("artist's" impression of axions leaving SN 1987A)

а

Astrophysical phenomenology of axions (at one-loop order)

Eike Ravensburg (prev. Müller), Postdoc @ University of Southern Denmark (SDU) Odense

Based on work with M.C.D. Marsh, R. Ferreira, P. Carenza, C. Eckner, A. Lella, F. Calore, A. Goobar, and M. Meyer

SDU 🎸

Axions in Stockholm workshop, 2025

Axionlike particles

→ ALPs are naturally light, weakly interacting pseudoscalar particles that appear in many BSM theories → Both axions and ALPs are pseudo-Goldstone bosons of chiral U(1) theories (hence "axion-like") → At low energies $E \ll \Lambda$, all these models are described by the same *effective field theory* (EFT):

$$\mathcal{L} \supset -\frac{1}{2}a(\Box + m_a^2)a + \frac{1}{4}g_{a\gamma}a F_{\mu\nu}F^{\mu\nu} + \sum_{\ell}\hat{g}_{a\ell}(\partial^{\mu}a)\mathcal{I}\gamma_5\gamma_{\mu}\ell + \sum_{N}g_{aN}\frac{\partial_{\mu}a}{2m_N}N\gamma^{\mu}\gamma_5N$$

Mass (free parameter,
not related to couplings)Photon coupling
Photon couplingLepton couplingsNon-relativistic
nucleon couplings

→ Are all these couplings independent? No, Quantum effects mix them! For collider phenomenology, see, e.g., Bauer et al.: 1708.00443, 2012.12272

 \rightarrow If you are interested in the phenomenology of one of these couplings, others might be unavoidable

Axionlike particles: Leptonic ALPs

→ ALPs are naturally light, weakly interacting pseudoscalar particles that appear in many BSM theories → Both axions and ALPs are pseudo-Goldstone bosons of chiral U(1) theories (hence "axion-like") → At low energies $E \ll \Lambda$, all these models are described by the same effective field theory (EFT):

$$\mathcal{L} \supset -\frac{1}{2}a(\Box + m_a^2)a + \frac{1}{4}g_{a\gamma}a F_{\mu\nu}F^{\mu\nu} + \sum_{\ell}\hat{g}_{a\ell}\partial^{\mu}a\partial^{\ell}\gamma_5\gamma_{\mu}\ell + \sum_{N}g_{aN}\frac{\partial_{\mu}a}{2m_N}N\gamma^{\mu}\gamma_5N$$

Mass (free parameter,
not related to couplings)Photon couplingLepton couplingsNon-relativistic
nucleon couplings

→ Are all these couplings independent? No, Quantum effects mix them! For collider phenomenology, see, e.g., Bauer et al.: 1708.00443, 2012.12272

 \rightarrow If you are interested in the phenomenology of one of these couplings, others might be unavoidable

Running photon coupling

For leptonic ALPs (here $\ell = e$) the renormalization group equations are

→ <u>There is **no RG-induced running photon coupling** for leptonic ALPs (This is also true in the full SM)</u>

SDU∻

$$\mathcal{L}_{1-\text{loop}} \supset -\frac{1}{2}a(\Box + m_a^2)a + \hat{g}_{ae}(\partial^{\mu}a)\bar{e}\gamma_5\gamma_{\mu}e + \frac{1}{4}g_{a\gamma}^{\text{eff}}a\,F_{\mu\nu}\tilde{F}^{\mu\nu}$$

Effective photon coupling

Even without an RG-induced coupling, the full lepton loop can still yield an effective photon vertex:

The effective ALP-photon coupling

Known for a while: the effective coupling on-shell, i.e., in a decay process

$$g_{a}^{q_{1}} = g_{a\gamma}^{q_{1}} \left(\frac{q_{1}^{2}}{m_{a}^{2}} \right)^{\gamma} = g_{a\gamma}^{\text{eff}} \left(q_{1}^{2} = q_{2}^{2} = 0, p^{2} = m_{a}^{2} \right) = \frac{2\alpha}{\pi} \hat{g}_{ae} \left[1 - \frac{4m_{e}^{2}}{m_{a}^{2}} f^{2} \left(\frac{4m_{e}^{2}}{m_{a}^{2}} \right) \right]$$

$$= -\frac{\alpha \hat{g}_{ae}}{6\pi} \left(\frac{m_{a}}{m_{e}} \right)^{2} + \mathcal{O} \left(\frac{m_{a}}{m_{e}} \right)^{4}$$

$$f(\tau) = \begin{cases} \arcsin\left(\frac{1}{\sqrt{\tau}}\right) & \text{for } \tau \ge 1\\ \frac{1}{2} \left[\pi + i \log\left(\frac{1 + \sqrt{1 - \tau}}{1 - \sqrt{1 - \tau}}\right)\right] & \text{for } \tau < 1 \end{cases}$$

Bauer, Neubert, Thamm, JHEP 12 (2017) 044

 q_1

This effective coupling vanishes for massless ALPs, but it is only the right coupling for on-shell photons!

If a photon in the t-channel is off-shell, we get the effective Primakoff coupling:

$$g_{a\gamma}^{(P)} \equiv g_{a\gamma}^{\text{eff}}(q_1^2 = 0, q_2^2 = t, p^2 = m_a^2) = \frac{2\alpha}{\pi} \hat{g}_{ae} \left\{ 1 + \frac{4m_e^2}{m_a^2 - t} \left[f^2 \left(\frac{4m_e^2}{t} \right) - f^2 \left(\frac{4m_e^2}{m_a^2} \right) \right] \right\} \xrightarrow{\gamma \text{ for all } p \text{ f$$

SDU 🎓

SDU 🎸

Supernovae – a great lab for new physics

Illustration by R.J. Hall taken from Wikipedia, based on Janka et al., Physics Reports. 442 (1–6): 38–74

SN 1987A remnant as seen by the Hubble telescope

SDU 🎸

Supernovae – a great lab for new physics

Blue line: "Agile-Boltztran" SN simulation, Fischer et al., PRD 104 (2021) 103012 Green and orange lines: models of the "Garching SN Archive", R. Bollig et al., Phys. Rev. Lett. 125 (2020) 051104 Hot and dense plasma

 \rightarrow even weakly interacting particles are produced

... and they can escape!

SDU 🎓

R. Ferreira, D. Marsh, EM, JCAP 11 (2022) 057 & soon to be published work

Leptonic ALPs produced in SNe

ALPs from a SN plasma

The spectral rate of change in the number density of ALPs ("production spectrum") can be calculated as the integrated collision term of the Boltzmann equation:

$$\frac{\mathrm{d}^2 n_a}{\mathrm{d}t \,\mathrm{d}\omega_a} = \left[\prod_i \int \frac{\mathrm{d}^3 \mathbf{p}_i}{(2\pi)^3 2E_i} f_i(E_i)\right] \left[\prod_{j \neq a} \int \frac{\mathrm{d}^3 \mathbf{p}_j'}{(2\pi)^3 2E_j'} \left[1 \pm f_j(E_j')\right]\right] \\ \times (2\pi)^4 \delta^{(4)} \left(\sum_i p_i - \sum_j p_j'\right) S \frac{|\mathbf{p}_a'|}{4\pi^2} |\mathcal{M}|^2,$$

for every relevant production process $\{i\} \rightarrow \{j\} + a$.

Leptonic ALPs produced in SNe

SDU 🎸

Cooling bound, from the duration of the neutrino burst of SN 1987A

$$L_a = \int_0^{R_\nu} \mathrm{d}r \, 4\pi r^2 \lambda^2(r) \int_{m_a/\lambda}^\infty \mathrm{d}\omega_a \, \omega_a \, \frac{\mathrm{d}^2 n_a}{\mathrm{d}t \, \mathrm{d}\omega_a}(r,\omega_a) \cdot \mathcal{T}(r,R_{\mathrm{far}},\omega_a)$$

Decay bound, from the non-observation of gamma-rays following core-collapse SNe

$$F_{\gamma} = BR_{a \to \gamma\gamma} \int_{m_{a}}^{\infty} d\omega_{a} \int_{-1}^{1} dc_{\alpha} \int_{0}^{\infty} dL \, 2 \cdot \frac{dN_{a}/d\omega_{a}}{4\pi R_{SN}^{2}} \cdot \frac{\omega_{a}^{2} - p_{a}^{2}}{2(\omega_{a} - c_{\alpha}p_{a})^{2}} \cdot \frac{\exp[-L/\ell_{a}(\omega_{a})]}{\ell_{a}(\omega_{a})}$$
$$\cdot \Theta_{cons.}(\omega_{a}, c_{\alpha}, L)$$

Explosion energy bound, from the observed kinetic energy of the SN explosion

$$E_{\text{mantle}} = \int \mathrm{d}t \int_{0}^{R_{\nu}} \mathrm{d}r \int_{m_{a}/\lambda}^{\infty} \mathrm{d}\omega_{a} \, 4\pi r^{2}\lambda \, \omega_{a} \frac{\mathrm{d}n_{a}}{\mathrm{d}t \, \mathrm{d}\omega_{a}} \left(r, t, \omega_{a}\right) T(r, t, \omega_{a}) \left[1 - \exp\left(-\frac{R_{*} - r}{\ell_{a}(\lambda \, \omega_{a})}\right)\right]$$

See also Lucente & Carenza, Phys.Rev.D 104 (2021) 10, 103007

See also Jaeckel et al., Phys.Rev.D 98 (2018) 5, 055032; Hoof & Schulz, JCAP 03 (2023) 054; **EM** et al., JCAP 07 (2023) 056

See also Caputo et al., Phys.Rev.Lett. 128 (2022) 22, 221103

511 keV-line bound, from Galactic positrons annihilating into X-rays

$$N_{\rm pos} = \int d\omega_a \, \mathrm{BR}_{a \to e^+ e^-} \frac{\mathrm{d}N_a}{\mathrm{d}\omega_a} \left[\exp(-R_*/\ell_a) - \exp(-R_{\rm Gal}/\ell_a) \right]$$

See also Calore et al., Phys. Rev. D 104 (2021) 043016; De La Torre Luque et al. Phys.Rev.D 109 (2024) 10, 103028

Diffuse gamma-ray bound, from all past SNe

$$\frac{\mathrm{d}\phi_{\gamma}}{\mathrm{d}\omega_{\gamma}} \simeq \frac{1}{2\pi} \int_{0}^{\infty} \mathrm{d}z (1+z) n_{\mathrm{cc}}'(z) \int_{\omega_{\gamma}^{z}}^{\infty} \mathrm{d}\omega_{a} \frac{f_{\mathrm{D}}(\omega_{a})}{\omega_{a}} \frac{\mathrm{d}N_{a}}{\mathrm{d}\omega_{a}}$$

See also Calore et al., Phys.Rev.D 102 (2020) 12, 123005; Caputo et al., Phys.Rev.D 105 (2022) 3, 035022

(in fact, the diffuse flux is calculated in a more cumbersome way, soon to be published, but for light ALPs the above approximation holds.)

SDU 🎓

Leptonic ALPs from SNe: Results (electrons)

Leptonic ALPs from SNe: Results (muons)

Leptonic ALPs: Loops in E137 beamdump

SDU 🎓

Different colors ~ effect of loop-induced photon coupling

Axionlike particles: "QCD ALPs"

ALPs are naturally light, weakly interacting pseudoscalar particles that appear in many BSM theories \rightarrow Both axions and ALPs are pseudo-Goldstone bosons of chiral U(1) theories (hence "axion-like") \rightarrow At low energies $E \ll \Lambda$, all these models are described by the same effective field theory (EFT):

$$\mathcal{L} \supset -\frac{1}{2}a(\Box + m_a^2)a + \frac{1}{4}g_{a\gamma}a F_{\mu\nu}F^{\mu\nu} + \sum_{\ell}\hat{g}_{a\ell}(\partial^{\mu}a)\ell\gamma_5\gamma_{\mu}\ell + \sum_{N}g_{aN}\frac{\partial_{\mu}a}{2m_N}N\gamma^{\mu}\gamma_5N$$

Photon coupling Lepton couplings Mass (free parameter, not related to couplings)

Non-relativistic nucleon couplings

 \rightarrow Are all these couplings independent? No, Quantum effects mix them! For collider phenomenology, see, e.g., Bauer et al.: 1708.00443, 2012.12272

 \rightarrow If you are interested in the phenomenology of one of these couplings, others might be unavoidable

"QCD ALPs" have photon couplings!

→ ALPs that interact with gluons and/or quarks (but are not the QCD axion!)
 → Interesting for phenomenology: low-energy couplings to nucleons and pions are very efficient in SNe

Production via "irreducible" photon interaction is negligible here

"QCD ALPs" produced in SNe

For a review of nuclear ALP-production see *Carenza, Eur.Phys.J. Plus (2023) 138:836*

SDU 🎓

"QCD ALPs" from SNe: Results

Lella, ER, et al., Phys.Rev.D 110 (2024) 4, 043019

SDU 🎓

These results assume $g_{an} = 0$ for definiteness.

"QCD ALPs" from SNe: Results

Lella, ER, et al., Phys.Rev.D 110 (2024) 4, 043019

SDU 🎓

Axionlike particles: Standard, photophilic case

→ ALPs are naturally light, weakly interacting pseudoscalar particles that appear in many BSM theories → Both axions and ALPs are pseudo-Goldstone bosons of chiral U(1) theories (hence "axion-like") → At low energies $E \ll \Lambda$, all these models are described by the same effective field theory (EFT):

$$\mathcal{L} \supset -\frac{1}{2}a(\Box + m_a^2)a + \frac{1}{4}g_{a\gamma}a F_{\mu\nu}F^{\mu\nu} + \sum_{\ell}\hat{g}_{a\ell}(\partial^{\mu}a)\mathcal{Z}\gamma_5\gamma_{\mu}\ell + \sum_{N}g_{aN}\frac{\partial_{\mu}a}{2m_N}N\gamma^{\mu}\gamma_5N$$

Mass (free parameter,
not related to couplings)Photon coupling
Photon couplingLepton couplingsNon-relativistic
nucleon couplings

→ Are all these couplings independent? No, Quantum effects mix them! For collider phenomenology, see, e.g., Bauer et al.: 1708.00443, 2012.12272

 \rightarrow If you are interested in the phenomenology of one of these couplings, others might be unavoidable

Standard ALP production

RG-induced running couplings to nucleons and pions:

$$C_p \simeq C_n \simeq 10^{-4} \frac{2\pi f_a}{\alpha} g_{a\gamma}$$

Even though these are small, the resulting QCD processes seemingly dominate ALP production!

→ This should be included in all ALPstudies (after a careful check)

Axionlike particles: One-loop effects for astro-phenomenology

Studying the phenomenology of	you cannot ignore	Disclaimer
ALP-lepton couplings g_{ae} , $g_{a\mu}$, $g_{a\tau}$	ALP-photon coupling $g_{a\gamma}$ (structure factor (not RG running))	For high-energetic ALPs with $E \gtrsim m_{\ell}$; Probably also g_{aN} , $g_{a\pi}$,
ALP-photon coupling $g_{a\gamma}$	ALP-QCD couplings g_{aN} , $g_{a\pi}$, (via RG running)	For ALP-production in SNe at least (with a high density of nuclear matter)
ALP-QCD couplings g_{aN} , $g_{a\pi}$,	ALP-photon coupling $g_{a\gamma}$ (construction of IR EFT)	Yields observable signals

SN-ALP decay: γ -ray signals from beyond the Galaxy

On May 18th 2023, SN 2023ixf was observed at an estimated distance of ~7 Mpc (more than 100x further away than SN 1987A). This is what *Fermi*-LAT could have seen:

SN-ALP decay: γ -ray signals from beyond the Galaxy

ER et al., *Phys.Rev.D* 109 (2024) 2, 2 28

SN-ALP decay: γ -ray signals from beyond the Galaxy

Conclusion & Outlook

 \rightarrow Supernovae are great laboratories to search for axionlike particles

 \rightarrow There are many observables to look for, and predicting them is numerically quite costly

→ Even in phenomenological EFT models, higher-order QFT effects play an important role

→ Effective ALP couplings are not independent! And corrections are important in SNe

 \rightarrow Upcoming:

- → Comprehensive SN constraints for leptonic ALPs (with M.C.D. Marsh and R. Ferreira)
- → *Fermi*-LAT search for the time signature of ALP-induced gamma-ray bursts from nearby SNe (with M. Meyer, P. Carenza, C. Eckner, A. Goobar)
- \rightarrow Directly observing SN ALPs in neutrino detectors

(with M. Meyer, N. Nath, P. Carenza)

Thanks for your attention!

SDU 🎓

Back-up slides

$$\mathcal{L}_{\text{QCD}} = \sum_{\sigma} \bar{q} \left(i \not\!\!D - m_q e^{i\theta_q \gamma_5} \right) q - \frac{1}{4} G^{a \,\mu\nu} G^a_{\mu\nu} + \theta \frac{g_s^2}{32\pi^2} G^{a \,\mu\nu} \tilde{G}^a_{\mu\nu}$$

The QCD axion

The landscape of QCD axion models, di Luzio et al., 2003.01100

 $\bar{\theta} = \theta + \theta_a$

The strong CP problem

The neutron has no observable electric dipole moment:

 $d_n \lesssim 10^{-26} e \,\mathrm{cm}$

However, d_n can be calculated from QCD:

 $d_n \simeq 10^{-16} \bar{\theta} \ e \ \mathrm{cm}$

where a priori $\bar{\theta} \in [0, 2\pi)$, but is experimentally found to be very close to zero \rightarrow fine-tuning problem

Peccei-Quinn solution

Implement a new, chiral $U(1)_{PQ}$ symmetry that allows $\bar{\theta}$ to dynamically relax to zero The pseudo-Goldstone boson of the spontaneously broken $U(1)_{PO}$ is the **axion**

 $\overline{\Theta}=0$

♦V(a)

→ Among the technical advances in our recent work: anisotropic ALP-absorption probability
 → In the Cooling bound and Explosion energy bound, the transmissivity is given as an angular average

$$T(r, t, \omega_a) = \frac{1}{2} \int_{-1}^{1} \mathrm{d}\cos\theta \, e^{-\tau(r, t, \omega_a, \cos\theta)}$$

with the optical depth

S

$$\tau(r,\omega_a,\cos\theta) = \frac{1}{2\pi^2} \int_0^{s_{\max}} \mathrm{d}s \, \frac{\omega_a^2 - m_a^2}{\exp[\omega_a/T(r'(s))] - 1} \left[\frac{\mathrm{d}^2 n_a}{\mathrm{d}t \, \mathrm{d}\omega_a} \left(r'(s),\omega_a \right) \right]^{-1},$$

with $r'(s) = \sqrt{r^2 + s^2 + 2rs\cos\theta}, \ s_{\max} = \sqrt{R_{\mathrm{far}}^2 - (1 - \cos^2\theta)r^2} - r\cos\theta$

Following Caputo et al., JCAP 08 (2022) 08, 045

Supernova models from simulations

SDU 🎓

ALPs decay into photons

Photophobic ALPs decay at one-loop level with a lifetime of $(1.2 - 10^{-12})^2$ (1001 J

$$\tau_{a \to \gamma \gamma} \simeq 13.8 \,\mathrm{Gyr} \left(\frac{1.2 \cdot 10^{-12}}{g_{ae}}\right)^2 \left(\frac{100 \,\mathrm{keV}}{m_a}\right)^7$$

Ricardo Z. Ferreira, M. C. David Marsh, and **EM** Phys. Rev. Lett. 128, 221302 *See also Pospelov et al. 2008, Arias et al. 2012 for earlier work on this*

ALP-electron interactions in a plasma

→Calculating the bremsstrahlung matrix element with a pseudoscalar ALPelectron interaction yields:

$$\begin{aligned} \left| \mathcal{M}_{\text{brems}}^{\text{scalar}} \right|^2 &= (g_{ae})^2 f(m_e^{\text{eff}}, \dots) \end{aligned} \quad \text{Taking plasma effects into account} \\ &\equiv (2m_e \hat{g}_{ae})^2 f(m_e^{\text{eff}}, \dots) \end{aligned}$$

 \rightarrow On the other hand, since the pseudoscalar and derivative interactions lead

(in vacuum) to the same matrix element: $\left|\mathcal{M}_{\rm brems}^{\rm derivative}\right|^2 = 4p_e^2 \hat{g}_{ae}^2 f(m_e^{\rm eff}, \dots) = (2m_e^{\rm eff} \hat{g}_{ae})^2 f(m_e^{\rm eff}, \dots)$ Therefore, apparently $\mathcal{M}_{\rm brems}^{\rm derivative} \neq \mathcal{M}_{\rm brems}^{\rm scalar}$ in a plasma. Why is that?

See also Jaeckel et al., Phys.Rev.D 98 (2018) 5, 055032; Hoof & Schulz, JCAP 03 (2023) 054; **EM** et al., JCAP 07 (2023) 056

SN-ALP decay: γ -ray signals

Spectrum of <u>massive</u> ALPs from a SN 1987A-like event

SN-ALP decay: γ **-ray signals**

No γ-rays above background were observed by the Solar Maximum Mission after SN 1987A:

SN-ALP decay: Observer variables

We showed that there is a unique mapping $(\omega_a, c_\alpha, L) \leftrightarrow (\omega_\gamma, t, c_\theta)$, i.e. from variables describing the ALP to variables that the observer can control

$$/c = \beta_a^{-1} L + L_\gamma - d_{\rm SN}$$

EM et al., *JCAP* 07 (2023) 056

SN-ALP decay: Observer variables

$$\begin{split} \omega_a(\omega_\gamma, t, c_\theta) &= \omega_\gamma + \frac{m_a^2}{4\omega_\gamma} \left(1 + \frac{1 - c_\theta^2}{(t/d_{\rm SN} + 1 - c_\theta)^2} \right) \,, \\ L(\omega_\gamma, t, c_\theta) &= \frac{2\omega_\gamma \, p_a(\omega_\gamma, t, c_\theta)}{m_a^2} \left(\frac{t}{d_{\rm SN}} + 1 - c_\theta \right) \, d_{\rm SN} \\ c_\alpha &= \beta_a^{-1} \left(1 - \frac{m_a^2}{2\omega_a \, \omega_\gamma} \right) = p_a^{-1} \left(\omega_a - \frac{m_a^2}{2 \, \omega_\gamma} \right) \,, \end{split}$$

With which one can prove that if

then
$$\theta \sim \frac{t}{d_{\rm SN}} \sim 10^{-11}$$
 (for SN1987A) and in this case
 $\frac{d^3 F_{\gamma}}{d\omega_{\gamma} \, dt \, d\omega_a} = \frac{1}{\pi d_{\rm SN}^2} \frac{\omega_{\gamma}}{\tau_a \, p_a \, m_a} \frac{dN_a}{d\omega_a}(\omega_a) \, e^{-\frac{t}{\tau_a} \frac{2\omega_{\gamma}}{m_a}} \, \Theta_{\rm cons.}(\omega_{\gamma}, t, \omega_a)$

which was previously assumed to hold for $\tau_a \ll d_{SN}$ (see Oberauer et al. 1993, Jaffe & Turner 1997). But this condition is not fulfilled for relevant parts of the parameter space!

EM et al., *JCAP* 07 (2023) 056

SDU 🎓