ADMX: (r)evolutions in pursuit of the QCD axion.

Stockholm University

July 4 2025

Chelsea Bartram, Panofsky Fellow, SLAC, Fundamental Physics Directorate

Strong CP Problem

Quantum Chromodynamics (QCD) describes the binding of atomic nuclei

- Discrete fundamental symmetries known as Charge (C), Parity (P), and Time (T) and their combination (CP, CPT) describe symmetries in particle physics interactions.
- P and CP symmetries could be violated with term in QCD Lagrangian
- Search for an neutron electric dipole moment also search for violations of CP.

Strong CP Problem

No neutron electric dipole moment (n-EDM) has been observed so far!

Most recent search for the neutron electric dipole moment

C. Abel et al. Phys. Rev. Lett. 124, 081803 — Published 28 February 2020

 $d_n = (0.0 \pm 1.1_{stat} \pm 0.2_{sys}) \times 10^{-26} e \cdot cm$

 $\theta_{\rm QCD} < 10^{-10}$

Peccei Quinn Mechanism

Solution to the Strong CP problem

$$L_{\theta} = \frac{g^2}{32\pi^2} \theta_{QCD} F_a^{\mu\nu} \tilde{F}_{\mu\nu a}$$

 Θ becomes a dynamical variable that relaxes to zero at the critical temperature.

Implies the existence of the axion

Helen Quinn

Roberto Peccei

The Pool Table Analogy

A story by Pierre Sikivie, 1996

- One imagines a pool table that appears perfectly horizontal.
- The occupants of the room realize one day that the room itself is slanted.
- Why is the pool table perfectly horizontal? This seems like an odd coincidence.

The incline of the table is described by a made-up symmetry analogous to CP symmetry. The symmetry is perfectly preserved.

Sikivie, Pierre. "The Pool-Table Analogy with Axion Physics." Physics Today 49.12 (1996): 22-27.

Solution to Strong CP problem?

Perhaps there is a mechanism that uses gravity to level the pool table.

- Angle of pool table tilt = θ_{QCD}
- Physics of pool table = physics of QCD
- Gravity = Nonperturbative effects that make QCD depend on θ_{QCD}

Sikivie, Pierre. "The Pool-Table Analogy with Axion Physics." *Physics Today* 49.12 (1996): 22-27.

Angle θ_{QCD}

 θ_{QCD} might be a dynamical variable (moving with time)

If θ_{QCD} dynamical, mechanism is akin to "Peccei-Quinn Mechanism"

How to test the hypothesis?

"Relic oscillation" that would depend on when gravity "turned on"

Length of lever arm determines strength of oscillation

Maybe it's really long and the oscillation is hard to measure? Equivalently maybe the coupling is extremely small

The pool table analogy

Associated quantum of oscillation = a particle call the axion!

More on high quality oscillators later...

High quality oscillator on the table could sense this!

Detection: Axion Haloscope

Photon coupling: cleanest channel for discovery

Inverse Primakoff Effect

Resonant microwave cavity

Wanted: Very high-Q resonator

Form factor describes coupling of the axion to the mode

Non-zero form factor

ADMX: Axion couples most strongly to TM010 mode

Red is static magnetic field Blue is axion electric field

$$rac{dV ec{B}_{ ext{ext}} \cdot ec{E}_{ ext{a}} ert^2}{\int dV \epsilon_{ ext{r}} ec{E}_{ ext{a}} ec{E}_{ ext{a}} ec{2}}$$

Zero form factor

Recent tuning rod configurations

Run 1A+1B

Run 1C

Run 1D

Run 1D Cavity Haloscope

Ultra low noise receiver

Quantum Amplification

- Microstrip SQUID Amplifier (2017)
- Josephson Parametric Amplifier (2018–today)
 - Anharmonicity leads to energy transfer from pump to signal
 - Josephson Junction is non-linear element

Initial JPAs provided by UC Berkeley New JPAs produced by Washington University St. Louis

 $\omega_{
m signal}$ WMM $\sim \omega_{\rm signal}$ $\sim^{\omega_{\text{pump}}}$ $\omega_{
m idl}$

Field cancellation coil + Mu-metal shielding required for optimal performance

Figures courtesy of Shahid Jawas

Noise Temperature

- ADMX axion search: 4.54 to 5.41 µeV Guzzetti, M. et al.

Data-taking operations

Digitize

Axion Search Data!

Data-taking in 2024

Data Acquisition System

Medium Resolution

- Isothermal halo model
- Bin width optimized for expected axion lineshape
- Saved as power spectra
- 100 Hz bin width

High Resolution

- Non-virialized axions
- Sensitive to frequency modulation from orbital and rotational motion
- Saved as time-series
- 10 mHz native bin width

How do we know if a signal is real?

Synthetic injection system provides verification of detection capability.

kep on 420A

Synthetic injection system provides verification of detection capability.

Synthetic injection system provides verification of detection capability.

• Take data in chunks of frequency space while tuning at a steady rate

- Take data in chunks of frequency space while tuning at a steady rate
- Flag any candidates above some power threshold

- Take data in chunks of frequency space while tuning at a steady rate
- Flag any candidates above some power threshold
- Rescan the flagged candidate to verify persistence

- Take data in chunks of frequency space while tuning at a steady rate
- Flag any candidates above some power threshold
- Rescan the flagged candidate to verify persistence
- Verify that the candidate does not couple to the TM011 mode

Recent Exclusion Limit

- Exclusion limit from Run 1D shown in purple
- ADMX + CAPP together resulting in excellent coverage
- ρ=0.45 GeV/cc,
- Maxwellian line shape
- Operations improvements lead to smoother tuning and limits

https://arxiv.org/pdf/2504.07279

Ancillary Analyses: High resolution search

No line-shape implied; monochromatic tone only

Sensitive to non-virialized axions and frequency modulation.

Ancillary Analyses: High resolution search

https://arxiv.org/abs/2410.09203 Alex Hipp a

- Run 1C high resolution search results
- Non-virialized search with different frequency resolutions
- Optimized for different axion linewidths

Alex Hipp and Aaron Quiskamp

ADMX Run 2A

- Synchronous tuning of four separate cavities
 - Capable of fine and course tuning
- Full complex data set will be digitally combined outside the receiver chain
- Phase differences monitored via tone injection
- New analysis that accounts for complex data and candidate evaluation with multiple cavities

To be operated in the UW magnet

ADMX Run 2A

Existing receiver chain design

RFSoC receiver chain design

Gravitational Waves

<u>"Inverse-Gertsenshtein Effect"</u>: j_{eff}^{μ} is an "effective current" that sources small oscillating EM fields in the presence of background EM fields.

Experimental issues:

- ۲

A. Berlin et al. https://doi.org/10.1103/PhysRevD.105.116011

(graviton-to-photon conversion)

Characteristic strain sensitivity: h ~ 10⁻²¹ Characteristic frequency: GHz

Not quite the same resonant mode as the axion-> photon (but calculable and buildable)

Transient or broadband signals require radically different analysis from DM axions

Gravitational Waves

Speculative Source	What's its deal?	Caveats
Primordial Black Holes	Asteroid mass PBHs can be 100% of dark matter, radiate GHz GWs when in binary inspirals	Merger rate low, haloscope detectable range is solar-system sized
Stochastic Background	Early universe events (PBH evaporation, inflation relics, KK gravitons, etc) may leave a GHz GW background.	Resonant detection is particularly bad at broadband searches. Most sources are well below detectability, or violate N _{eff} already.
Black Hole Superradiance	Light bosons suck angular momentum out of black holes and explode into gravitational waves	Broadband signal, requires a new boson, needs to be tuned to get GHz waves

Courtesy of Gray Rybka and Stefano Profumo

ADMX high frequency prototype

Sidecar is a small prototyping cavity that sits on top of the main cavity.

- Traveling Wave Parametric Amplifier (TWPA)
- Clamshell cavity design
- Piezo motors for antenna and tuning rod
- Superconducting films

Sidecar mode map

Sidecar Cavity Haloscope

- At zero magnetic field, the Q was lower than expected
- Studies with aluminum cavity + indium seal at University of Sheffield
- Next run will add indium seal to clam shell cavity
- Recoating Nb3Ti

• O(1) µm Nb3Ti on Nb substrate

Sidecar Cavity Haloscope

O(1) µm Nb3Ti on Nb substrate

- At zero magnetic field, the Q was lower than expected
- Studies with aluminum cavity + indium seal at University of Sheffield
- Next run will add indium seal to clam shell cavity
- Recoating Nb3Ti

ADMX-EFR

7/4/25

Scan speed for cavity haloscope

$$\frac{df}{dt} \approx 323 \frac{\text{MHz}}{\text{yr}} \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{\rho}{0.45 \,\text{GeV/cm}^3}\right)^2 \left(\frac{f}{1 \,\text{GHz}}\right)^2$$

$\left(\frac{3.5}{\text{SNR}}\right)^{2} \left(\frac{B_{0}}{7.6 \text{ T}}\right)^{4} \left(\frac{V}{136 \ell}\right)^{2} \left(\frac{Q_{L}}{30,000}\right) \left(\frac{C_{lmn}}{0.4}\right)^{2} \left(\frac{0.35 \text{ K}}{\text{T}_{\text{sys}}}\right)^{2}$

Can't Control

• Dark Matter Density

Minimize

• System noise:

• Amplifier Noise

Physical Noise

*Similar equation for quasistatic haloscope

ADMX EFR (2-4 GHz)

Prototype cavity testing

18-JPA receiver

9.4 T Magnet

18-cavity array simulations

ADMX EFR (2-4 GHz)

- Horizontal magnet bore
- Extra modularity: cavity electronics are separate from magnet bore
- Large magnet volume:
 258 liters
- Other: Squeezing?
 Superconducting cavities?

(ADMX EFR Design)

Cavity haloscope Cavity frequency determines cavity volume. Width sets frequency of TM010 mode. VERA haloscope Cavity frequency decoupled from cavity volume. Volume can be scaled arbitrarily in other dimensions.

Width sets frequency of fundamental (TM₀₁₀) compatible with **solenoid B field**

Decouple frequency and volume.

TM010 mode still supported.

Width sets frequency of fundamental (TM₀₁₀) compatible with **solenoid B field**

Decouple frequency and volume.

TM010 mode still supported.

JCAP 02 (2021) 018 JCAP 06 (2020) 010

CP-conserving theory band
 classical window
 astrophysics constraints
 cavity haloscope constraints
 ADMX projections

$$\nu_r \propto \sqrt{\frac{1}{R^2} + \frac{1}{L^2}} \Rightarrow$$

$$V \propto \nu_r^{-3}$$

$$L$$

$$R$$

$$R$$

 $V = \lambda^3$

 $\nu_r \propto w^{-1} \Rightarrow$

 $V = 100\lambda^3$

	2.6L (41 λ ³) at 7.5 GHz
nge	7 to 8 GHz
· (Q)	4000
C ₀₁₀)	0.57

49

Courtesy of Taj Dyson

Volume (V)	6L (51 λ ³) at 6 GHz
Frequency Range	5 to 7 GHz
Quality Factor (Q)	20,000
Form Factor (C ₀₁₀)	>0.5

- Leverages "wedding cake" cryostat design from CMB experiments
- Hexapod motion transferred through wedding cake layers for precision alignment
- Designed to mount to Oxford fridge at SLAC milliKelvin Facility (SMF)

Geometry

Shell dividers are positioned by 2-DoF flexure design

Center wedge is fixed

Outer wedges are positioned by 5-DoF fine adjustment stage

Courtesy of Sephora Ruppert

Courtesy of Matt Withers

- Closely packed overlapping cavities.
- Resonant frequency determined by cells oscillating in phase.
- Global eigenmode that has high (40%) form factor in a 169-element resonator.
- Tunable by moving center rods laterally in unison.

Withers, Matthew O., and Chao-Lin Kuo. "Beehive haloscope for high-mass axion dark matter." Physical Review D 111.7 (2025): 072011.

ADMX Collaboration

Conclusions

- ADMX continues to make progress at higher frequencies
- Pursuing multi-cavity solutions in the nearterm
- Alternative ideas in the long-term
- Synchronously driving the frontier of quantum sensing

Acknowledgements

This work is supported by U.S. Department of Energy through Awards No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DESC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DE-AC52-07NA27344, No. DE-C03-76SF00098, No. DESC-0022148 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility managed by Fermi Research Alliance, LLC (FRA), under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory LDRD office. PNNL is a multi-program national laboratory operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. UWA and Swinburne participation is funded by the ARC Centre of Excellence for Engineered Quantum Systems and CE170100009, Dark Matter Particle Physics, CE200100008. The Sheffield group acknowledges support from the UK Science and Technology Facilities Council (STFC) under grants ST/ T006811/1 and ST/X005879/1. CRB is supported by DOE Office of Science, High Energy Physics, Early Career Award (FWP 77794 at PNNL). Chelsea Bartram acknowledges support from the Panofsky Fellowship at SLAC. John Clarke acknowledges support from the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers.

