and the current upper bound on the amplitude of ⌦0 [6].

2.3 Discussion

In this work, we outline in full detail a mathematical framework to forecast the sensitivity
of a network of L-shaped and triangular-shaped ground-based detectors to an SGWB with
anisotropies or with net circular polarization. Above, we have shown some results obtained
when this formalism is applied to di↵erent networks of present and next-generation ground-
based detectors.

Our study of anisotropies in subsection 2.1 assumes that the monopole dominates the
SGWB signal, which is expected to be true for the vast majority of astrophysical and cos-
mological models [32]. Moreover, we assumed that, besides the monopole, only one addi-
tional multipole is present in the expansion of eq. (2.1), where, parametrically, the coe�cient
�GW
`m controls the ratio between the (directionally-dependent) contribution to the fractional
SGWB energy density (per logarithmic interval in frequency) of that multipole relative to the
monopole. The amplitude of the monopole term is controlled by the standard parameter ⌦0,
which gives the fractional GW energy density (per logarithmic interval in frequency) ⌦0 at
the pivot scale f0 = 100Hz. Our analysis provides the forecast uncertainties on determining
the two parameters ⌦0 and �GW

`m . We also presented the uncertainty on �GW
`m by marginalizing

the results of this analysis over ⌦0.
Not surprisingly, as visible in figures 3 and 4, the sensitivity to the relative size of the
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Figure 3: The expected (marginalized) forecast error of each relative anisotropic coe�-
cient, �GW

`m , as observed by a network made of the three LISA satellites and the LISA-Taiji
constellations. The first panel assumes the frequency dependence of the signal (cf. (2.6))

 (f) =
⇣

f
f0

⌘
2/3

, while the second is obtained with  (f) =  G(f) as in (4.1). A total ob-

servation time of T = 10 yr and a fiducial value of ⌦̂0 = 2 ⇥ 10�11 at the pivot frequency
f0 = 1 mHz are assumed.

⌦G, which provide the fractional energy density contributions of the two components at the
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