# An overview of searches for axion decay into photons: from radio to X-rays

Axions in Stockholm Stockholm, 10.07.2025



University of Nottingham UK | CHINA | MALAYSIA

### Elisa Todarello





### Spontaneous decay (IR and higher)

#### **Stimulated decay** (radio)

Parametric resonance (radio)

## Topics



## Spontaneous decay









#### "2011 Compilation" (a subset thereof)

Cadamuro et al. "Cosmological bounds on pseudo Nambu-Goldstone bosons", JCAP 02 (2012) 032

- 1. photons produced in ALP decays inside galaxies would show up as a peak in galactic spectra that must not exceed the known backgrounds
- 2. photons produced in ALP decays when the universe is transparent must not exceed the extragalactic background light
- the ionization of primordial hydrogen caused by the 3. decay photons must not contribute significantly to the optical depth after recombination



## References



#### **Cosmic Background (UV, X-ray)**

Porras-Bedmar et al., "Novel bounds on decaying lacksquareaxionlike particle dark matter from the cosmic background", Phys.Rev.D 110 103501

#### **CMB** spectral distortions

- Liu et al., "Exotic energy injection in the early universe II: CMB spectral distortions and constraints on light dark matter", Phys.Rev.D 108 (2023) 4, 043531
- Capozzi et al., "CMB and Lyman-a constraints on dark matter decays to photons", JCAP 06 (2023) 060



## References



#### Gas heating

Wadekar et al., "Strong constraints on decay and annihilation of dark matter from heating of gas-rich dwarf galaxies", Phys.Rev.D 106 (2022) 7, 075007

#### **Cosmic optical background anisotropies**

- Nakayama et al., "Anisotropic cosmic optical background bound for decaying dark matter in light of the LORRI anomaly", Phys.Rev.D 106 (2022) 10, 103505
- Carenza et al., "Probing the blue axion with cosmic  $\bullet$ optical background anisotropies", Phys.Rev.D 107 (2023) 8, 083032







### $m_a$ [eV]

## References: IR to UV

- Grin et al., "A Telescope Search for Decaying Relic Axions", Phys.Rev.D 75 (2007) 105018
- Todarello et al., "Robust bounds on ALP dark matter from dwarf spheroidal galaxies in the optical MUSE-Faint survey", JCAP 05 (2024) 043
- Janish et al., *"Hunting Dark Matter Lines in the Infrared Background with the James Webb Space Telescope"*, Phys.Rev.Lett. 134 (2025) 7, 071002
- Yin et al., "First Result for Dark Matter Search by WINERED", Phys.Rev.Lett. 134 (2025) 5, 5
- Wang et al., "A Spectroscopic Search for Optical Emission Lines from Dark Matter Decay", Phys.Rev.D 110 (2024) 10, 103007
- Todarello et al., "Bounds on axion-like particles shining in the ultra-violet", JCAP 05 (2025) 070
- Saha et al., "Shedding Infrared Light on QCD Axion and ALP Dark Matter with JWST", 2503.14582
- Pinetti, "First constraints on QCD axion dark matter using James Webb Space Telescope observations", 2503.11753
- Todarello, "New bounds on Axion-Like Particles in the Ultraviolet from Legacy Data", 2506.19962

- Blank sky
  - Foster et al., "Deep Search for Decaying Dark Matter with XMM-Newton Blank-Sky Observations", Phys.Rev.Lett. 127 (2021) 5, 051101
  - Phys.Rev.D 107 (2023) 2, 023009
  - SPI observations", MNRAS 520 (2023) 3, 4167-4172
  - Dessert at al., "Limits from the grave: resurrecting Hitomi for decaying dark matter and forecasting leading sensitivity for XRISM", Phys.Rev.Lett. 132 (2024) 21, 211002
  - Fong et al., "Searching for Particle Dark Matter with eROSITA Early Data", 2401.16747

#### **Double-peak (Centaurus galaxy cluster)**

XRISM Observations", 2503.04726

![](_page_9_Picture_9.jpeg)

• Roach et al., "Long-exposure NuSTAR constraints on decaying dark matter in the Galactic halo",

Calore et al., "Constraints on light decaying dark matter candidates from 16 years of INTEGRAL/

• Yin et al., "Double Narrow-Line Signatures of Dark Matter Decay and New Constraints from

 $\Gamma_{a \to \gamma \gamma} \sim 10^{-22} \text{ yr}^{-1} \left( \frac{g}{10^{-13} \text{ GeV}^{-1}} \right)^2 \left( \frac{m}{4 \text{ eV}} \right)^3$ 

![](_page_10_Figure_2.jpeg)

### Decay rate in vacuum

#### We need a lot of axions!

#### **Dwarf spheroidal galaxies**

**Clusters of galaxies** 

**Milky Way** 

## **Dwarf Spheroidals**

![](_page_11_Figure_1.jpeg)

## Galaxy Clusters

![](_page_11_Picture_3.jpeg)

Image credit: ChetGPT

![](_page_11_Picture_5.jpeg)

## **Dwarf Spheroidals**

- High mass-to-light ratio
- •Typical mass  $10^8 10^9 M_{\odot}$
- Typical radius  $1 \ \rm kpc$
- Typical distance 100 kpc

## Galaxy Clusters

- High mass-to-light ratio
- Typical mass  $10^{14} 10^{15} M_{\odot}$
- Typical radius 1 Mpc
- •Typical distance  $> 10 {
  m ~Mpc}$

## Kinematics of the decay

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

# Flux density from ALP decay

#### power received flux density =area $\times$ (frequency or wavelength)

![](_page_14_Picture_2.jpeg)

 $\frac{\Gamma_{a\to\gamma\gamma}}{4\pi} \frac{1}{\sqrt{2\pi\sigma_{\lambda}}} e^{-\frac{(\lambda-\lambda_{obs})^2}{2\sigma_{\lambda}^2}} \int$  $d\Omega d\ell \rho_a[r(\theta,\Omega,\ell)] B(\Omega)$ 

![](_page_14_Picture_5.jpeg)

 $\star$ 

![](_page_14_Picture_6.jpeg)

## The MUSE instrument

#### Multi Unit Spectroscopic Explorer

- Measures flux in ~3720 channels  $4700 \text{ Å} < \lambda < 9350 \text{ Å}$  2.65 eV < m < 5.27 eV
- Spectral resolution  $\lambda/\Delta\lambda > 10^3$
- Field of view  $1' \times 1'$
- Spatial resolution  $~\sim 0.5^{\prime\prime}$

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

Image credit: Stephen Todd (ROE) and Douglas Pierce-Price (JAC)

## The data

## Look for radiation from ALP decay

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

Photo by ESO/G. Hüdepohl (atacamaphoto.com)

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

30 arcsec 60.7 pc Leo⊤ <mark>لٹ</mark>N E

![](_page_18_Picture_4.jpeg)

#### + Sculptor

## The MUSE-Faint Survey

30 arcsec 22.0 pc

Hya II

#### Zoutendijk+, The MUSE-Faint survey. III, 2112.09374

![](_page_18_Picture_10.jpeg)

![](_page_18_Picture_11.jpeg)

![](_page_18_Picture_12.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Figure_0.jpeg)

Condon, Ransom - Essential Radio Astronomy

## Hubble Space Telescope

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

Astronaut Steve Smith carefully removes STIS from the protective enclosure that carried it into orbit aboard the Space Shuttle Discovery.

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Figure_1.jpeg)

## Bounds

![](_page_25_Picture_0.jpeg)

#### In the UV, large optical depth due to scattering and absorption due to dust particles

![](_page_25_Figure_2.jpeg)

## **Dust Extinction**

Fitzpatrick, Publ.Astron.Soc.Pac. 111 (1999) 63-75

![](_page_25_Figure_5.jpeg)

# Axion stimulated decay

![](_page_26_Picture_1.jpeg)

In background of photons with momentum  $\vec{k}$  the decay rate is enhanced by a factor

 $t_{\gamma}(k)$ 

## Decay rate into photons

 $\Gamma_{a \to \gamma \gamma} = 10^{-43} \text{ yr}^{-1} \left( \frac{g}{10^{-15} \text{ GeV}^{-1}} \right)^2 \left( \frac{m}{10^{-5} \text{ eV}} \right)^3$ 

![](_page_27_Picture_6.jpeg)

![](_page_27_Picture_7.jpeg)

 $H_{a\gamma\gamma} \sim \sum a^{\dagger}_{\gamma}(\vec{k}) a^{\dagger}_{\gamma}(-\vec{k}) a_{a} + h.c.$ 

![](_page_28_Picture_2.jpeg)

- A photon of momentum  $-\vec{k}$  is created
- Decay rate is enhanced compared to vacuum by a factor  $\ f_{\gamma}(k)$

### **Bose-enhancement**

![](_page_28_Figure_6.jpeg)

## Enhancement factor

![](_page_29_Figure_1.jpeg)

Caputo, Regis, Taoso, Witte, JCAP 03 (2019) 027

ν<sub>γ</sub> [GHz]

*m*<sub>a</sub> [eV]

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

## Kinematics

![](_page_30_Picture_3.jpeg)

### The echo propagates \*almost\* backwards!

### **Back-light echo**

![](_page_31_Figure_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

## Echoes from natural sources

**Front-light echo** 

![](_page_31_Figure_7.jpeg)

### **Collinear emission**

![](_page_32_Figure_1.jpeg)

## Smearing of the signal

![](_page_32_Picture_3.jpeg)

z

![](_page_33_Figure_0.jpeg)

2008.02729

**Backlight echo** 

**Cygnus A** 

Caputo, Regis, Taoso, Witte

JCAP 03 (2019) 027

**Collinear emission** 

CMB, extragalactic radio bkg

![](_page_33_Figure_9.jpeg)

Sun, Schutz, Nambrath, Leung, Masui

PRD 105 (2022)

**Backlight echo** 

Supernova remnant

![](_page_34_Figure_4.jpeg)

Buen-Abad, Fan, Sun

PRD 105 (2022)

**Backlight echo** 

Supernova remnant

![](_page_34_Figure_9.jpeg)

![](_page_34_Picture_13.jpeg)

Dev, Ferrer, Okawa

JCAP 04 (2024) 045

#### **Backlight echo**

#### **Galactic center**

![](_page_35_Figure_4.jpeg)

Sun, Schutz, Sewalls, Leung, Wesley Masui PRD 109 (2024)

**Everything** 

#### **Extragalactic radio point sources, SNRs, Galactic synchrotron radiation**

![](_page_35_Figure_8.jpeg)

![](_page_35_Picture_9.jpeg)

![](_page_36_Figure_0.jpeg)

Guo, Xia, Huang

PLB 852 (2024) 138631

**Collinear emission** 

CMB, extragalactic radio bkg

2-hour observation of Coma Berenices

Yang, Sun, Wang, Schutz, Li, Leung, Hu, Shu, Masui, Chen 2502.08913

**Backlight echo** 

Vela supernova remnant

~30-hour observation

## **SKA-O AA4 Forecasts**

![](_page_37_Figure_1.jpeg)

Regis, Todarello et al., SKA book, in preparation

# Detailed Study of the Echo from a Point Source

![](_page_38_Picture_1.jpeg)

### E.T., F. Calore, M. Regis, JCAP 05 (2024) 040

![](_page_38_Picture_3.jpeg)

 $\theta_{i,0} \sim 2\delta v$ 

![](_page_39_Figure_1.jpeg)

#### **Relevant effects**

- Dark matter density
- Dark matter velocity dispersion
- Dark matter average velocity
- Source's age
- Source's proper motion
- Source's distance
- Source's variability

![](_page_40_Figure_0.jpeg)

## An echo from an artificial source

Arza + Sikivie, PRL (2019) 13, Arza + **E.T.**, PRD 105 (2022) 2

![](_page_41_Picture_2.jpeg)

![](_page_41_Picture_3.jpeg)

Stimulate the decay of nearby dark matter axions into photons by sending out a powerful beam to space

![](_page_41_Picture_5.jpeg)

![](_page_41_Picture_6.jpeg)

Detect the photons that come back

![](_page_41_Picture_8.jpeg)

![](_page_42_Figure_0.jpeg)

$$E = 10 \,\mathrm{MW} \,\mathrm{yr}$$
  $s/n = 5 T_r$ 

Fixed energy to cover a factor of 2 in axion mass (dashed)

 $n = 20 \,\mathrm{K}$   $R = 50 \,\mathrm{m}$   $R_c = 100 \,\mathrm{m}$ 

## Parametric Resonance

![](_page_43_Picture_1.jpeg)

Levkov et al., PRD 102 (2020)

# **Exponential growth**

![](_page_44_Picture_1.jpeg)

 $\sigma = \frac{g}{2} \sqrt{\frac{\rho}{2}} \simeq 6 \times 10^{-24} \,\mathrm{eV}\left(\frac{1}{10}\right)$ 

 $\sigma^{-1} \simeq 3.5 \text{ yr} \simeq 1 \text{ pc}$ 

$$\frac{g}{10^{-11}\,\text{GeV}^{-1}}\right) \left(\frac{\rho}{0.4\,\text{GeV/cm}^3}\right)^{1/2}$$

## Resonance band

### $-2\sigma < \epsilon < 2\sigma$

# Easily detuned by change in velocity or gravitational potential!

### $m = 10^{-5} \text{ eV}$ $\Delta v$

$$\epsilon = 2\omega - p_{\parallel} - m$$

$$\omega = \frac{m}{2}(1+v_{\parallel})$$

$$\gamma \lesssim 10^{-17} \qquad \Delta \varphi \lesssim 10^{-15}$$

![](_page_46_Figure_0.jpeg)

Arza et al., JCAP 10 (2020) 013

#### Resonance develops if

### $\sigma R > 1$

(Tkachev, Phys. Lett. B191 (1987))

![](_page_47_Picture_0.jpeg)

![](_page_47_Figure_1.jpeg)

Maseizik et al., "Radio lines from accreting axion stars", JCAP 05 (2025) 033

See also Escudero et al., "Axion Star Explosions: A New Source for Axion Indirect Detection", Phys.Rev.D 109 (2024) 4, 043018

## **Axion Stars**

•One axion star per minicluster

 Minicluster mass function -> core-halo relation -> axion star mass function

Axion star unstable above critical mass

Accretion from surrounding halo or minicluster

![](_page_48_Picture_0.jpeg)

- Spontaneous axion decay into photons, search strategy for masses above ~1 eV
- For lower masses enhanced decay rate
  - Natural sources
  - Human made source: the echo experiment
- Parametric resonance for compact objects

## Conclusions

![](_page_48_Picture_7.jpeg)