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What is multi-messenger astronomy?

Multi-messenger astronomy combines signals from nuclel, neutrinos, and
photons.

' High icl
- Each messenger probes different aspects. oh energy particie <>
Atmosphere

. This process Is analogous to a particle
: : Cascade
physics reaction. e
. The source generates extremely high 0 ;..
center-of-mass energies. sy

$

Multi-messenger observations may
reveal new physics. Observers
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Observations and high-energy events

Various detectors are designed to observe specific cosmic messengers.

. y-rays — KASCADE, Pierre Auger, etc.
. Neutrinos — lceCube, KM3NeT, etc.
. nuclel — Plerre Auger, Telescope Array (TA), etc.

There exist ultra-high-energy events that challenge
standard astrophysical explanations.

® The AMATERASU particle : 10?" ¢V ultrahigh-
energy cosmic ray (UHECR) reported by TA.

Telescope Array Collaboration — W& f2 i

& KM3-230213A : a 220 PeV neutrino event
observed by KM3NeT. The KM3NeT Collaboration https://www.km3net.org/
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Greene, Prokopec, et al. 1997; Chung, Kolb, et al.

Super-heaw dark matter 1998, 2000; Chung, Crotty, et al. 2001; Chung,

2003; Kolb, Starobinsky, et al. 2007

These high energy events give new

. : : DM decay
motivations for exploring super-heavy dark Atmosphere
matter (SHDM) decay.
Cascade
This is because Astrophysical scenarios fail e
L
to account for these events. e

To source UHECRSs, DM has to be super-

heavy massive ~ 1071 GeV.

Observers

It Is comparable to the typical inflaton mass.
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What We dld Murase, YN, Wen 2025

. We propose a scenario where ALP DM plays the role of the inflaton In
natural inflation.

. There exists a parameter region consistent with both CMB data and
the DM relic abundance.

. We compute DM decays into 3-body channels, producing cosmic rays.

. Such decays can partially account for extreme-energy events,
including AMATERASU particles and KM3-2302 1 3A.
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Inflaton potential

To save the natural inflation, let us introduce V(6)/A*
a constant term during inflation, 1 —cosf

o
— cos ¢ 0 = .
| ) ( fcb)

An additional scalar field ¥ that generates
vacuum energy during inflation and removes y
It afterward.

V(0) = A 7]

Such a setup Is realized in scenarios like 0

. Double inﬂati()n SCenariO, Bedroya, Vafa 2020; Berera, Calderon 2019; Sasaki, Suyama et al. 2018;

. Hybrid inflation scenario. — | will mainly discuss in this talk.
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Dynamics during inflation

. slowly rolls. . IS Integrated out.
.- generates primordial density . plays a roll of a temporally
fluctuations. "dark energy’.
Vg, 0)
Vg, 0)
N

I—— ALP potential

The vacuum energy
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Dynamics during inflation

- slowly rolls, but its slope . starts to roll through the mixing.
becomes negligible. . drives the inflation instead of ¢.
Vo,V

ol Vg, V)

“True vaccum

®
0 0
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Dynamics after inflation

. rolls down toward the true
. pbehaves as matter.

| vacuum.
. remains as SHDM. . induces reheating.
Vg, W)
Vg, W)
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Determining 6. from the spectral index

We consider the field value at the end of inflation to be a free parameter.
Observed spectral index

Mg ohs = 0.9647 & 0.0043

Single field slow-roll inflation predicts

Planck 2018 collaboration

2
1
Ngobs = 1+ 2n(0x) — 6e(0x). — cos by §WM¢2 (Mg obs — 1)
b_c
We can get the field value at the CMB horizon exit.
If

5 The potential during
@ c > ~ 57 Inflation

1= s obs | 1
_ _ _ V(@) =N (y+1—cosb)
the potential tfails to match the CMB observations.
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Other constraints

We predict the value of r where the | We also get the running spectral

CMB scale exits the horizon as iIndex at 6 = 6.,
S _ 62 2_ 2 (1 — Tg obs)2
r o a 1 0 (1 — ns,obs) . (g ™ > ; .

Upper limit of tensor-to-scalar ratio | Observed running of spectral index
r < 0.036 at 95% confidence ae = —0.0045 4 0.0067

Excluded @ < o We do not allow the running
» T Myl cusss Lesro | PEYONd the 20 uncertainty.

The future reach is r — 0.001 It provides the strong restriction,

It is roughly given by ¢ ~ 89f,/M,). Blc < 14.
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Viable region for the inflation model

(1) Constraint from Lol future reach line
spectral Index \ No 0, for r = 0.001
> : ~
C Y 57 5()? _______________________ {(1——3 ____________________ ﬁ__“/ (C 89f¢/Mp1)
_ : B x 1077 ﬁ___ :
NEQ ----------------------- P S ——— @2 Constraint from
R tensor-to-scalar
i\ 5 x 1072 :;' — ratio
3 Constraint from > | - / c < 15 f¢
| — 0. Mol
running spectral |
IndeX 1015 1016 1017 1018
c < 14 fo |GeV]
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ALP DM mass

100- e |GeV)

1010

No 4,

:
|
l

101

1012

10"

10'¢ 1017

fo 1GeV]

1018

¢ can be DM to osclillate after inflation.
The mass of ¢ at the vacuum Is given by
/\2

f_¢.

It Is related to the Hubble parameter

, auring Inflation,

m¢:

YAt e 2
3M ¢

Then, we can determine m, by CMB

H; o~

111

S 2 B 9
normalization, AR’ObS — 2.1 x 107,
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The Initial phase for DM oscillation

The Initial angle 6,,; Is important to

estimate DM abundance.

If » does not change after inflation, we

can consider
Hini — eend°

Oend is determined by the e-folding

number, NV,

C(l _ ns,obs)

2
0. 1~ 2arct —NVi/c
end arctan (6 \/2 — C(l — nS?ObS)

) .

V(0)

\*

N

/

v
0 Hini — eend
The e-folding humber
€b* |V4
a
N, = In eﬂd> ~ d
( (i Qbend 8¢V ¢
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Prediction from misalignment mechanism

Through the misalignment mechanism, the DM abundance is given by

1/2 f )
T

b2 ~ .12 62 ® 0

® 1 (7 « 10—15 eV) (1015 GeV) ’

Workman et al. 2022

without fine-tuning 6; (6, = O(1)).

The predicted extremely small DM mass has triggered attempts to
reduce Its relic abundance.

. To apply fine-tuning to 6,
. To set fo < M)

C I"OdUCtiOn Kawasaki, Takahashi et al. 2005; Kawasaki, Nakayama et al. 2014
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Late reheating scenario
(D U field takes over the inflation energy,

P Inflationary era

~ 3M2 H2 O 2 172
P int- Pinf SM Hmf V-dominated era

py o a”

(2 ¢ field begins to oscillate after inflation,

~ H ~ \/ﬂqf/ (3M7).

Radiation
dominated era

proxa”

3 Both pg and py scale as a™* after the

onset of ¢ field oscillation. ¥
N aiy

4 Around py = pr, the universe is reheated
N Gapg Inap Ina

and enters a radiation-dominated era.
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DM abundance

The ALP abundance can be estimated

as
)
Q) ~ 0.256 'R ( J¢ ) |

No 4,

end10MeV \ 1015 GeV

The DM abundance decreases by a low
reheating temperature.

Tr = 1.8 MeV Is conservative lower

10° 02 - bOUI’]d fl"Om BBN Hasegawa, Hiroshima et al. 2019

~ S ~ 7

1015 1016 10'17\; 108 This bound does not apply in double
fs |GeV] inflation scenario.
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DM decay and flux prediction

We consider the DM decay from Milky Way.

| . e e P (7)
The predicted flux per solid angle is
MY
1 1 1 dWNV r 4 '
CD(E) —_— / SQdeQ )M IODM ( >, ,' ';0 ‘\‘
47 Ans?mpn AE mpng 4 R 1
] K ‘
[ ’¢"' // r \
where p;l\)%v(r) represents the DM dist. in our ol .
. '. ro(~ 8.2kpc) :
galaxy, which we adOpt dS. Navarro, Frenk et al. 1997 1 ’
MW P0
' T ) = . . ¢
PDM (T) r/rs(r/rg+ 1) ‘

(,0() ~ 0-46G€V/ Cmg, rs &= 14.4kpc) fitted from GaiaDR2 ~ Teeal et



DM decay spectra

To obtain the flux of SM particles in DM decay, we require a particle
theory.

Since the DM 1s a spin-zero scalar field and is much heavier than the
weak scale, the main decay channels are expected to be,

' q ml qq, AA, BB.
These decay channels have already

been considered by using HDMSpectra.
Bauer, Rodd et al. 2020 ; Das, Murase et al. 2023

x The ALP decay into two fermions Is forbidden by chirality arguments.

We will discuss the possiblilities of the three-body decays.
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Flux results from ¢ — Hqgq
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Flux results from ¢ — Hyg
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Flux results from ¢ — Hll
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Flux results from ¢ — Hll
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Summary

. We proposed a model where an ALP field ¢ plays the dual role of
iInflaton and SHDM.

. A viable region exists that satisfies both CMB constraints (ns, r, o)
and the observed DM relic abundance.

. We analyzed the various decay channels of SHDM and computed the
resulting fluxes of y -rays, nucleons, and neutrinos.

. The scenario predicts observational signatures in the future via
CMB(Lite-BIRD, CMB-54), UHECRs (TAx4, AugerPrime), and neutrino
observatories (lceCube-GenZ2, KM3NeT).
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Late reheating scenario

Let us estimate the ALP abundance.

P Inflationary era
— Energy density ratio o~ 3M2 H?
@, eray Y | Pint ~ SV iy U-dominated era
P P, ini 1 py X a "
R = ~ ) L a2 2202
"= oy SMZm? (ﬂ 2m¢f¢9end>

IS conserved until reheating.

@) We can drive the relation between the ¢

yield and energy density ratio, T,
v LAy

P _Pe < §TR = R, X §TR- In aepq Inag Ina
S Ircheating pr 4 4
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Spectra from particle cascade

The flux from DM decay U
P(F) =— [ s°dsdS2
. L | ]
dNpyr/dE 1S model-dependent and is typically
obtained through numerical simulations. pb °
* We use HDMSpectra_ Bauer, Rodd et al. 2020;
Y 142

This code provide a fragmentation function h
(probability density function),

_— a momentum fraction

DY (x5, o).
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Spectra from particle cascade
If the DM decay is seeded by DM — X X for an arbitrary SM state X, we

can write the spectrum of the observed particle (e.g. y-rays) as

dN ~
DM—X X —7 — -
= = D y(z;mppi/2,0) + Di(2:mpy/2,0). - (2= 2E/mpy)
H 10-1 ! o
mMpM
2 ;ﬁm S ))& In this case, we can
/ v . .
% easily obtain the
10~
: energy spectrum
+ x—+bb—~ | using HDMSpectra.
YT 00 102 10 10 This figure is taken from
b 0 T =2F/m,, https://arxiv.org/pdf/2007.15001.
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The DM decay channel: ¢ — Hyg

For concreteness, let us consider an interaction of the type,

LD ngﬂﬁLQ h.c.. ¢ -.1./].\4.62
MQ g

There are six types of decay channels in the broken phase: q

b — hurup, ¢ — W_drup, ¢ — Zurup,

» — hurup, ¢ = Widrup, ¢ = Zujup.
Then, from the fractional distribution fy(E) for Y = h,uy.dy,...ctc, W€
obtain
dN
dE

> [E dIn Ey fy(Ey)Dy (Ex/Ey:mg/3,0).
%
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The DM decay channel: ¢ — Hli

For concreteness, let us consider an interaction of the type,

HenPrL ¢
L D PHEeRIL - h.c. .
My

Similar to the case of ¢ — Hgq, there are six types of decay channels:
¢ — heper, ¢ = Wivrep, ¢ — Zerep,
© — herep, 0 - W_vrep, ¢ = Zejep.
Then, from the fractional distribution fy (£) for, we obtain
AN
dE

> /E dIn Ey fy(Ey)Dy (Ex/Ey;mg/3,0).
%
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