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:: ultra−light ::

Dynamics of the zero mode: Φ̈ + 3HΦ̇ + m2Φ = 0

1. At early times m << H the field is frozen: Φ ∼ const
2. As soon as H ≲ m the field feels the potential: Φ ∼ a−3/2 cos(mt)
3. The energy density is ρ ∼ a−3 Ñ Scales like dust
4. The pressure density is P ∼ a−3 cos(2mt) Ñ Not cool?
5. On cosmological times P ≈ 0 + O(H/m) ≪ 1 Cool enough!
6. This is true regardless of spin because anisotropies average out
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R(g ) is the Ricci for the metric gµν , with strength mg
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)
Massless field Gµν , massive field Mµν with mFP ∼
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βnMPlThe matter coupling (Gµν + αMµν

)
Tµν has mixing/strength α

Theory Hassan and Rosen 2012 ⋄ DM Babichev+ w/FU 2016x2, Marzola, Raidal and FU 2017 and many more
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:: perturb ::

Each dark matter field wave is described by
Ma

ij (t) = √
2ρDM
m

cosm(1 + v2
a

2

)
t + k⃗a · x⃗ + Υa

εa
ij (r)

from which one finds the curvature perturbations
hij (t) = α

MPl
∑
a
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√
2ρDM

mMPl cosmt εij (x)

This looks like a continuous gravitational wave
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:: continuous gravitational waves ::

d Persistent, quasi-monochromaticThe coherence time is tcoh := 4π/mv2 = 2/fv2 ∼ 106/f

g (Extra) Long wavelengthIgnore the gradients within λdB := 2π/mv = 1/fv ∼ 103/f

e Continuous waves can be detected at much smaller sentitivityThanks to a longer integration time and h0 ∝ T−1/2obs Ï T−1/4obs T−1/4chunk
f There are three new polarisations!

ε(±2) = 1
2

(
1 ±i 0
±i −1 0
0 0 0

)
ε(±1) = 1

2

(
0 0 1
0 0 ±i
1 ±i 0

)
ε(0) = 1√
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( −1 0 0
0 −1 0
0 0 2

)



:: continuous gravitational waves ::

d Persistent, quasi-monochromaticThe coherence time is tcoh := 4π/mv2 = 2/fv2 ∼ 106/f

g (Extra) Long wavelengthIgnore the gradients within λdB := 2π/mv = 1/fv ∼ 103/f

e Continuous waves can be detected at much smaller sentitivityThanks to a longer integration time and h0 ∝ T−1/2obs Ï T−1/4obs T−1/4chunk
f There are three new polarisations!

ε(±2) = 1
2

(
1 ±i 0
±i −1 0
0 0 0

)
ε(±1) = 1

2

(
0 0 1
0 0 ±i
1 ±i 0

)
ε(0) = 1√

6

( −1 0 0
0 −1 0
0 0 2

)



:: continuous gravitational waves ::

d Persistent, quasi-monochromaticThe coherence time is tcoh := 4π/mv2 = 2/fv2 ∼ 106/f

g (Extra) Long wavelengthIgnore the gradients within λdB := 2π/mv = 1/fv ∼ 103/f

e Continuous waves can be detected at much smaller sentitivityThanks to a longer integration time and h0 ∝ T−1/2obs Ï T−1/4obs T−1/4chunk
f There are three new polarisations!

ε(±2) = 1
2

(
1 ±i 0
±i −1 0
0 0 0

)
ε(±1) = 1

2

(
0 0 1
0 0 ±i
1 ±i 0

)
ε(0) = 1√

6

( −1 0 0
0 −1 0
0 0 2

)



:: continuous gravitational waves ::

d Persistent, quasi-monochromaticThe coherence time is tcoh := 4π/mv2 = 2/fv2 ∼ 106/f

g (Extra) Long wavelengthIgnore the gradients within λdB := 2π/mv = 1/fv ∼ 103/f

e Continuous waves can be detected at much smaller sentitivityThanks to a longer integration time and h0 ∝ T−1/2obs Ï T−1/4obs T−1/4chunk

f There are three new polarisations!
ε(±2) = 1

2

(
1 ±i 0
±i −1 0
0 0 0

)
ε(±1) = 1

2

(
0 0 1
0 0 ±i
1 ±i 0

)
ε(0) = 1√

6

( −1 0 0
0 −1 0
0 0 2

)



:: continuous gravitational waves ::

d Persistent, quasi-monochromaticThe coherence time is tcoh := 4π/mv2 = 2/fv2 ∼ 106/f

g (Extra) Long wavelengthIgnore the gradients within λdB := 2π/mv = 1/fv ∼ 103/f

e Continuous waves can be detected at much smaller sentitivityThanks to a longer integration time and h0 ∝ T−1/2obs Ï T−1/4obs T−1/4chunk
f There are three new polarisations!

ε(±2) = 1
2

(
1 ±i 0
±i −1 0
0 0 0

)
ε(±1) = 1

2

(
0 0 1
0 0 ±i
1 ±i 0

)
ε(0) = 1√

6

( −1 0 0
0 −1 0
0 0 2

)



0 0 0 0 0 0 0

results
0 0 0 0 0 0 0



10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
-26

10
-24

10
-22

10
-20

10
-18

10
-18

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

f [Hz]

h

m [eV]

α=10 -10

α=10 -8

α=10 -6

α=10 -4

LISA

BBO

DECIGO

ET

CE

HLV

HLV opt

Fi�h Force

© Armaleo, López Nacir and FU, 2021



:: pipeline ::

➤ Generate a stack of 1000 ULDM waves
➻ Add noises from LIGO/Virgo data

➠ Build BSDs in 10 Hz frequency bands / 1 month long
✒ Make FFTs of the data with length given by vesc (about 105 s)

✏ Make the frequency/time peakmaps
➼ Count the peaks above a threshold θthr = 2.5

☛ Pick a detection critical ratio threshold
hopt ≈ 1.02

N1/4θ1/2thr
√

Sn (f )
TFFT,max

(
p0(1−p0)

p2
1

)1/4√
CRthr −

√
2erfc−1(2Γ)
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:: summary ::

Dark Matter remains a mystery in cosmologyUltra-light dark matter is a compelling candidateSpin-2 ULDM is special because the action is unique and non-negotiableThe metric perturbations look like a continuous gravitational waveWe are sensitive to α ∼ 10−6 or less with HLV at m ∼ 10−13 eVWe will be sensitive to α ∼ 10−8 or less with LISA at m ∼ 10−17 eVWatch out for actual data analysis

with JM Armaleo, D López Nacir, P C Moreiro Delgado, O J Piccinni JCAP2021 and in progress
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