Exploring super-heavy ALP in cosmology via multi-messenger observations

Yuma Narita Tohoku Univ, TMU

Axion in Stockholm 2025 (week 3)

NORDITA, Stockholm

10th, July, 2025

Based on arXiv: 2504.15272 in collaboration with Kohta Murase and Wen Yin.

тоноки UNIVERSITY

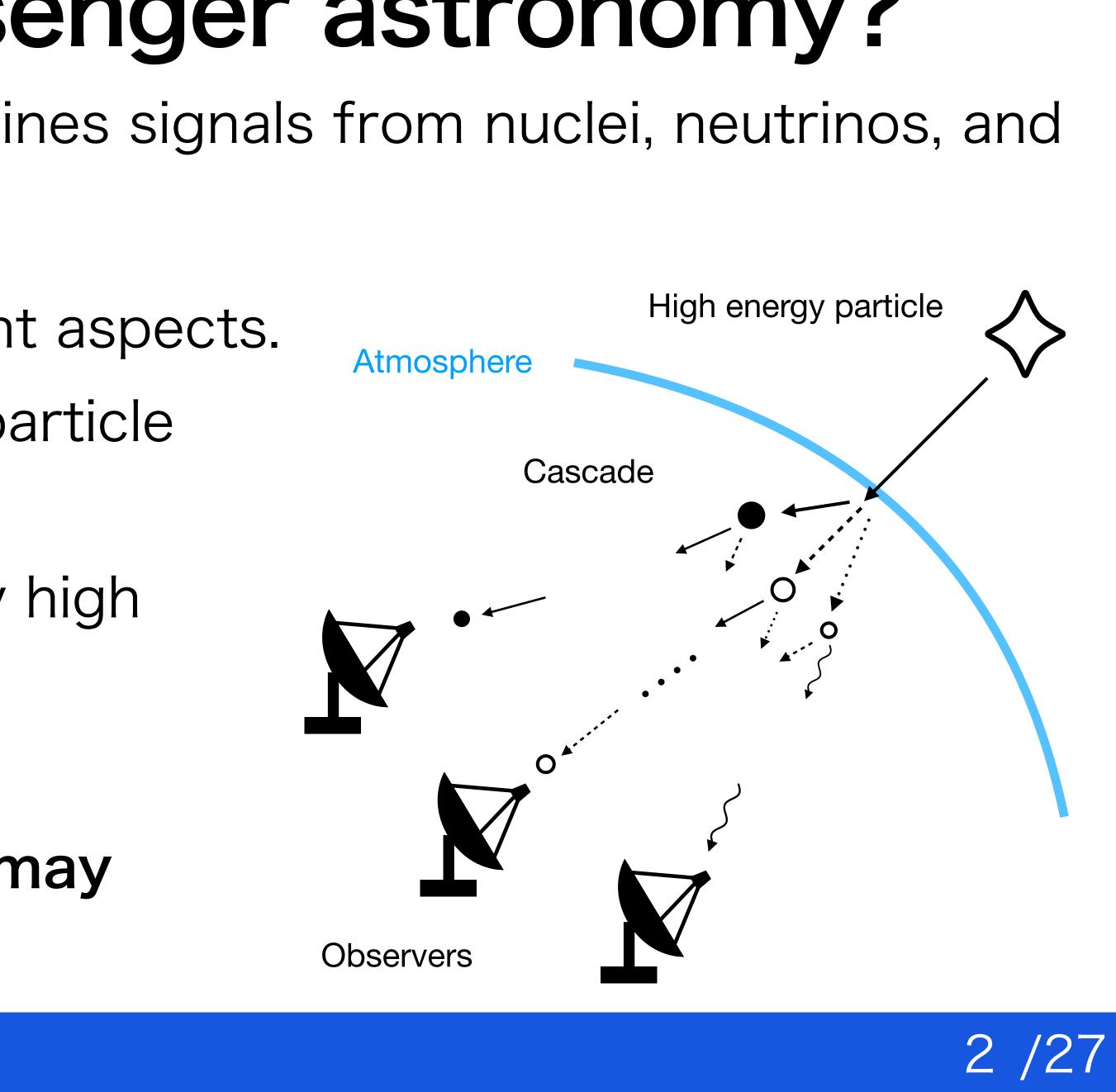
What is multi-messenger astronomy?

Multi-messenger astronomy combines signals from nuclei, neutrinos, and photons.

- Each messenger probes different aspects.
- This process is analogous to a particle physics reaction.
- The source generates extremely high center-of-mass energies.

Multi-messenger observations may reveal new physics.

1. Introduction



Observations and high-energy events

- γ -rays \rightarrow KASCADE, Pierre Auger, etc.
- Neutrinos \rightarrow IceCube, KM3NeT, etc.
- nuclei \rightarrow Pierre Auger, Telescope Array (TA), etc.

There exist ultra-high-energy events that challenge standard astrophysical explanations.

The AMATERASU particle : $10^{20} \,\mathrm{eV}$ ultrahighenergy cosmic ray (UHECR) reported by TA.

KM3-230213A : a 220 PeV neutrino event

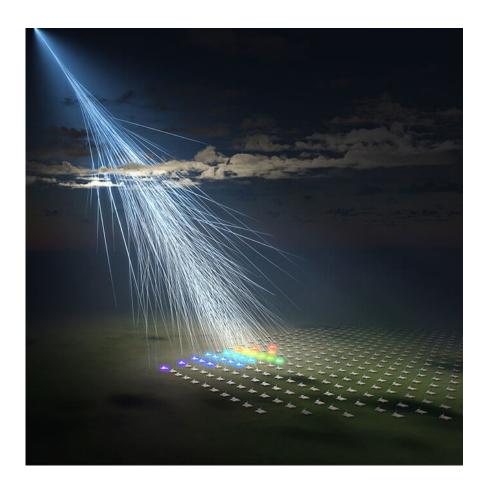
observed by KM3NeT.

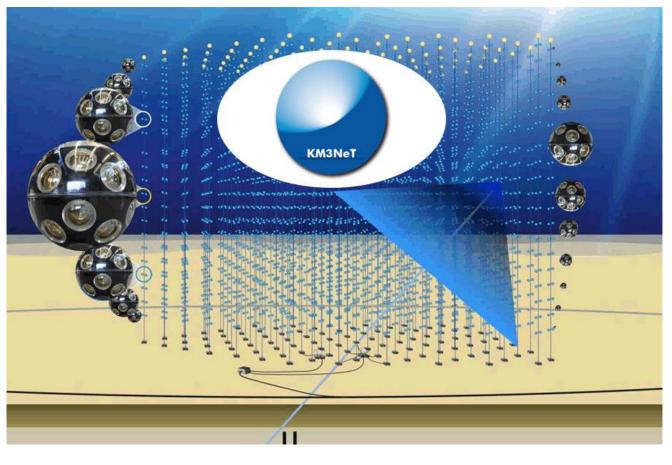
1. Introduction

Various detectors are designed to observe specific cosmic messengers.

Telescope Array Collaboration

The KM3NeT Collaboration





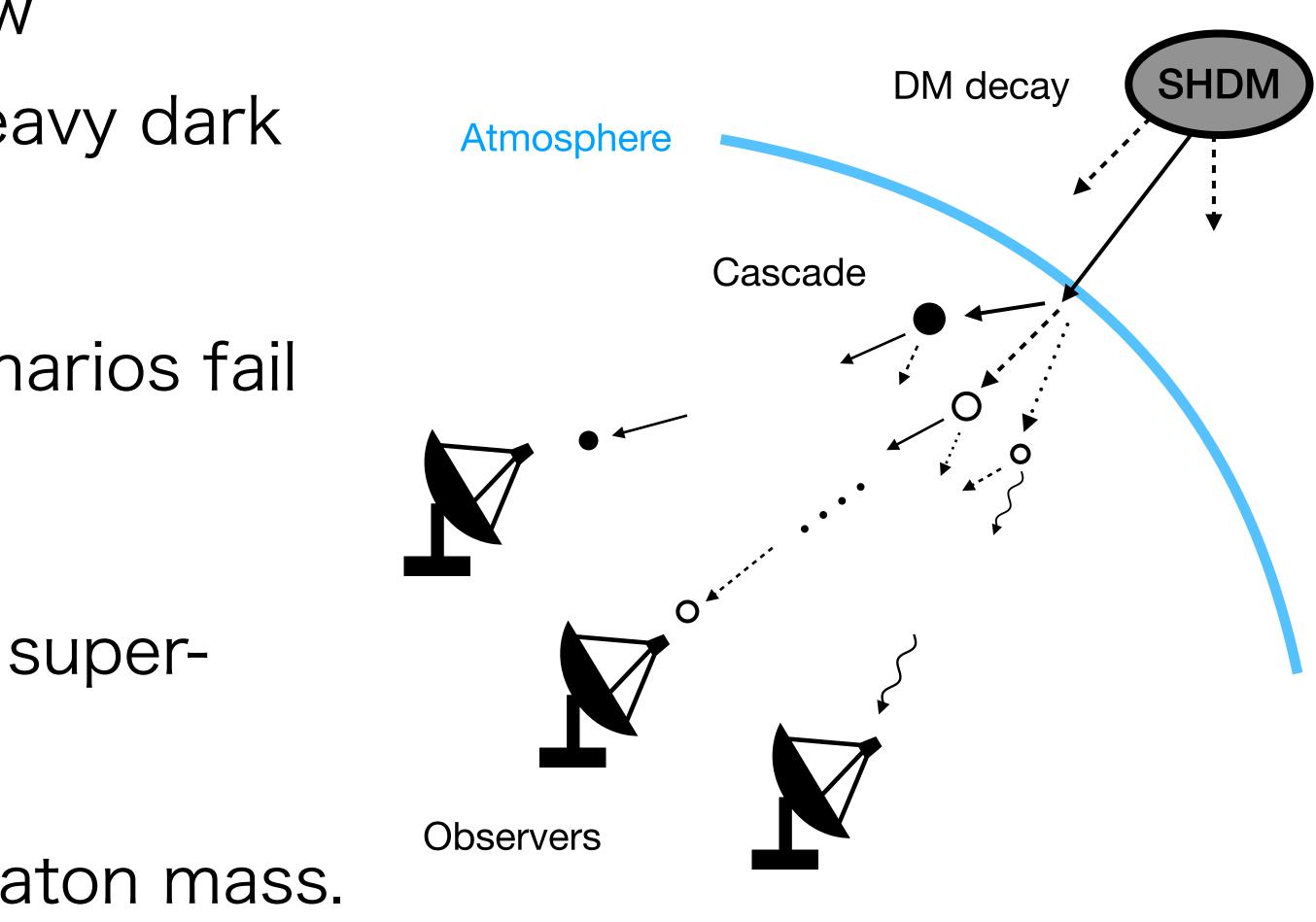
https://www.km3net.org/

Super-heavy dark matter

These high energy events give new motivations for exploring super-heavy dark matter (SHDM) decay.

This is because Astrophysical scenarios fail to account for these events.

To source UHECRs, DM has to be superheavy massive $\sim 10^{9-13} \,\mathrm{GeV}$. It is comparable to the typical inflaton mass. Greene, Prokopec, et al. 1997; Chung, Kolb, et al. 1998, 2000; Chung, Crotty, et al. 2001; Chung, 2003; Kolb, Starobinsky, et al. 2007



What we did

- natural inflation.
- the DM relic abundance.
- Such decays can partially account for extreme-energy events, including AMATERASU particles and KM3-230213A.

Murase, YN, Wen 2025

• We propose a scenario where ALP DM plays the role of the inflaton in

There exists a parameter region consistent with both CMB data and

We compute DM decays into 3-body channels, producing cosmic rays.

Outline

- 1. Introduction
- 2. Inflationary dynamics and DM abundance
- 3. Phenomenology of decaying ALP DM
- 4. Summary

1. Introduction

Inflaton potential

To save the natural inflation, let us introduce a constant term during inflation,

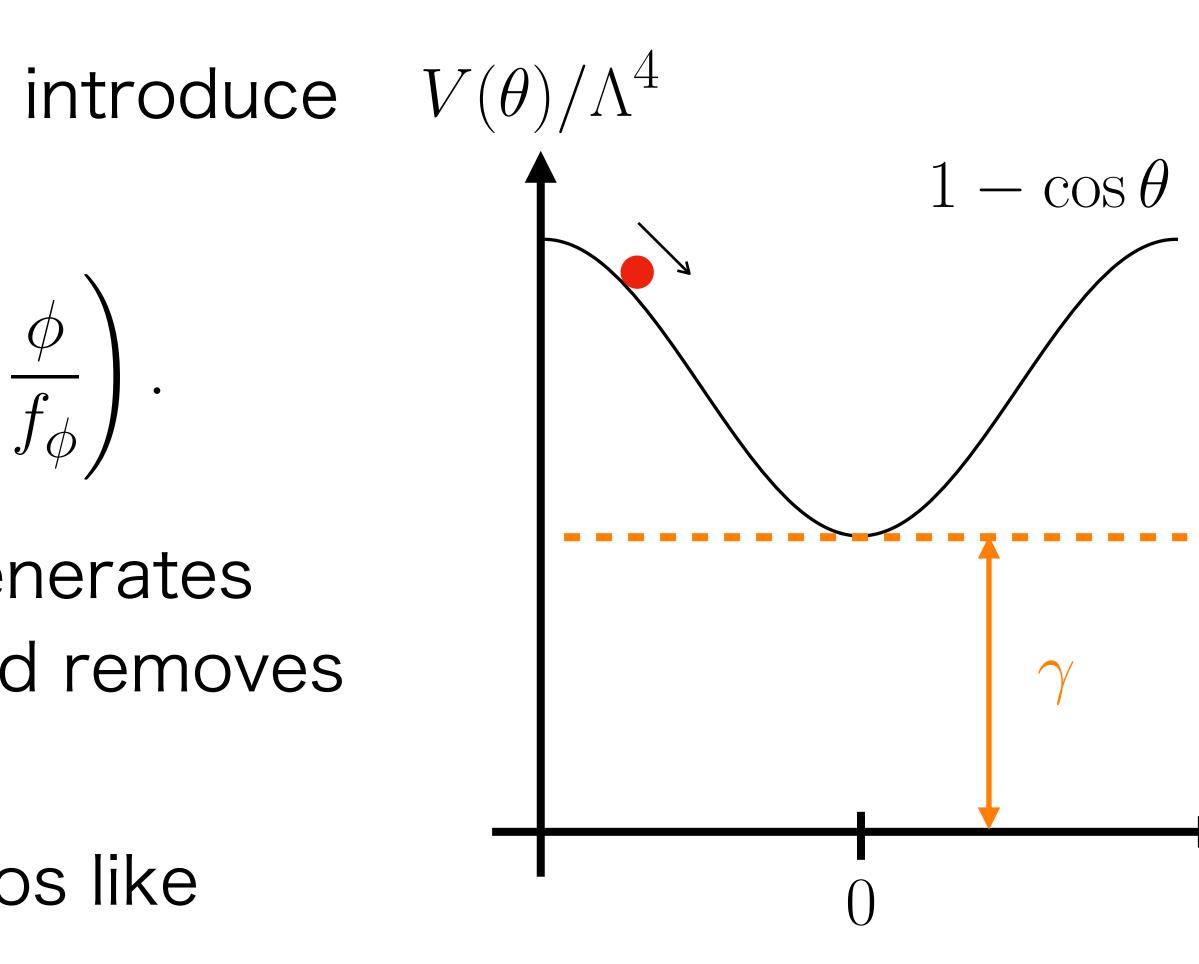
$$V(\theta) = \Lambda^4 \left[\gamma + 1 - \cos \theta \right] \quad \left(\theta \equiv \right)$$

An additional scalar field Ψ that generates vacuum energy during inflation and removes it afterward.

Such a setup is realized in scenarios like

- Double inflation scenario,
- Hybrid inflation scenario. \rightarrow I will mainly discuss in this talk.

2. Inflationary dynamics and DM abundance



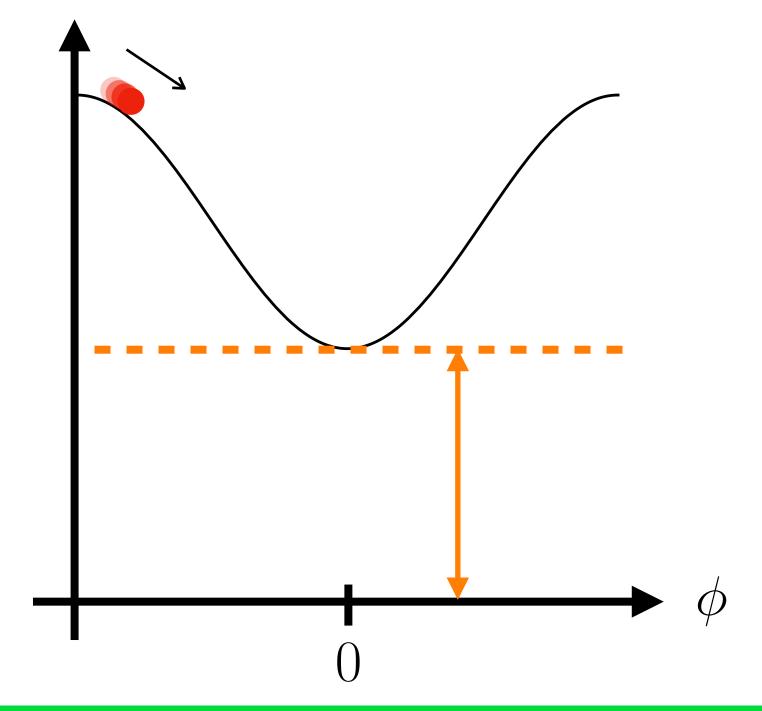
Bedroya, Vafa 2020; Berera, Calderon 2019; Sasaki, Suyama et al. 2018;

Dynamics during inflation

The ALP field ϕ

- slowly rolls.
- generates primordial density fluctuations.

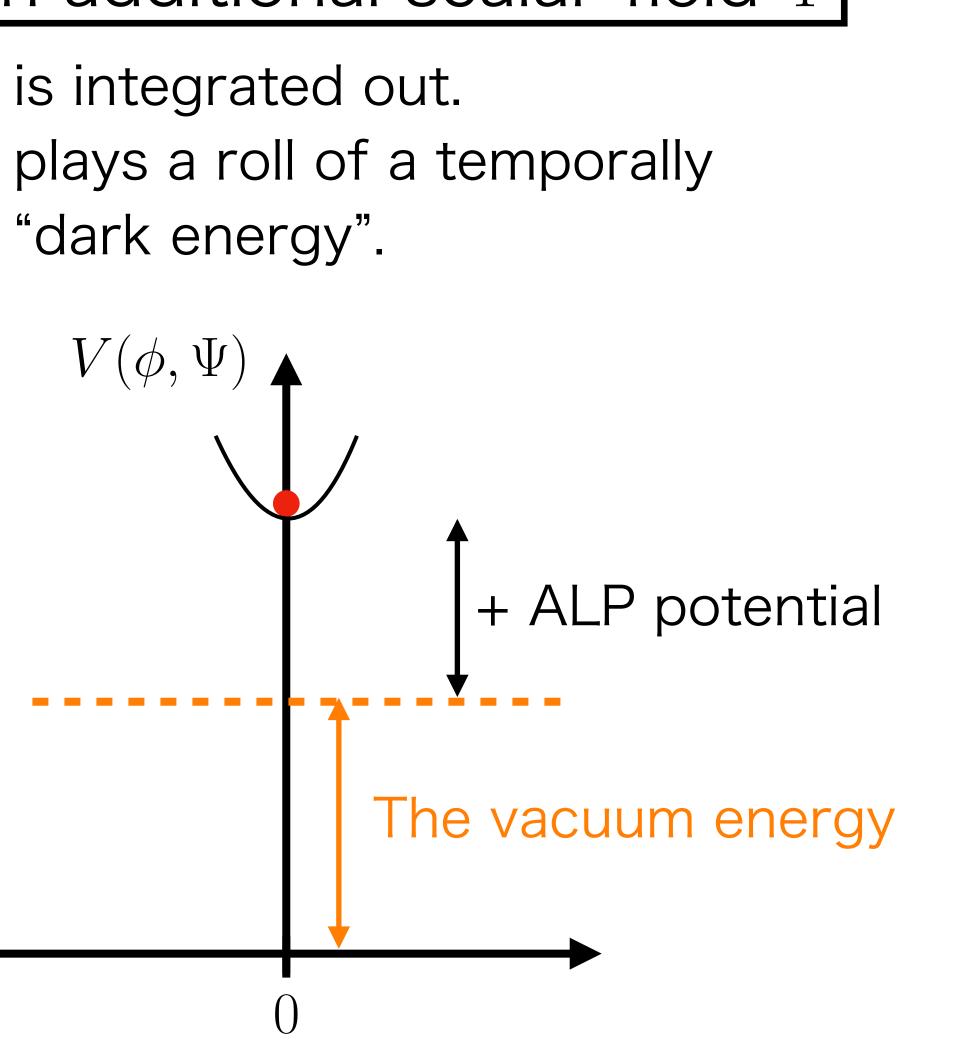
 $V(\phi, \Psi)$



2. Inflationary dynamics and DM abundance

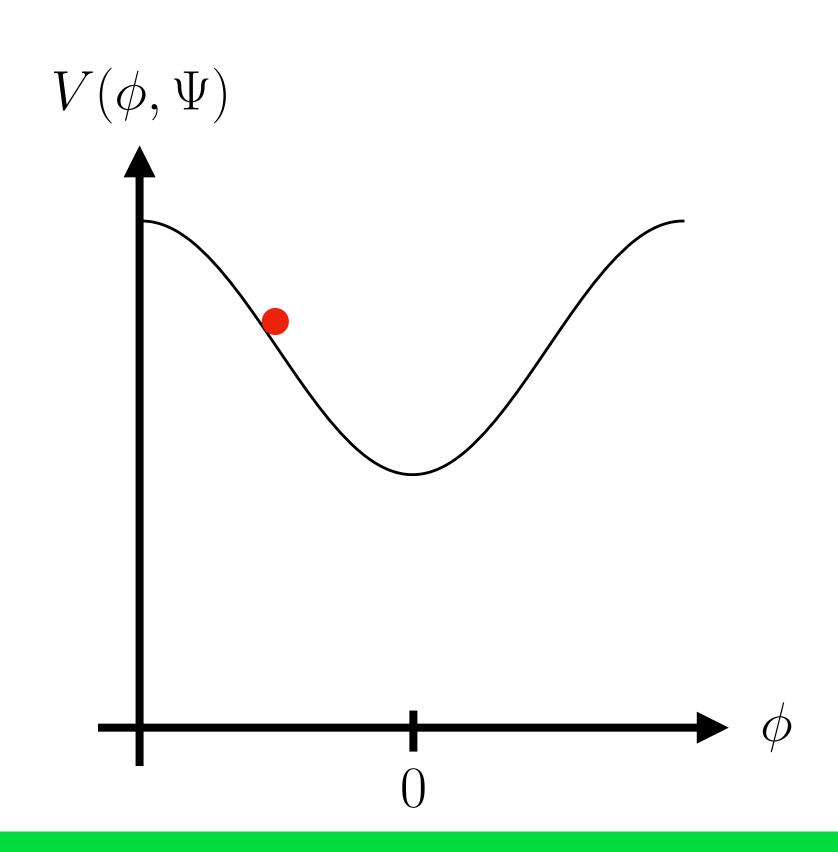
An additional scalar field Ψ

- is integrated out.
- plays a roll of a temporally "dark energy".



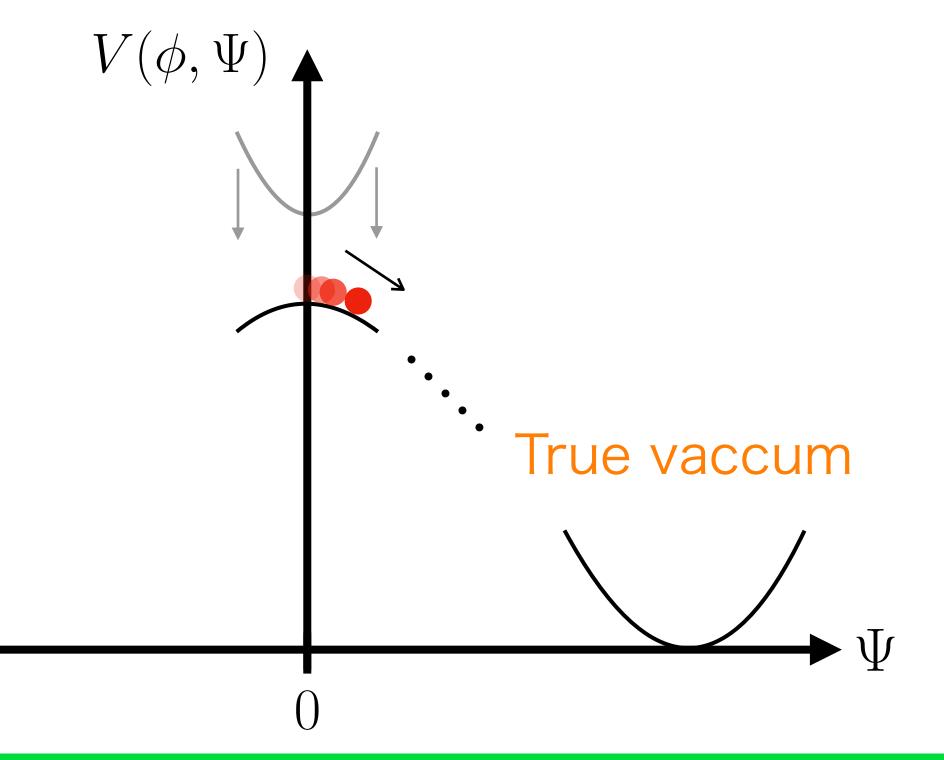
Dynamics during inflation The ALP field ϕ An additional scalar field Ψ

 slowly rolls, but its slope becomes negligible.



2. Inflationary dynamics and DM abundance

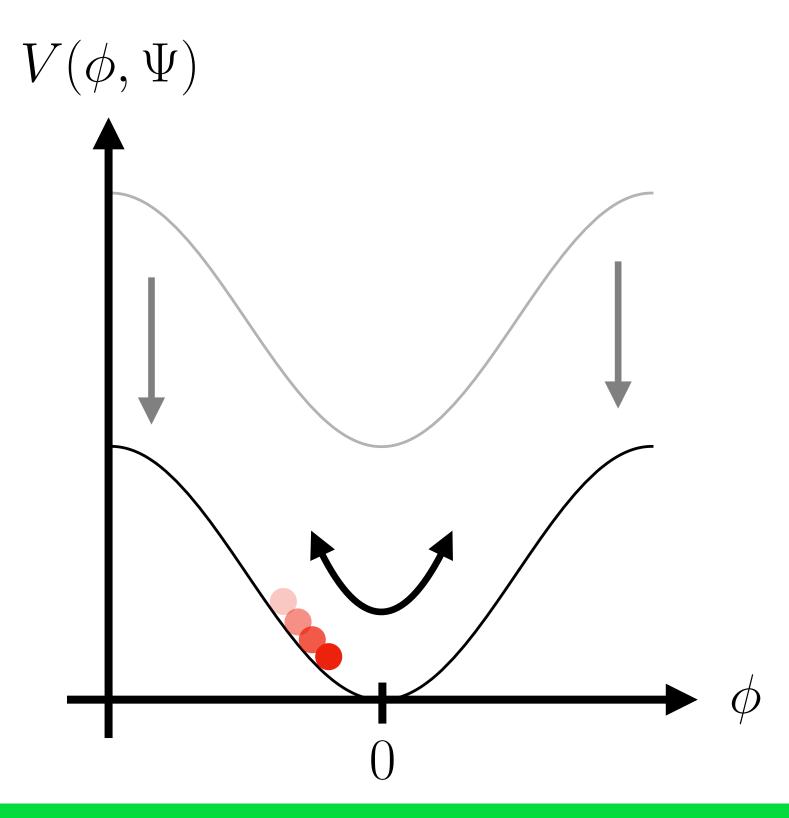
- starts to roll through the mixing.
- . drives the inflation instead of ϕ .



Dynamics after inflation

The ALP field ϕ

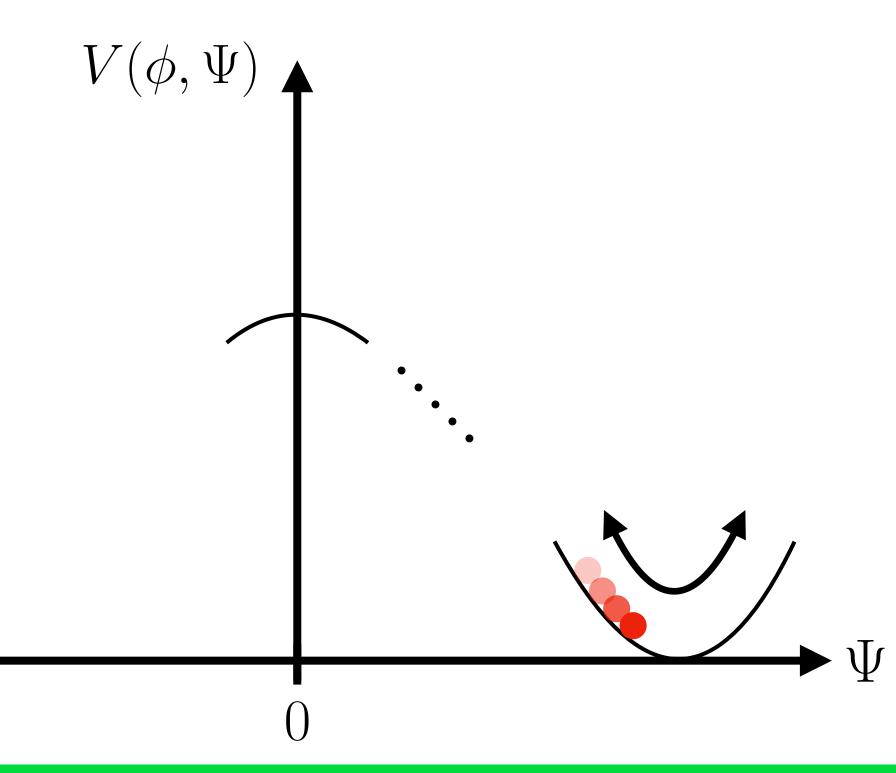
- behaves as matter.
- remains as SHDM.



2. Inflationary dynamics and DM abundance

An additional scalar field Ψ

- rolls down toward the true vacuum.
- induces reheating.

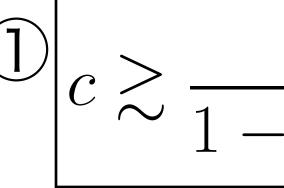


Determining θ_* from the spectral index We consider the field value at the end of inflation to be a free parameter. <u>Observed spectral index</u>

Single field slow-roll inflation predicts

$$n_{s,\text{obs}} = 1 + 2\eta(\theta_*) - 6\epsilon(\theta_*).$$

We can get the field value at the CMB horizon exit. lf



the potential fails to match the CMB observations.

2. Inflationary dynamics and DM abundance

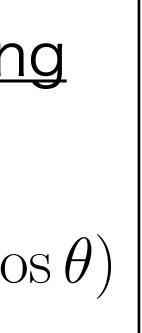
 $n_{s,\text{obs}} = 0.9647 \pm 0.0043$

Planck 2018 collaboration

). $\rightarrow \cos \theta_* \simeq \frac{1}{2} \gamma \frac{f_{\phi}^2}{M_{\rm pl}^2} (n_{s,\rm obs} - 1).$

 $\boxed{1} c \gtrsim \frac{2}{1 - n_{s,\text{obs}}} \sim 57 ,$

The potential during inflation $V(\theta) = \Lambda^4 \left(\gamma + 1 - \cos \theta\right)$



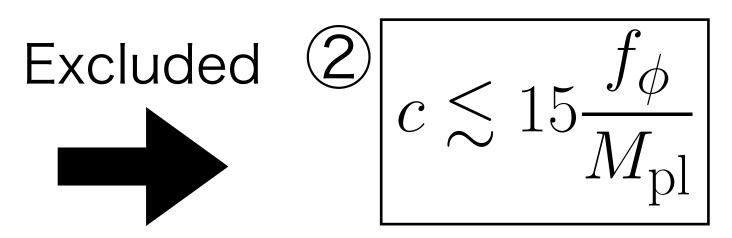
Other constraints

We predict the value of r where the CMB scale exits the horizon as

$$r \simeq \frac{8}{c\gamma} \left[1 - \frac{c^2}{4} \left(1 - n_{s,\text{obs}} \right)^2 \right]$$

<u>Upper limit of tensor-to-scalar ratio</u>

r < 0.036 at 95% confidence



The future reach is r = 0.001. It is roughly given by $c \sim 89 f_{\phi}/M_{\rm pl}$.

2. Inflationary dynamics and DM abundance

We also get the running spectral index at $\theta = \theta_*$,

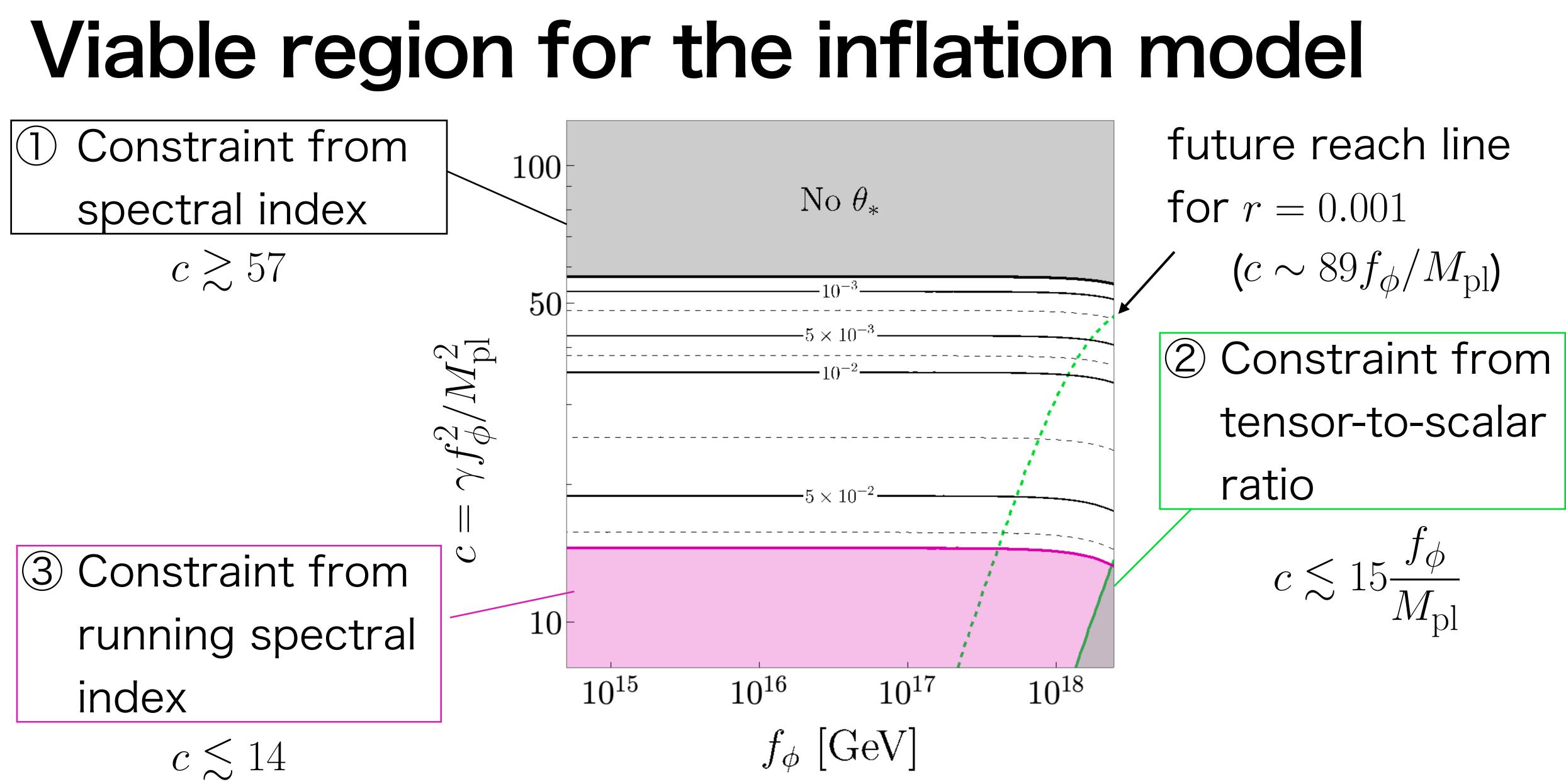
$$\alpha_s \simeq \frac{2}{c^2} - \frac{(1 - n_{s,\text{obs}})^2}{2}.$$

<u>Observed running of spectral index</u> $\alpha_s = -0.0045 \pm 0.0067$

We do not allow the running beyond the 2σ uncertainty.

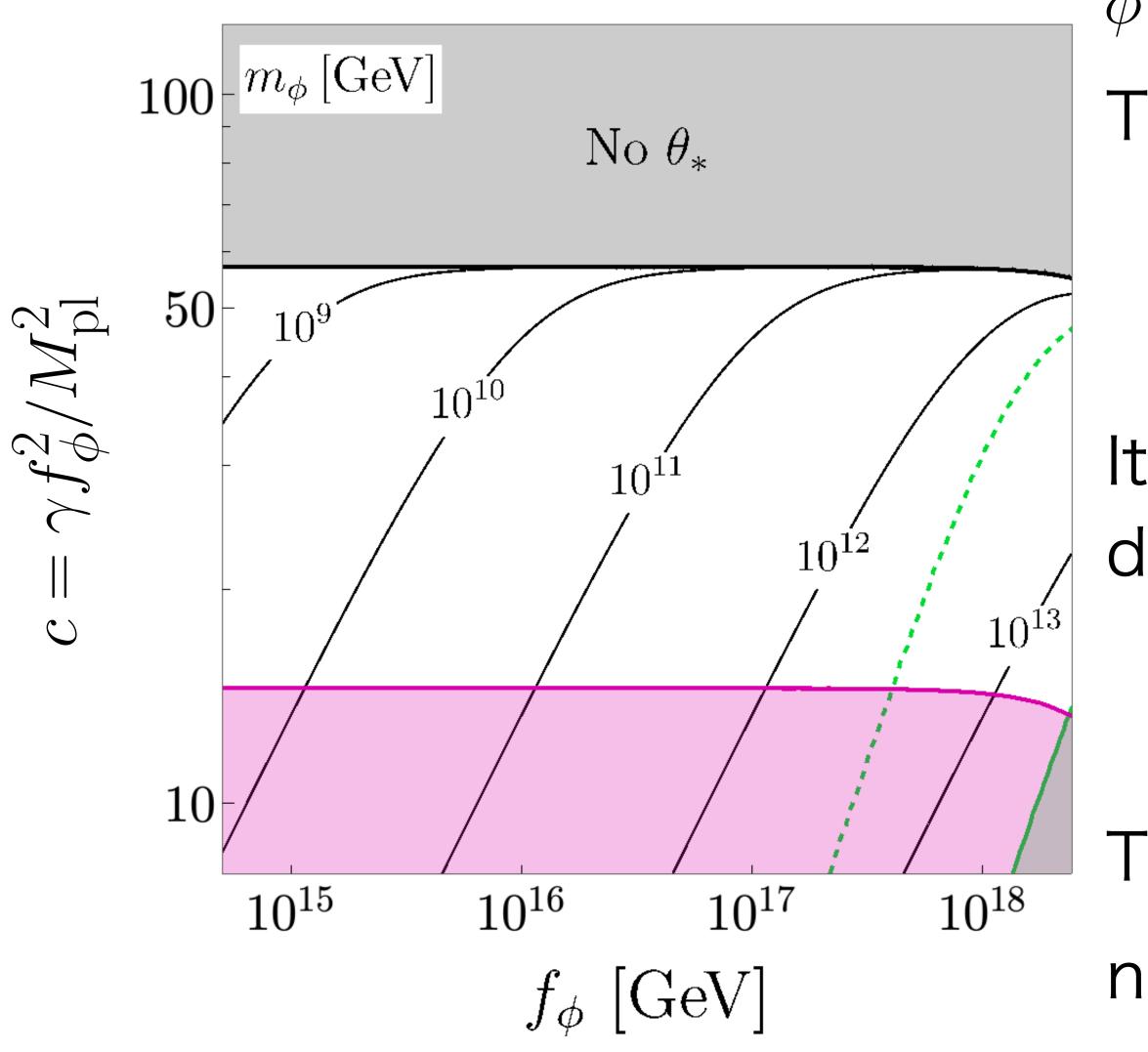
It provides the strong restriction,

$$\Im c \lesssim 14.$$



2. Inflationary dynamics and DM abundance

ALP DM mass



2. Inflationary dynamics and DM abundance

 ϕ can be DM to oscillate after inflation. The mass of ϕ at the vacuum is given by

$$m_{\phi} = \frac{\Lambda^2}{f_{\phi}}.$$

It is related to the Hubble parameter during inflation,

$$H_{\rm inf}^2 \approx \frac{\gamma \Lambda^4}{3M_{\rm pl}} = \frac{c}{3}m_{\phi}^2.$$

Then, we can determine m_{ϕ} by CMB

ormalization,
$$\Delta^2_{\mathcal{R},obs} = 2.1 \times 10^{-9}$$
.

The initial phase for DM oscillation

The initial angle θ_{ini} is important to estimate DM abundance.

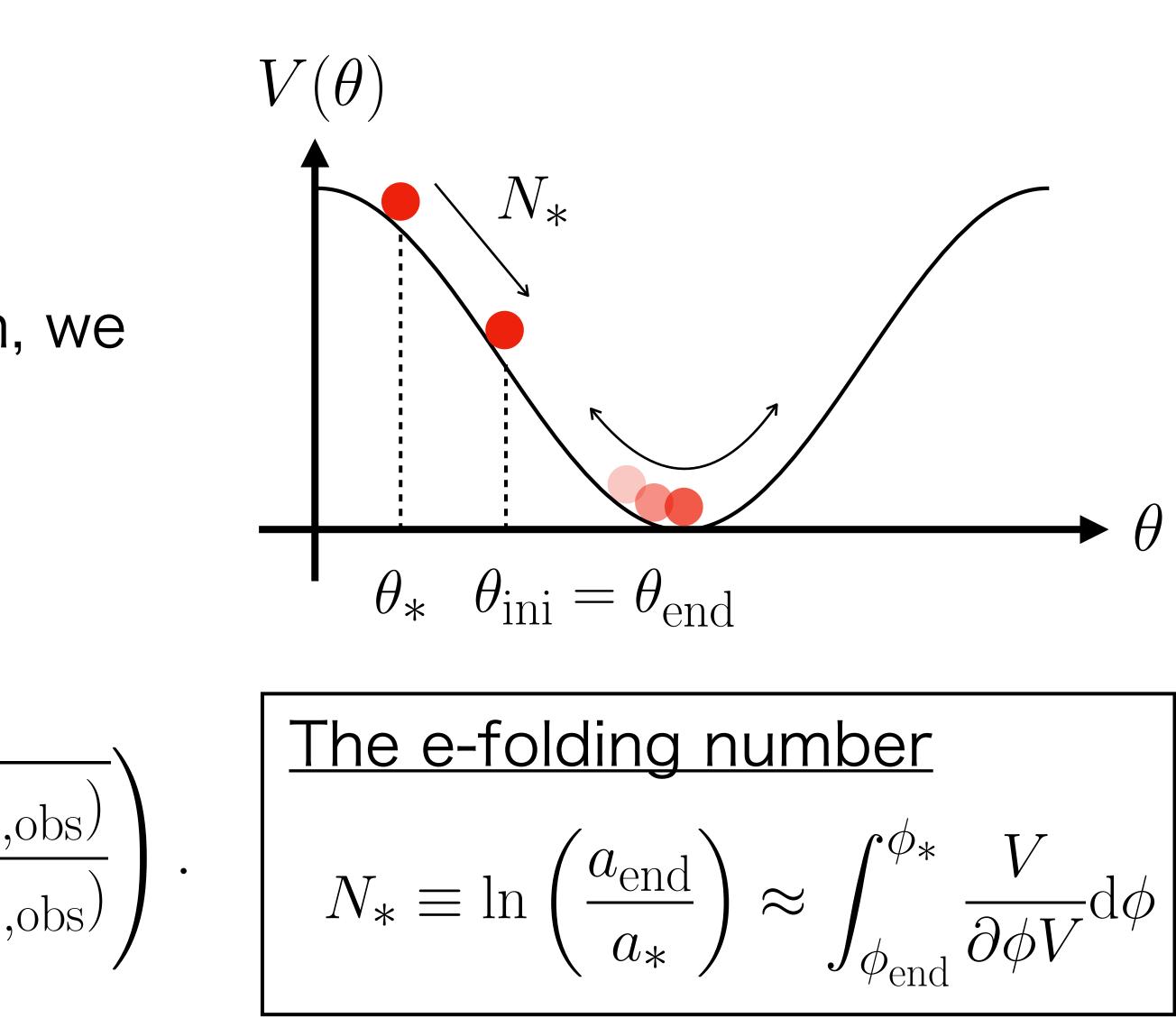
If ϕ does not change after inflation, we can consider

$$\theta_{\rm ini} = \theta_{\rm end}.$$

 θ_{end} is determined by the e-folding number, N_{*} ,

$$\theta_{\rm end} \simeq 2 \arctan\left(e^{-N_*/c}\sqrt{\frac{2+c(1-n_s)}{2-c(1-n_s)}}\right)$$

2. Inflationary dynamics and DM abundance



Prediction from misalignment mechanism

Through the misalignment mechanism, the DM abundance is given by

 $\Omega_{\phi}h^2 \simeq 0.12\,\theta_{\rm i}^2 \left(\frac{1}{4.7\,\times}\right)$

without fine-tuning θ_i ($\theta_i = O(1)$).

The predicted extremely small DM mass has triggered attempts to reduce its relic abundance.

- To apply fine-tuning to θ_i
- To set $f_{\phi} \ll M_{\rm pl}$
- Late-time entropy production

2. Inflationary dynamics and DM abundance

$$\frac{m_{\phi}}{10^{-15}\,\text{eV}}\right)^{1/2} \left(\frac{f_{\phi}}{10^{15}\,\text{GeV}}\right)^2$$

Workman et al. 2022

This work

Kawasaki, Takahashi et al. 2005; Kawasaki, Nakayama et al. 2014

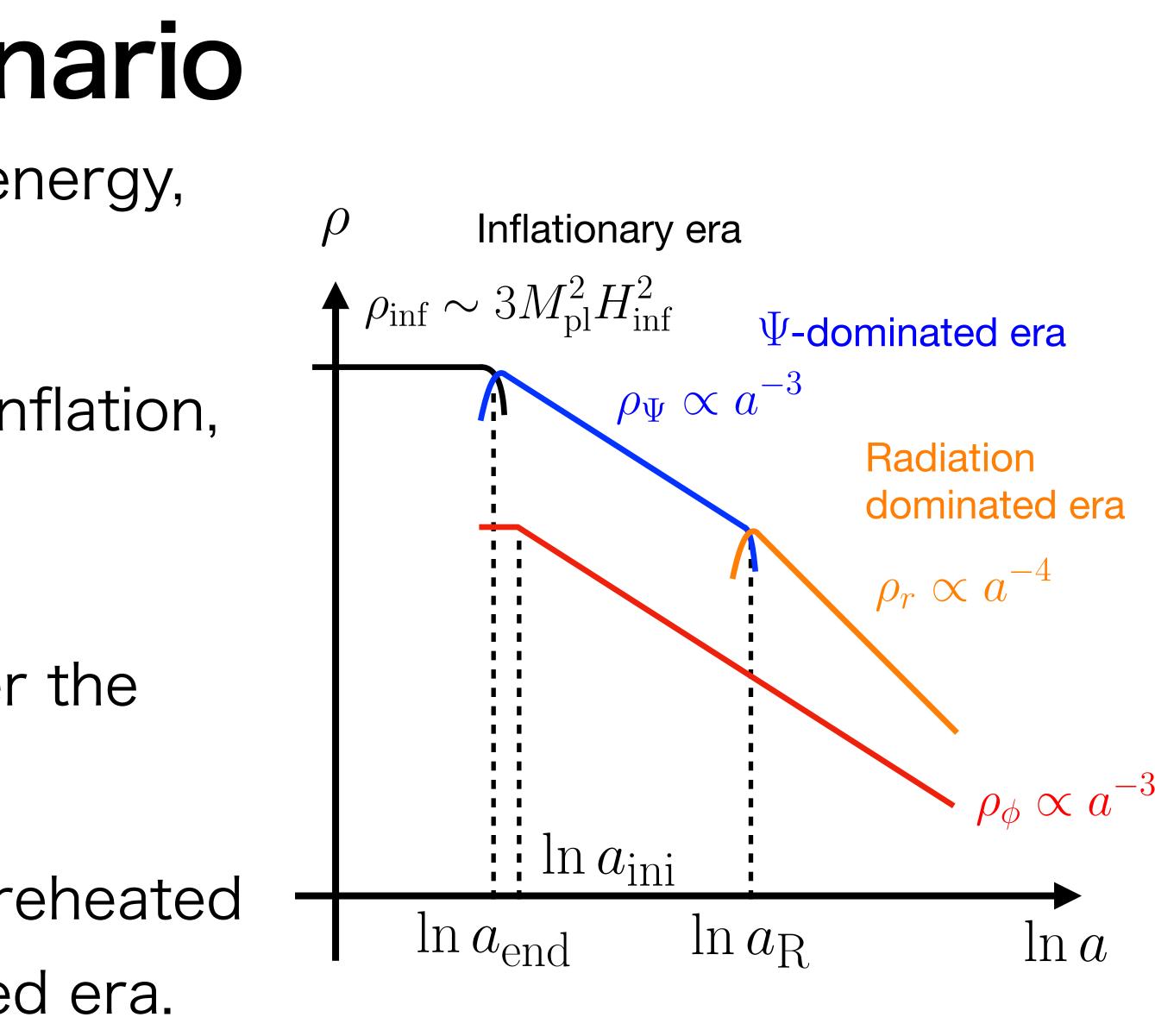
Late reheating scenario

 Ψ field takes over the inflation energy, $\rho_{\Psi} \sim 3M_{\rm pl}^2 H_{\rm inf}^2$.

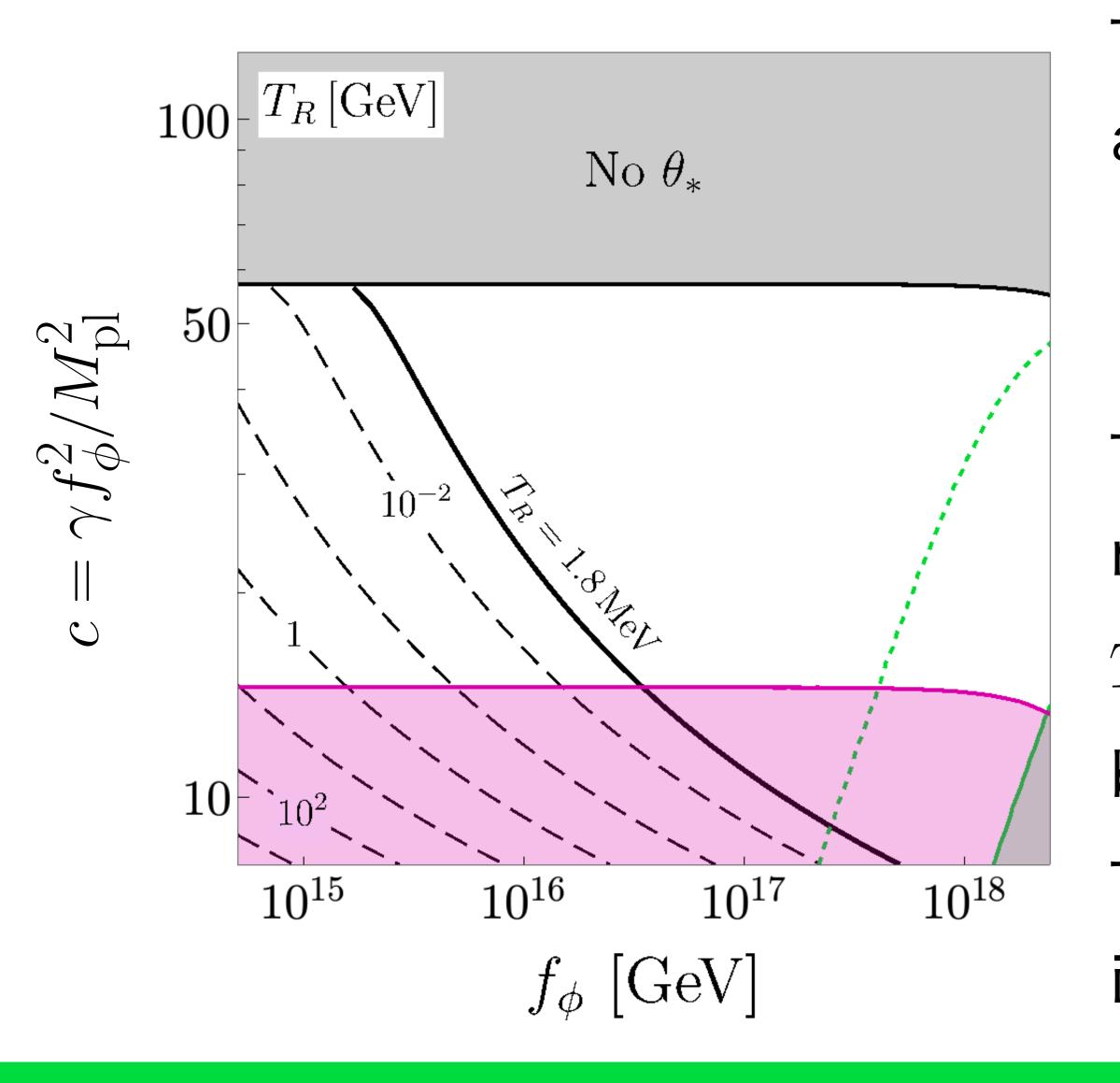
(2) ϕ field begins to oscillate after inflation, $m_{\phi} \sim H \simeq \sqrt{\rho_{\Psi}/(3M_{\rm pl}^2)}.$

- (3) Both ρ_{ϕ} and ρ_{Ψ} scale as a^{-3} after the onset of ϕ field oscillation.
- (4) Around $\rho_{\Psi} = \rho_r$, the universe is reheated and enters a radiation-dominated era.

2. Inflationary dynamics and DM abundance



DM abundance



2. Inflationary dynamics and DM abundance

The ALP abundance can be estimated as

$$\Omega_{\phi} \simeq 0.25 \,\theta_{\mathrm{end}}^2 \frac{T_R}{10 \,\mathrm{MeV}} \left(\frac{f_{\phi}}{10^{15} \,\mathrm{GeV}}\right)^2$$

The DM abundance decreases by a low reheating temperature.

 $T_R = 1.8 \,\mathrm{MeV}$ is conservative lower

bound from BBN. Hasegawa, Hiroshima et al. 2019

This bound does not apply in double inflation scenario.

DM decay and flux prediction

We consider the DM decay from Milky Way.

The predicted flux per solid angle is

$$\Phi(E) = \frac{1}{4\pi} \int s^2 \mathrm{d}s \mathrm{d}\Omega \frac{1}{4\pi s^2} \frac{1}{\tau_{\mathrm{DM}}} \frac{\mathrm{d}N_{\mathrm{DN}}}{\mathrm{d}E}$$

where $\rho_{\rm DM}^{\rm MW}(r)$ represents the DM dist. in our galaxy, which we adopt as: Navarro, Frenk et al. 1997

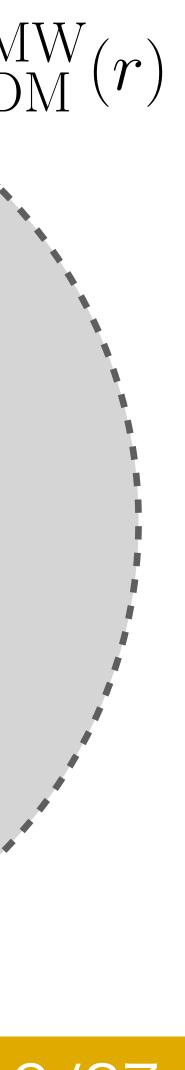
$$p_{\rm DM}^{\rm MW}(r) = rac{
ho_0}{r/r_s(r/r_s+1)^2}.$$

($ho_0 \approx 0.46 {
m GeV/cm}^3, \, r_s \approx 14.4 {
m kpc}$) fitted from Gaia DR2

3. Phenomenology of decaying ALP DM

 $_{A}
ho_{\mathrm{DM}}^{\mathrm{MW}}(r)$ $m_{\rm DM}$

 $r_{\odot} \approx 8.2 \mathrm{kpc}$

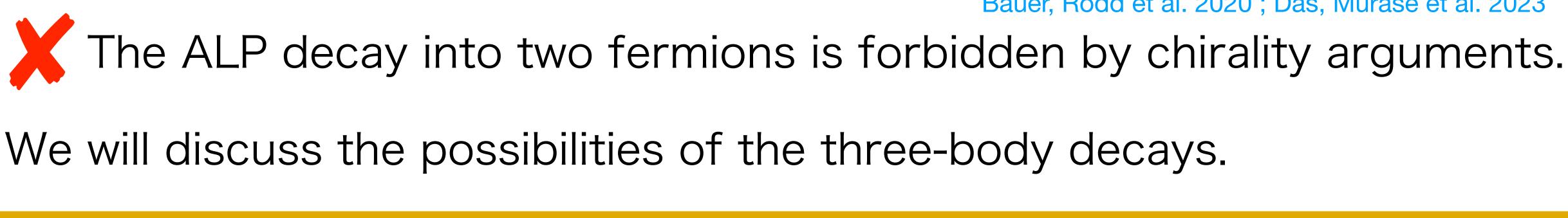


DM decay spectra

To obtain the flux of SM particles in DM decay, we require a particle theory.

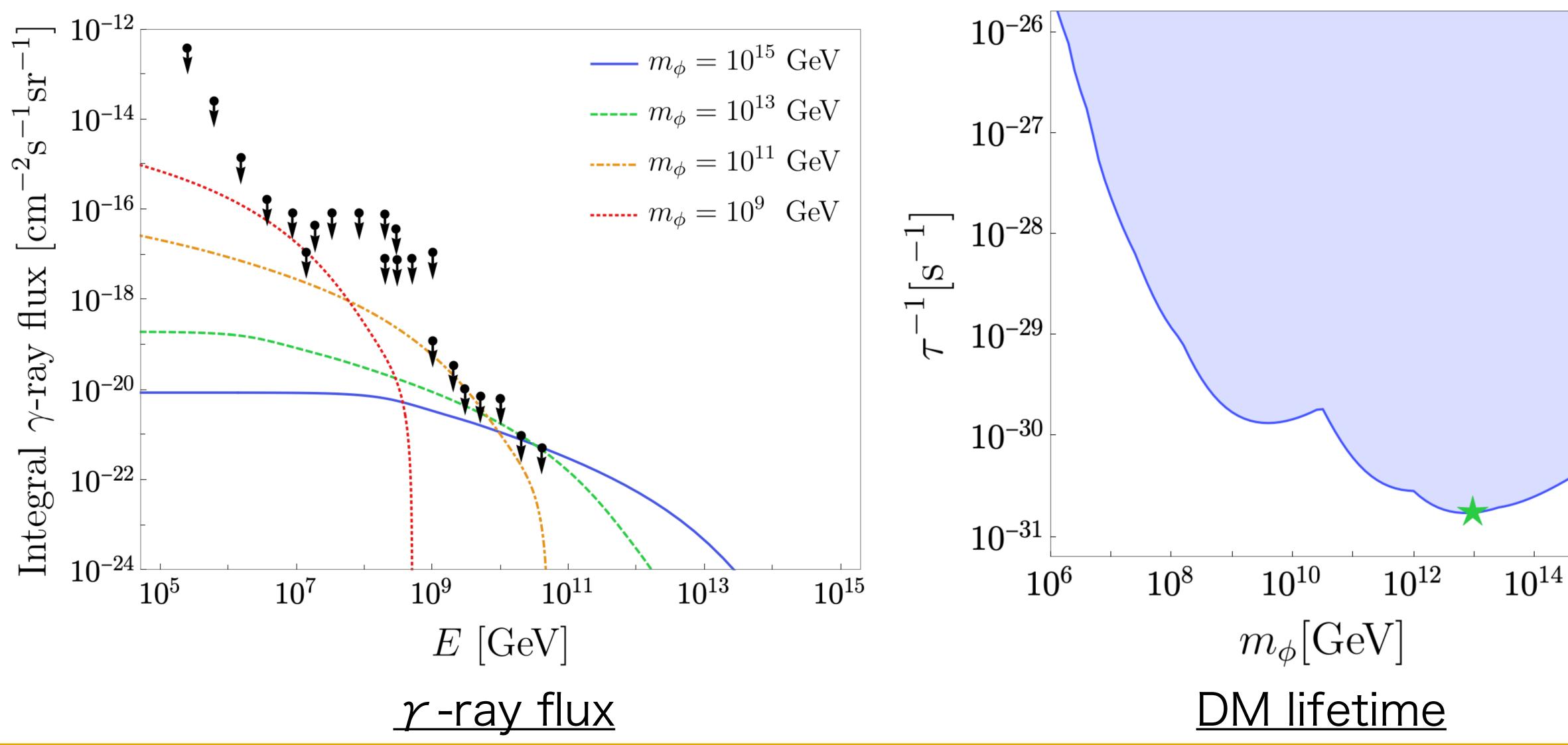
weak scale, the main decay channels are expected to be,

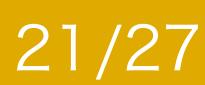
$$\phi \to H \overline{q} q \ \overline{l}$$



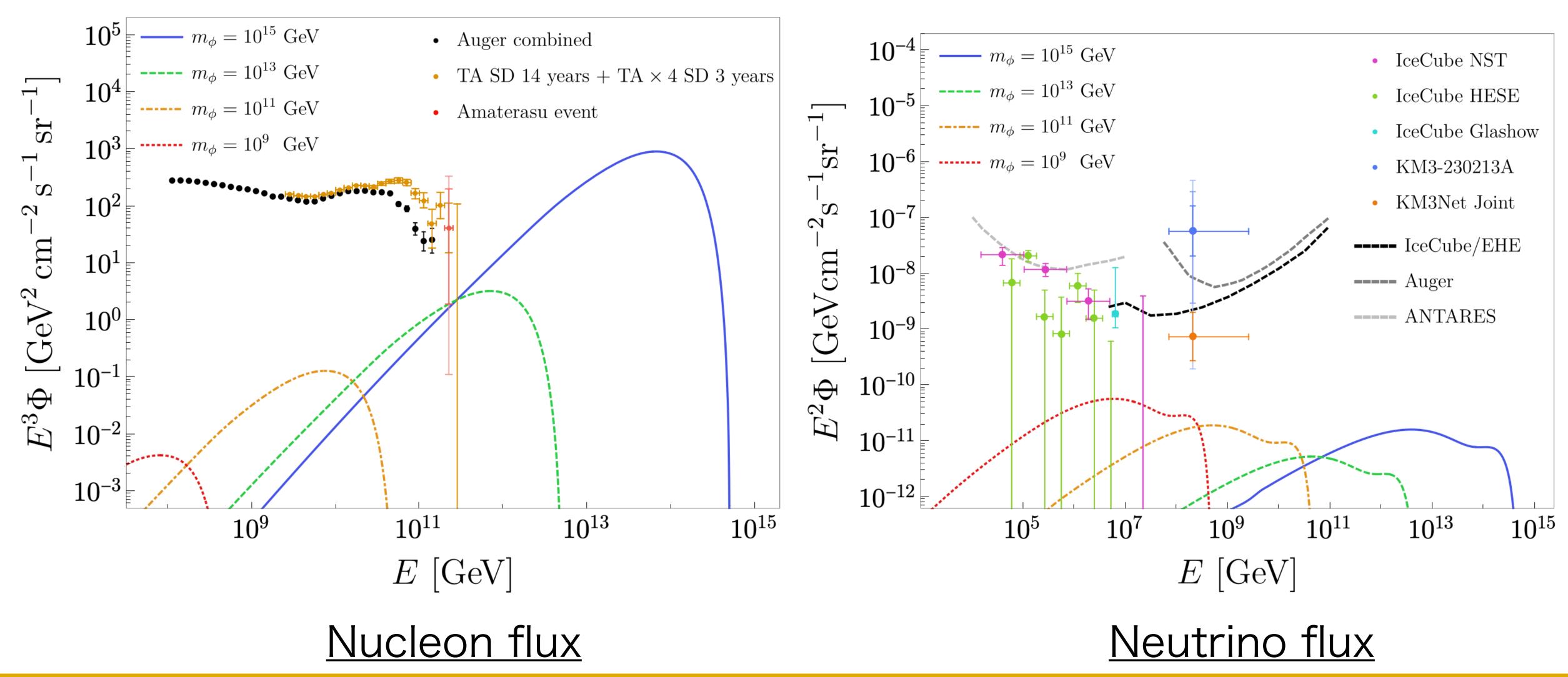
- Since the DM is a spin-zero scalar field and is much heavier than the
 - $\overline{Hll}, \underline{gg}, AA, BB.$
 - These decay channels have already
 - been considered by using HDMSpectra.
 - Bauer, Rodd et al. 2020 ; Das, Murase et al. 2023

γ -rays constraints for $\phi \to H \overline{q} q$

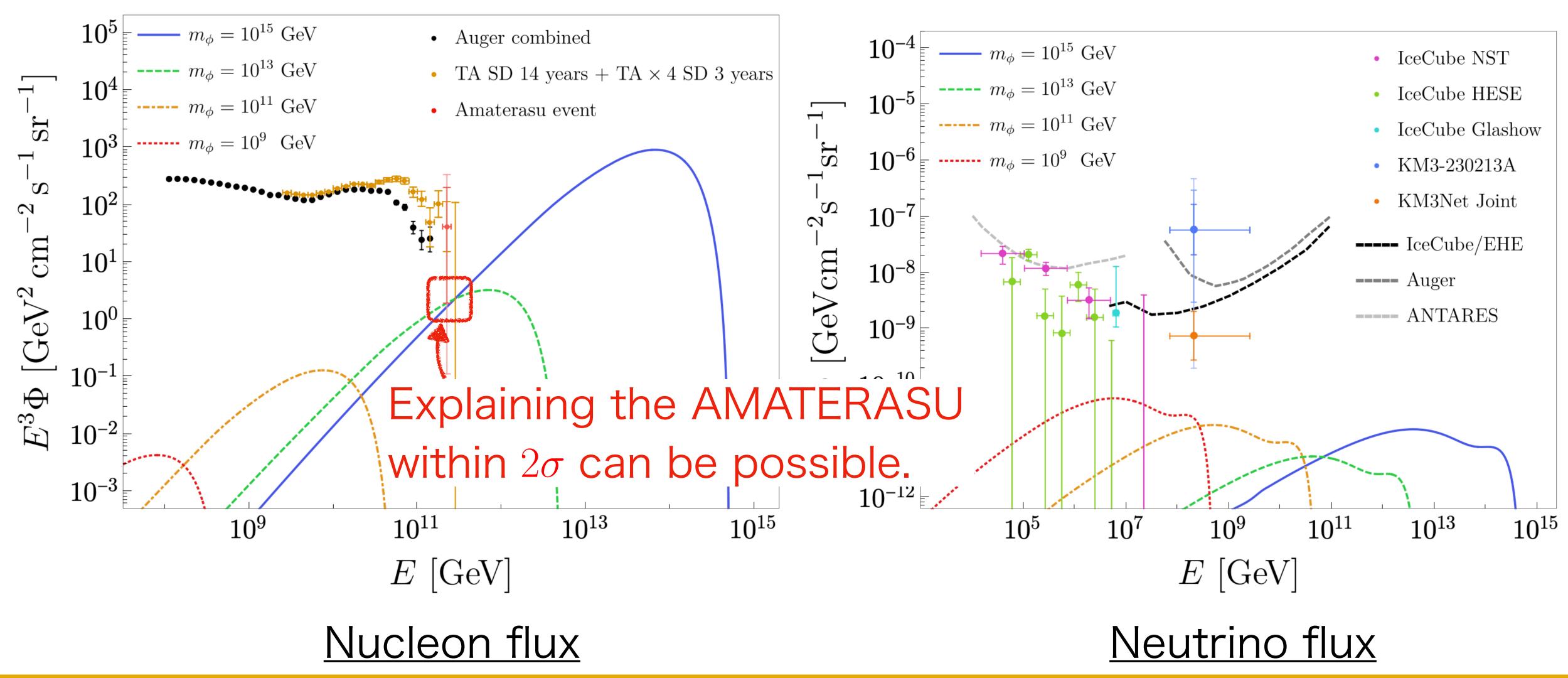


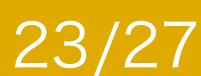


Flux results from $\phi \rightarrow H\overline{q}q$

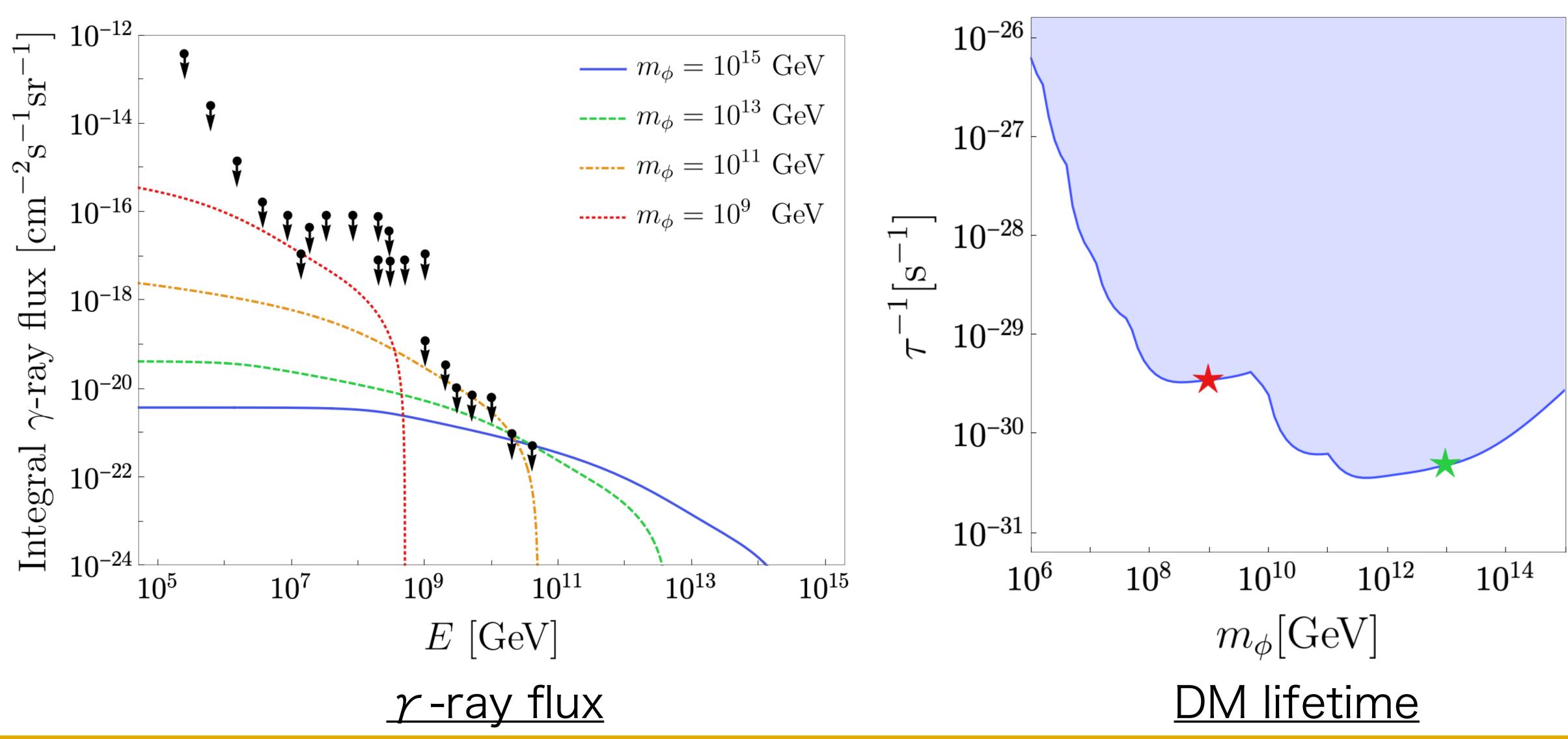


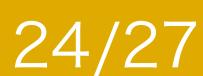
Flux results from $\phi \rightarrow H \overline{q} q$



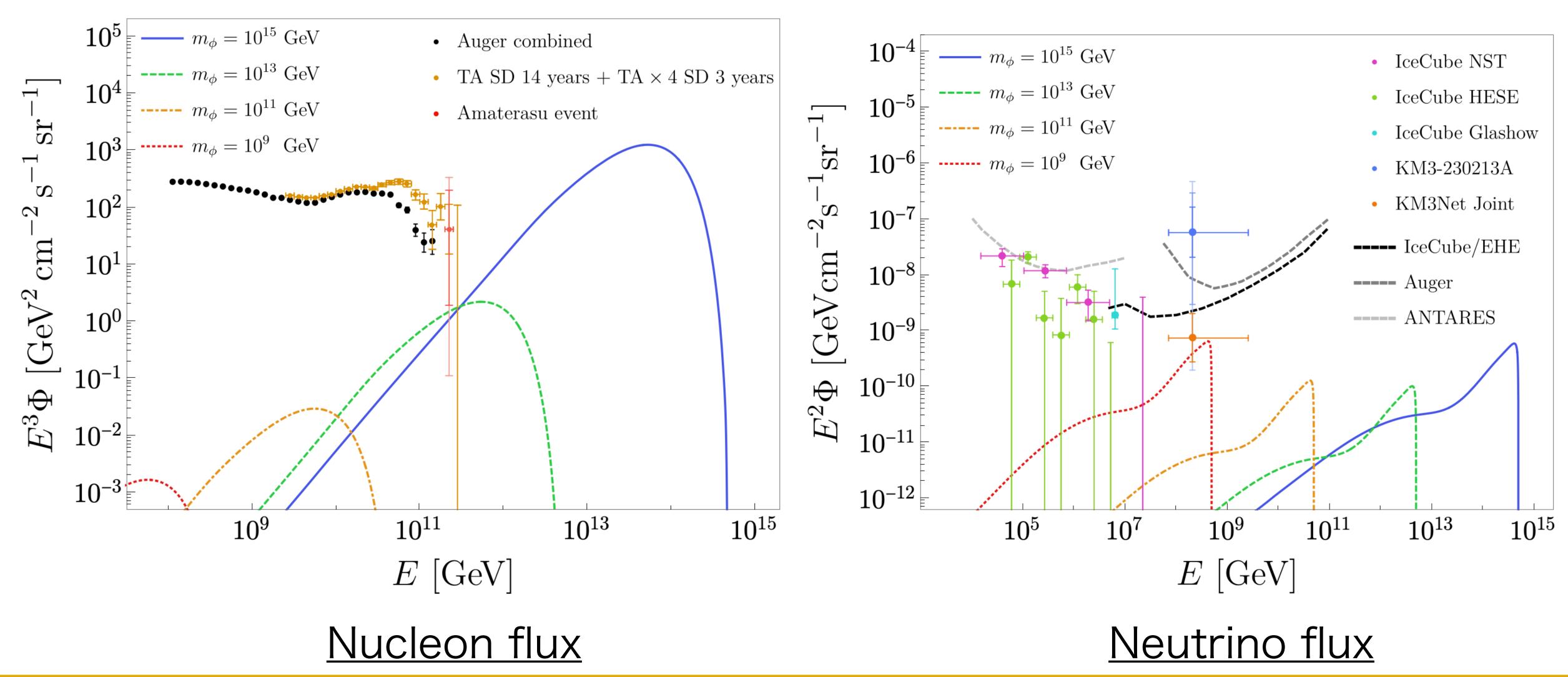


γ -rays constraints for $\phi \rightarrow Hll$

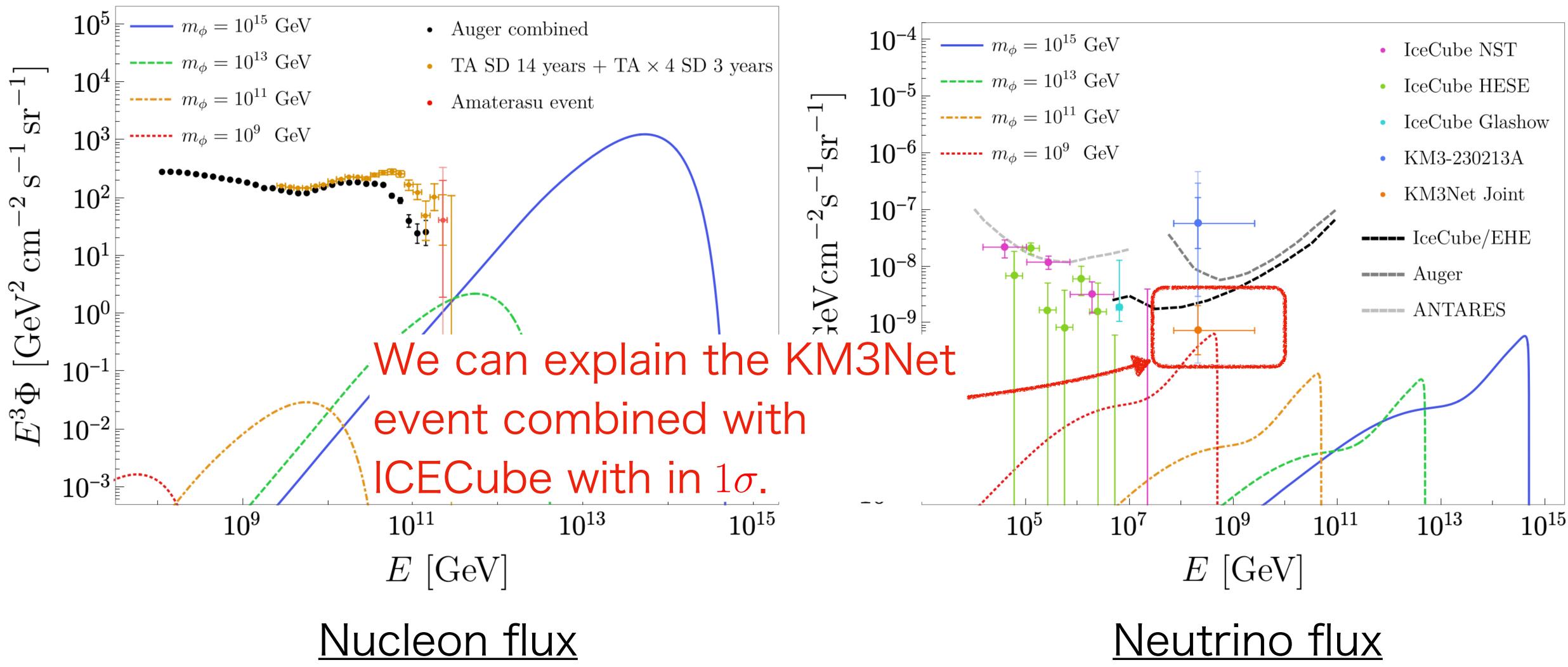




Flux results from $\phi \rightarrow Hll$



Flux results from $\phi \rightarrow Hll$



Summary

4. Summary

- We proposed a model where an ALP field ϕ plays the dual role of inflaton and SHDM.
- A viable region exists that satisfies both CMB constraints (n_s, r, α_s) and the observed DM relic abundance.
- We analyzed the various decay channels of SHDM and computed the resulting fluxes of γ -rays, nucleons, and neutrinos.
- The scenario predicts observational signatures in the future via CMB(Lite-BIRD, CMB-S4), UHECRs (TA×4, AugerPrime), and neutrino observatories (IceCube-Gen2, KM3NeT).

Late reheating scenario

Let us estimate the ALP abundance.

(2), (3) \rightarrow Energy density ratio,

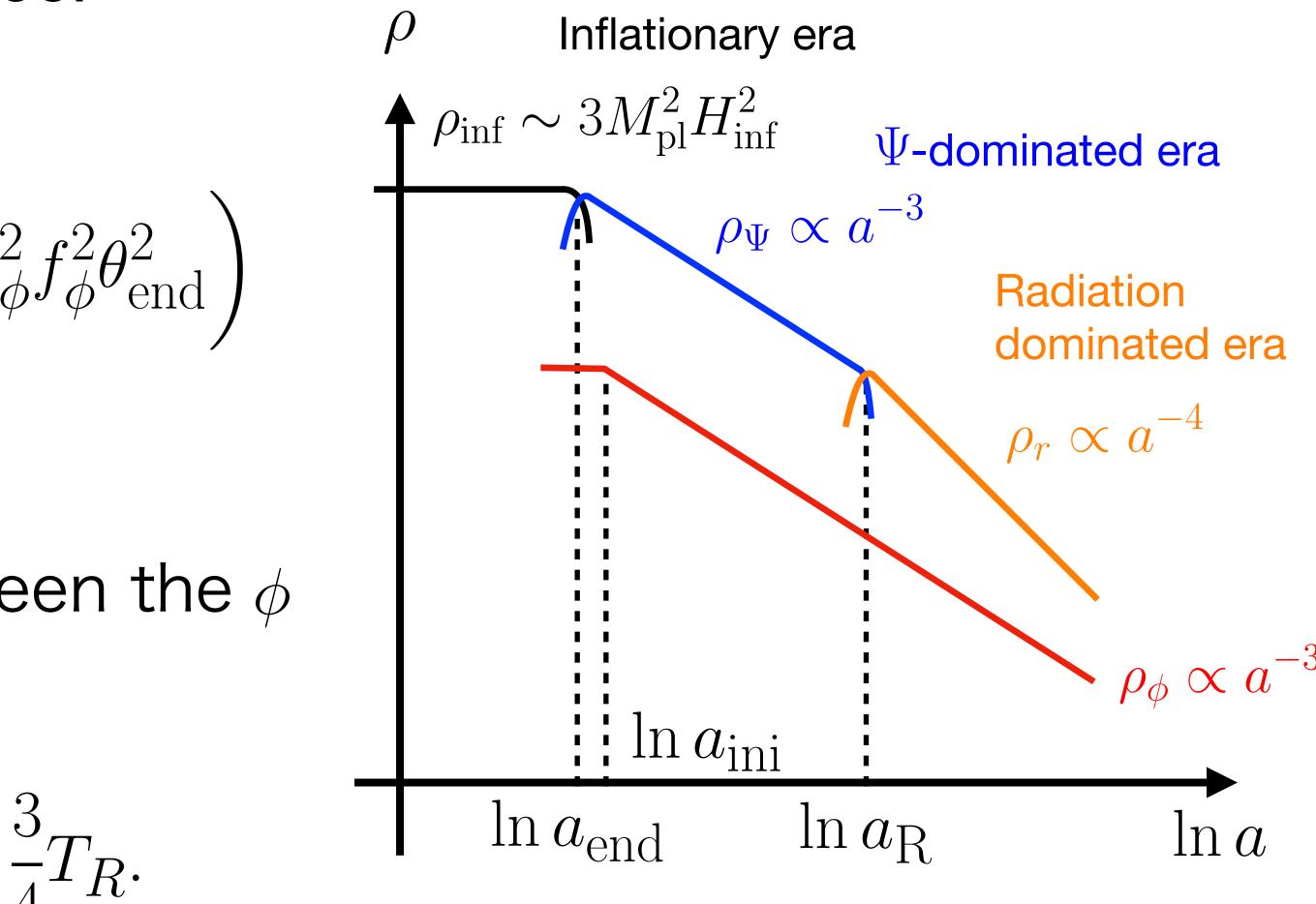
$$R_{\rho} \equiv \frac{\rho_{\phi}}{\rho_{\Psi}} \simeq \frac{\rho_{\phi,\text{ini}}}{3M_{\text{pl}}^2 m_{\phi}^2}, \qquad \left(\rho_{\text{ini}} = \frac{1}{2}m_{\phi}^2\right)$$

is conserved until reheating.

(4) We can drive the relation between the ϕ yield and energy density ratio,

$$\frac{\rho_{\phi}}{s}\Big|_{\text{reheating}} = \frac{\rho_{\phi}}{\rho_r} \times \frac{3}{4}T_R = R_{\rho} \times \frac{3}{4}$$

Back up slides



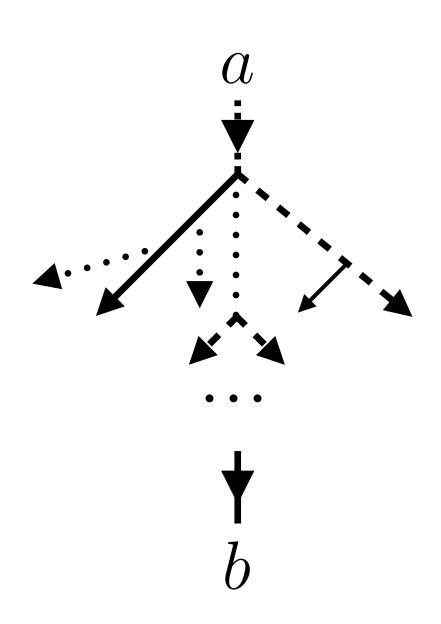
Spectra from particle cascade The flux from DM decay

$$\Phi(E) = \frac{1}{4\pi} \int s^2 \mathrm{d}s \mathrm{d}\Omega \frac{1}{4\pi s^2} \frac{1}{\tau_{\mathrm{DM}}} \frac{1}{\mathrm{d}s} \frac$$

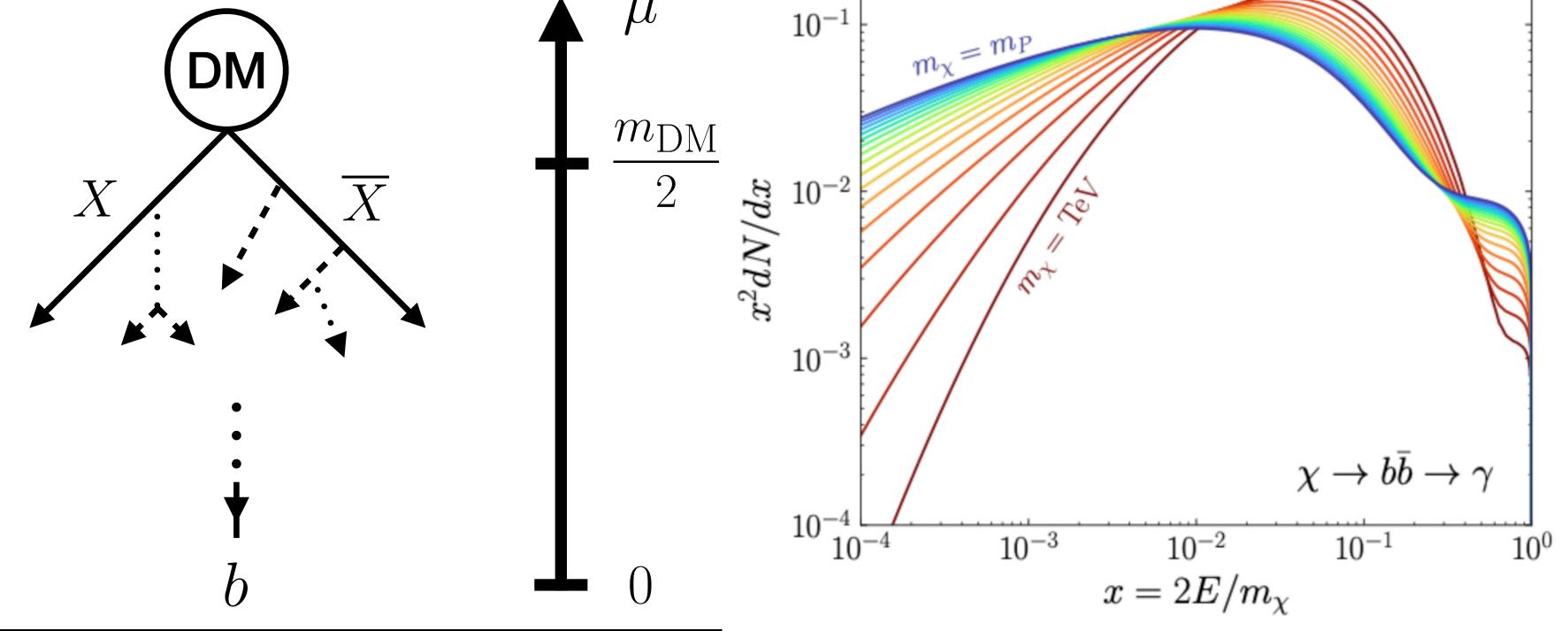
 $dN_{\rm DM}/dE$ is model-dependent and is typically obtained through numerical simulations. • We use HDMSpectra. Bauer, Rodd et al. 2020; This code provide a fragmentation function (probability density function), a momentum fraction

 $D_{a}^{b}(x; \mu_{1}, \mu_{0}).$

Back up slides



Spectra from particle cascade If the DM decay is seeded by $DM \to X\overline{X}$ for an arbitrary SM state X, we can write the spectrum of the observed particle (e.g. γ -rays) as $\frac{\mathrm{d}N_{\mathrm{DM}\to X\overline{X}\to\gamma}}{\mathrm{d}x} = D_X^{\gamma}(x;m_{\mathrm{DM}}/2,0)$ μ 10^{-1}



Back up slides

$$(x) + D\frac{\gamma}{X}(x; m_{\rm DM}/2, 0).$$
 $(x = 2E/m_{\rm DM})$

In this case, we can easily obtain the energy spectrum using HDMSpectra.

This figure is taken from https://arxiv.org/pdf/2007.15001.

The DM decay channel: $\phi \rightarrow H\bar{q}q$

For concreteness, let us consider an interaction of the type, $\mathcal{L} \supset -\frac{\varphi}{2}$

There are six types of decay channels in the broken phase:

$$\phi \to h \overline{u}_L u_R, \ \phi \to$$

$$\phi \to h u_L \overline{u}_R, \ \phi \to$$

obtain

$$\frac{\mathrm{d}N}{\mathrm{d}E} = \sum_{Y} \int_{E}^{\infty} \mathrm{d}\ln E_{Y} f_{Y}(E_{Y}) D_{Y}^{X}(E_{X}/E_{Y}; m_{\phi}/3, 0).$$

Back up slides

$$\frac{\phi H \overline{u} \hat{P}_L Q}{M_Q} + \text{h.c.} \qquad \phi = 1/M$$

 $W_{-}d_L u_R, \phi \to Z \overline{u}_L u_R,$ $W_+ d_L \overline{u}_R, \phi \to Z u_L \overline{u}_R.$

Then, from the fractional distribution $f_Y(E)$ for $Y = h, u_L, d_L, \dots$ etc., we

The DM decay channel: $\phi \rightarrow Hll$

For concreteness, let us consider an interaction of the type,

Similar to the case of $\phi \to H\overline{q}q$, there are six types of decay channels:

$$\begin{split} \phi &\to h \overline{e}_L e_R, \ \phi \to W_+ \overline{\nu}_L e_R, \ \phi \to Z \overline{e}_L e_R, \\ \phi &\to h e_L \overline{e}_R, \ \phi \to W_- \nu_L \overline{e}_R, \ \phi \to Z e_L \overline{e}_R. \end{split}$$

Then, from the fractional distribution $f_Y(E)$ for, we obtain

$$\frac{\mathrm{d}N}{\mathrm{d}E} = \sum_{Y} \int_{E}^{\infty} \mathrm{d}\ln E_{Y} J_{E}$$

Back up slides

 $f_Y(E_Y)D_V^X(E_X/E_Y; m_{\phi}/3, 0).$

