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mics of the zero mode: & + 3H® + m*® =0

. At early times m << H the field is frozen: ® ~ const

. As soon as H < m the field feels the potential: ® ~ a~3/? cos(mt)
. The energy density is p ~ a~3 = Scales like dust

. The pressure density is P ~ a~3 cos(2mt) = Not cool?

. On cosmological times P ~ 0 + O(H/m) < 1 @ Cool enough! ®

. This is true regardless of spin because anisotropies average out
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V2 2 IR
Mi(t) = POM s | m <1 + V2a> t+ k- X+ Y, |E5(r)
m

from which one finds the curvature perturbations

hilt) = <= 3 Ma(e) = LY2P0M

- = 2
Mpy v mMpy

cos mt €;(x)
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’This looks like a continuous gravitational wave‘
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G Persistent, quasi-monochromatic
The coherence time is tey = 47w/mv? = 2/fv? ~ 10°/f

»=> (Extra) Long wavelength

Ignore the gradients within Agg := 271/mv = 1/fv ~ 103/f

%} Continuous waves can be detected at much smaller sentitivity
Thanks to a longer integration time and hg oc Ty /2 — T Y4 M4

ﬁﬁ There are three new polarisations!
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» Generate a stack of 1000 ULDM waves
** Add noises from LIGO/Virgo data
Build BSDs in 10 Hz frequency bands / 1 month long
*¢ Make FFTs of the data with length given by vesc (about 10°s)
= Make the frequency/time peakmaps
» Count the peaks above a threshold 6, = 2.5
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