

Stockholms Universitet - May 24th 2024

TRACKING DOWN THE HIGGS BOSON PROPERTIES

Valentina Maria Martina Cairo

V.M.M.CAIRO 3 Profound open questions about the Universe connected to Higgs physics

THE POST-HIGGS BOSON ERA

Key to addressing these mysteries is the measurement of

THE POST-HIGGS BOSON ERA

Key to addressing these mysteries is the measurement of

THE THEORY

THE HIGGS POTENTIAL AND SELF-COUPLING

MATTER OF STABILITY

Known m_H (∼125 GeV), SM predicts λ (∼0.13)

Known m_H (∼125 GeV), SM predicts λ (∼0.13)

New physics can alter these numbers \rightarrow Implications on the origin, evolution and stability of the Universe \rightarrow Probing the Higgs-self coupling is a key goal for LHC and HL-LHC!

V.M.M.CAIRO 10

THE TOOLS

AT THE *HEART* **OF COLLIDER PHYSICS: CHALLENGES AND BREAKTHROUGHS**

24.05.24

The top quark and the *silicon strip* **era**

The Higgs boson (and more!) and the *silicon pixel* **era**

ENABLING HH DISCOVERIES THROUGH TRACKING INNOVATIONS IN ATLAS

HH in Run 1 data HH in early Run 2 data HH&H in full Run 2 data HH Extrapolations PHYSICAL REVIEW D 92, 092004 (2015) ATLAS Searches for Higgs boson pair production in the $hh \rightarrow bb\tau\tau$, $\gamma\gamma WW^*$, $\gamma\gamma bb$, CERN) **Contents lists available at ScienceDirec ATLAS PUB Note** bbbb channels with the ATLAS detector Contents lists available at ScienceDire ATL-PHYS-PUB-2022-053 G. Aad et al." Physics Letters B Physics Letters B $\label{eq:ampl} \mbox{(ATLAS~Collision)}\\ \mbox{(Received 16 September 2015; published 5 November 2015)}$ November 8, 2022 Searches for both resonant and nonresonant Higgs boson pair production are performed in the Ah \rightarrow bbrr, yyWW' final states using 20.3 fb⁻¹ of pp collision data at a center-of-mass energy of 8 TeV
recorded with the ATLAS detector at the Large Hadron Collider. No evidence of their production is exposes or and 1926 confidence-level upper limits on the production cross sections are set. These results observed and 95% confidence-level upper limits on the production cross sections are set. These results are then com Constraints on the Higgs boson self-coupling from single- and $\frac{1}{2}$ Combination of searches for Higgs boson pairs in pp collisions at \bigcirc double-Higgs production with the ATLAS detector using pp collisions HL-LHC prospects for the measurement of Higgs $qq \rightarrow hh$ cross section. For production via narrow resonances, cross-section limits of hh production from a \sqrt{s} = 13 TeV with the ATLAS detector heavy Higgs boson decay are set as a function of the heavy Higgs boson mass. The observed (expected) at $\sqrt{s} = 13$ TeV from 2.1 (1.1) ph at 260 GeV to 0.011 (0.018) ph at 1000 GeV. These results are interpreted in boson pair production in the $b\bar{b}b\bar{b}$ final state and the context of two simplified scenarios of the Minimal Supe The ATLAS Collaboration* The ATLAS Collaboration combination with the $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau^+\tau^-$ final states PACS rembers: 12.60 Er. 14.80 Bn. 14.80 E DOI-10.1103/96 at the ATLAS experiment The ATLAS Collaboration **2014 2016 2018 2020 2022 2024 2026 ... 2036… Insertable B-Layer Preparation for Run 3 Run 3 data taking new Inner Tracker** $E_{0.12}$ \cdot **ATLAS** Preliminary **ATLAS** Simulation Preliminary **?** \sqrt{s} = 900 GeV \sqrt{s} = 13 TeV 50 0.1 -- A- - AMVF, tt \bullet Data -- o- IVF. tf MC Radiation Damage $\overline{5}$ 0.08 - G- IVF, u
—— AMVF - MATCHED
—— AMVF - MERGED 40 MC Constant Charge $\mathbb{E} \left[0.06 \right]$ - AMVF - SPLIT - AMVE - FAKE ರ್ 0.04 ⊨് 0.02[†] Data/MC 0.8 $0₆$ 10 20 30 40 50 60 70 10 Number of pp interactions per bunch crossing Track p_ [GeV] V.M.M.CAIRO 13

Shutdown 1 Run 2 (13 TeV) Shutdown 2 Run 3 (13/14 TeV) Shutdown 3 Run 4

THE WORK

THE HIGGS SELF-COUPLING

 λ_{HHH} can be measured in two complementary ways

HH PRODUCTION AT THE LHC

HH PRODUCTION AT THE LHC

HH PRODUCTION AT THE LHC

V.M.M.CAIRO 18

TWICE THE HIGGS, TWICE THE CHALLENGE

Need to combine multiple signatures of Higgs boson decays to increase sensitivity

Complementary strengths and challenges

 $HH \rightarrow b\overline{b}b\overline{b}$

 $BR \sim 33\%$

Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

 $BR \sim 0.26\%$

$HH \rightarrow b\overline{b}\tau\tau$

 $HH \rightarrow b\overline{b}\gamma\gamma$ 24.05.24

 $BR \sim 7.4\%$

Run: 351223
Event: 1338580001 2018-05-26 17:36:20 CEST

ATLAS

Event: 524614423 2018-10-03 08:06:34 CEST

THE POWER OF COMBINATION $HH \rightarrow b\overline{b}\tau\tau + b\overline{b}\gamma\gamma + b\overline{b} b$

THE POWER OF COMBINATION $HH \rightarrow b\overline{b}\tau\tau + b\overline{b}\gamma\gamma + b\overline{b} b$

World's best constraints to date on Higgs boson's self coupling

Observed(expected): -0.6< k_{λ} < 6.6 (-2.1 < k_{λ} < 7.8)

THE POWER OF COMBINATION

 $H + HH$

A BROAD AN[D](https://link.springer.com/article/10.1007/JHEP02(2024)037) EXCITING PROGRAMME

Further improvements to leading channels and new areas to characterise the Higgs sector.

V.M.M.CAIRO **24 December 24 December 24 December 24 December 24 December 24 December 24 December 25 December 25**

AN IMPRESSIVE SUCCESS

V.M.M.CAIRO 25

THE $HH \rightarrow bby\gamma$ EXAMPLE

THE $HH \rightarrow bby\gamma$ EXAMPLE

AN EXCITING TIME AHEAD!

eve

AN EXCITING TIME AHEAD!

Run 3 data will take us very close to "seeing" HH if as predicte analyses' strategies to get to a statistically significant evidence

V.M.M.CAIRO 29

TRACKS AND VERTICES

The building blocks of the LHC events

WHICH VERTEX IS THE MOST INTERESTING?

N.B. not depicting PU contamination on the HS, hold on for a few slides

A PERSONAL FAVOURITE: THE START OF RUN 3

Habemus Data! July 5th 2022 16:20 CEST 17:02 CEST **Gabriel** Me My sister16:49 CEST 18:57 CEST Ale Y Pixel Hits on Track

New public plots on 13.6 TeV data

24.05.24

• Shown in ATLAS Highlight talk at ICHEP by G. Unal on Monday July 11th 2:50 pm o https://agenda.infn.it/event/28874/contributions/171901/

Performance of ATLAS Pixel Detector and Track Reconstruction at the start of Run 3 in LHC Collisions at \sqrt{s} = 13.6 TeV

10 July 2022 First look at detector performance with 2022 collision dat ATI JPHVS PHR 2022-0 Pival and tracking narformance have been studied on the first 13 6 TeV proton-proton collisions recorded by the ATLAS detectors at the LHC in the first two fills of Run 3 (July 5-6, 2022). These results highlight the main changes implemented in the pixel detector simulation and track reconstruction [ATL-PHYS-PUB-2021-012] for Run 3: . Radiation damage effects in the barrel pixel sensors [JINST 14 (2019) P06012]. . Mixture Density Network (MDN) to determine the pixel hit positions [IDTR-2019-006] . Adaptive Multi-vertex finder (AMVF) to reconstruct primary vertices [ATL-PHYS-PUB-2019-015, IDTR-2021-002 · Updated Inner Detector Alignment [ATL-PHYS-PUB-2022-028] Simulation samples have been generated for minimum-bias and multi-jet events at \sqrt{s} = 13.6 TeV. During track reconstruction, pixel clusters compatible with being due to charge depositions of more than one charged particle are identified and split by a dedicated neural network. The analysis follows the same procedures applied in the performance study on the 900 GeV collision data taken during the Run 3 commissioning [ATL-PHYS-PUB-2022-033]. Charged particle tracks are selected applying the following quality cuts: track

pseudo-rapidity |n| < 2.1, the sum of the number of hits in the pixels and SCT NSi ≥ 8, at least one hit in the pixel detector, track impact parameters $|d_0| < 2$ mm and $|z_0 sin(\theta)| < 3$ mm and transverse momentum, $p_T > 0.5$ GeV, unless differently specified. Track reconstruction is characterised by studying the number of hits in the Pixel and SCT detectors associated to particle tracks, pixe cluster charge and spatial resolution, the extrapolation resolution of tracks in jets and the rate of split pixel hits, comparing data to simulation predictions, and the scaling of the number of reconstructed primary vertices with pile up.

Run 3 g/ve me e break!"

WHAT'S NEW IN RUN 3?

LuminosityPublicResultsRun3

 $[Ref]$ By the end of Run 3 layers comparable to who km from the Sun during

V.M.M.CAIRO 41

VERTEXING IN RUN 3

- **Run 2** \rightarrow **Run 3 : more challenging pile-up** conditions and
- All physics objects must be reconstructed wrt the correct
- Innovation: adaptive **multi-vertex** fitting procedure (AM

HL-LHC: USING GIGANTIC CAMERAS FOR RARE & COMPLEX EVENTS!

Frequention

For

HL-LHC

(2029)

Per bunch crossing

Per bunc **~ 6 m ATLAS Inner Tracker (ITk) in preparation for HL-LHC (2029)** 200 simultaneous interactions per bunch crossing

A CONSTRUCTION, COMPUTATIONAL AND PERFORMANCE CHALLENGE

THE ATLAS ITK

THE ATLAS ITK

THE ATLAS ITK

24.05.24 **BUILDING THE ATLAS ITK**

Fall 2019 Early 2020 One of several challenges: Radiation hardness up to 10-15 MGy, **operate cold**, prevent leakage current & thermal runaway

HL-LHC TRACKING

A detector designed to be pile-up robust, and algorthms designed

The lower the fake rate, the better the CPU and storage usage

Improved IP resolution

HOW DOES HH LOOK IN HL-LHC?

HOW BETTER CAN WE DO?

V.M.M.CAIRO 51

Addition of timing layers to HEP detectors growing area of interes

High Granularity Timing D

Addition of timing layers to HEP detectors growing area of interes

Can we maximize the ATLAS physics pot by extending the fiming co <u>to the full η acceptanc</u>

ATLAS-TDR-031

Next step in advancing technologies are real 4-dimensional silicon trackers (resolution of $O(10 \mu m)$ & $O(10 \text{ ps}))$

• **Excellent opportunity during HL-LHC and, in particular, for future energy frontier trackers**

- **First exploratory studies in ATLAS**
	- Also looked at in LHCb

Next step in advancing technologies are real 4-dimensional silicon trackers (resolution of $O(10 \mu m)$ & $O(10 \text{ ps}))$

- **Excellent opportunity during HL-LHC and, in particular, for future energy frontier trackers**
- **First exploratory studies in ATLAS**
	- Also looked at in LHCb

DETERMINING THE VERTEX TIME

- With 4D tracking, **each** charged particle would have a timest
- Determining vertex time crucial for reconstruction/identification

DETERMINING THE VERTEX TIME

- With 4D tracking, **each** charged particle would have a timest
- Determining vertex time crucial for reconstruction/identification

Excellent vertex time resolution can be achieved

DETERMINING THE VERTEX TIME

- With 4D tracking, **each** charged particle would have a timest
- Determining vertex time crucial for reconstruction/identification

24.05.24

THE KEY FEATURES FOR *b***-TAGGING**

24.05.24

GNT – 4D -TAGGING

GNT – 4D -TAGGING

Already being searched for, Enhanced by ITk forward capabilities

A new frontier to explore the Higgs and Top sectors…

AT THE EDGE OF OUR CAPABILITIES: ttHH

- Largely uncharted at the LHC, very rare and experimentally complex channel
- Many b-jets in the detector

PUSHING THE BOUNDARIES OF *ttHH* **WITH 4D TRACKING**

- Unique access to ttHH quartic interaction predicted by Standard Model (BSM)
- Proof-of-concept demonstrates analysis feasibility under identifies several areas for improving the sensitivity \rightarrow tra

PUSHING THE BOUNDARIES OF *ttHH* **WITH 4D TRACKING**

- Unique access to ttHH quartic interaction predicted by Standard Model (BSM)
- Proof-of-concept demonstrates analysis feasibility under identifies several areas for improving the sensitivity \rightarrow tra

WHAT'S NEXT?

FUTURE COLLIDERS

V.M.M.CAIRO 70

IMPLICATIONS ON THE HIGGS POTENTIAL

IMPLICATIONS ON THE HIGGS POTENTIAL

NATURE IS *LIGHT***… Future** $\frac{C}{C}$ oupling to Higgs $\frac{1}{C}$ **Full ILC Program** 250fb⁻¹ @ 250GeV W 500fb⁻¹ @ 500GeV 1000fb⁻¹ @ 1000GeV b **u d s** 10^{-3} 10^{-1} $10²$ $\mathbf{1}$ 10 Mass [1310.0763

Are the Higgs Yukawa couplings really *PMMMCAIRO* **Do light and heavy fermions acquire mass in**

A strange AND EXCITING RESEARCH LINE 2203.07535

Next step in detector technologies, algorithms

CONCLUSIONS

- **Exciting science ahead** to track down the Higgs boson properties and solve some of the yet-to-be answered questions about the Universe
- Interplay between **detector design**, **performance**, **measurements and searches** is of paramount importance for Particle Physics

THANK YOU!

E.T. Exploring Tracking-lands, by F. Cairo

V.M.M.CAIRO **Valentina Maria Martina Cairo** 76

EXTRA SLIDES

77

1983: First Silicon Strip Detector in HEP

NA11/NA32 Experiment at CERN -Measure Lifetime and Mass of Charm Mesons

 10 cm

Ratio of detector surface to nearby electronics surface 1:300!

 \div 1200 diode strips on 24 x 36mm2 active area
 \div 250-500 µm thick bulk material

 $\div 4.5 \mu m$ resolution

THE ATLAS TIMELINE

LHC

THE LARGE HADRON COLLIDER

Need **high energy** to produce a **Higgs boson pair** & **high luminosity** to produce many

~ 1 in 1 billion proton-proton collisions @LHC produces a **Higgs boson ~ 1 in 1 trillion** proton-proton collisions @LHC produces a **Higgs boson pair**

Outperformed specifications during **Run 2**:

- **Peak Luminosity: x2 (2.14 x 10³⁴ cm⁻²s⁻¹)**
- **Integrated Luminosity**: 140 fb-1
- **Avg interaction per crossing** $\lt \mu$ >: x2 (~40)

Ongoing:

Run 3: 13.6 TeV, $\lt \mu$ > \sim 60

To go:

Run 4: 14 TeV, $< \mu > \sim 200$

THE ATLAS DETECTOR

Physics benchmarks drove the design of the detector

Excellent stand-alone reconstruction capabilities

Run Number: 266904, Event Number: 25884805

Date: 2015-06-03 13:41:54 CEST

O(15) charged-particles per p-p interaction X # simultaneous p-p interaction

FROM CHARGED PARTICLES TO EVENT RECONST[RUC](http://cds.cern.ch/record/1449796/files/ATLAS-CONF-2012-047.pdf?version=1)TION

Tracks used in the reconstruction of ~ all physics objects at

V.M.M.CAIRO EM Detector **EM Detector** and the set of the

Reference

KEY REQUIREMENTS FOR TRACKING

Physics benchmarks @LHC experiments place demanding requirements on the tracking system performance

> Searches for high-mass di-lepton resonances require **good momentum resolution for high momentum tracks**

For hadron production rate studies and for good jet energy resolution in particle flow jet, instead, **highly efficient low momentum reconstruction is needed**

Resolving nearby tracks is essential, for instance in boosted 3-prong tau or Bhadron decays

Excellent impact parameter resolution is crucial for measuring the position of primary vertices and for identifying b-quark jets

KEY REQUIREMENTS FOR TRACKING

Physics benchmarks @LHC experiments place demanding requirements on the tracking system performance

> Searches for high-mass di-lepton resonances require **good momentum resolution for high momentum tracks**

For hadron production rate studies and for good jet energy resolution in particle flow jet, instead, **highly efficient low momentum reconstruction is needed**

Resolving nearby tracks is essential, for instance in boosted 3-prong tau or Bhadron decays

Excellent impact parameter resolution is crucial for measuring the position of primary vertices and for identifying b-quark jets

- **Trackers** designed to **meet requirements**
- **EXAM.CAIRO Tracking algorithms to fully exploit their capabilities 85**

HOW TO PARAMETERIZE A TRACK

5 parameters describe the helical path of a charged particle in a solenoidal magnetic field:

- **Transverse d**₀ and **longitudinal z**₀ impact parameters (points of closest approach wrt perigee),
- **Azimuthal Φ** (measured in the transverse plane $[-\pi, \pi]$) and **polar** θ (measured from the z axis $[0, \pi]$, **pseudorapidity** η =ln(tanθ/2)
- **Charge/momentum q/p** defining orientation and curvature Courtesy of A. Salzburger

24.05.24

THE (CURRENT)ATLAS TRACKING CHAIN

VERTEXING

Primary vertex: point in space where interactions have occurred

Fundamental element of **data analysis**

Track-to-vertex association essential in reconstructing the full kinematic properties of the event

Important for the **determination of the luminous region**, or beam spot, where collisions take place and to **compute decay length for b-tagging**

Typically, only **one** *pp* **interaction** in a given beam crossing, the **Hard-Scatter** (HS) interaction, **is interesting for physics analyses**

- \cdot Often identified by the highest squared sum of track transverse momentum $\mathsf{p}_\mathsf{T}\,(\Sigma\mathsf{p}_\mathsf{T}{}^2)$
- V.M.M.CAIRO 88 • It is crucial that the **HS** be **distinguished from** the surrounding **pile-up** interactions

RUN 2 PERFORMANCE HIGHLIG

- **Run 1** \rightarrow **Run 2**: upgraded detector with **Insertable**
	- 2x better IP resolution, 4-5x better light-jet reject

V.M.M.CAIRO 89

24.05.24

THE (CURRENT)ATLAS APPROACH

Run $1/2 \rightarrow$ **Run** $3/4/...$: main innovation is an adaptive **multi-vertex** fitting procedure (**AMVF**) as opposed to an **iterative vertexing (IVF)** procedure

TIMING AND THE COMPUTATIONAL CHALLENGE

Figure 17 (Left) Simulation of the SP times in the 2nd ITk layer pile-up of 200. Different values of time resolution are shown. SP times in the 2nd ITk layer of ITk with 15 ps. The SPs are clu the minima of the Gaussian Kernel-Density Estimate of the time minimum indicates the edge of the time cluster. From Ref. [zz].

https://cds.cern.ch/record/28

TIMING AND THE COMPUTATIONAL CHALLENGE

https://cds.cern.ch/record/28

S&C: STATE OF THE ART

 $\overline{}$

S&C: STATE OF THE ART

 $\overline{}$

 $V.M.M.CAIRO$ \longrightarrow Benefits even more from the forward ITk ac

PERFORMANCE FIGURES PERFORMANCE FIGURES WITH STATE PRODUCED PRODUCED PARTICLES

⁹⁶ Primary charged particles are defined as charged particles with a mean lifetime ⌧ > 300 ps, either directly

✏trk(*p*T*,* ⌘) = *^N* matched

$$
\text{Track Reconstruction efficiency: } \begin{array}{|l|} \hline \text{ $\epsilon_{\rm trk}(p_{\rm T},\eta)$} & = \frac{N_{\rm rec}^{\rm matched}(p_{\rm T},\eta)}{N_{\rm gen}(p_{\rm T},\eta)} \\ \hline \end{array}
$$

rec (*p*T*,* ⌘)

100 The tracking economic $24.05.24$

*^N*gen(*p*T*,* ⌘) (3.2)

ID ITK

⁹⁵ association to associate reconstructed tracks to primary particles [12].

Fake Rate:

Take Rate:
$$
r_{\text{fake}}(p_{\text{T}}, \eta) = \frac{N_{\text{rec}}^{\text{unmatched}}(p_{\text{T}}, \eta)}{N_{\text{rec}}^{\text{}}(p_{\text{T}}, \eta)}
$$

 ID as reconstructed with different setup setup ID

 $P_{\text{match}} = \frac{10 \cdot N_{\text{pixel}}^{\text{common}} + 5 \cdot N_{\text{SCT}}^{\text{common}} + 1 \cdot N_{\text{TRT}}^{\text{common}}}{10 \cdot N_{\text{track}} + 5 \cdot N_{\text{SCT}}^{\text{common}} + 1 \cdot N_{\text{TRT}}^{\text{common}}}$

applies a *p*^T threshold of 100 MeV. The *MinBiasLowPt* setup is based on a *p*^T threshold of ¹⁰³ matched to charged particles and *N*gen(*p*T, ⌘) is the number of generated charged particles in that (*p*T, ⌘) Matching criterion:

 $P_{\rm m}$

matching chienon;
Azi AS setups, the required minimum number of silicon hist is 6.6. **ATLAS: weighted hit-based track-to-truth particle association**

A reconstructed track is matched to a generated particle if P_{match} >0.5

Technical/Algorithmic Efficiency: Ngen -> Ngen_reconstructable (e.g enough hits in the detector)

RUN 3 PERFORMANCE HIGHLIG

Significant performance improvements:

- ∼**10**% better vertex selection efficiency
	- ∼**20**% better longitudinal resolution
	- ∼**30%** inclusive efficiency recovery

V.M.M.CAIRO 97 All relevant for the HL-LHC ATLAS silicon Inne

Implemente

First ACTS p

• Factor of **~ 2 speed up**

GAUSSIAN TRACK DENSITY SEED FINDER

- Use a seeder that is **analytic** and **accounts for** the **track uncertainties**
	- Allows to exploit the **seed width (***σz***) to constrain the vertex fit**

V.M.M.CAIRO 98 independent quality control **Seed finding weights** calculated using a **longitudinal Gaussian** function with a **transverse Gaussian** function acting as an In this case, the density function for a track is a normalized one-dimensional Gaussian distribution of \mathcal{L} (*z*0), centred at *z*⁰ (the second term), with an additional *z*-independent multiplicative factor that reduces

$$
\lim_{\sigma(d_0,z_0)\to 0}\rho(z)=\Big(\frac{1}{\sqrt{2\pi}\sigma(d_0)}e^{-\frac{1}{2}d_0^2/\sigma^2(d_0)}\Big)\Big(\frac{1}{\sqrt{2\pi}\sigma(z_0)}e^{-\frac{1}{2}(z-z_0)^2/\sigma^2(z_0)}\Big).
$$

ATLAS IN RUN1/2: ITERATIVE VERTEX FINDER

24.05.24

ATLAS IN RUN1/2: ITERATIVE VERTEX FINDER to ² cut the fit vertex will have will have will have will have well have will have will have will have will have w
The fit vertex will have will \mathbf{z} : \mathbf{z}

annealing process, when α and α and

ATLAS IN RUN3: ADAPTIVE MULTI VERTEX FINDER ATL-PHYS-PUB-201

candidate with a weighted adaptive Kalman filter, subject to transverse and longitudinal constraints **ATLAS IN RUN3:** ADAPTIVE MULTI VERTEX FINDER ATL-PHYS-PUB-201 to it (through a chain of any length) are also simultaneously refit. Any length \mathcal{L} weights in the each vertex in six steps between the six steps based on compatibility (2). After each on compatibility (2). **Differences wrt IVF:** decrease of the temperature of the temperature \sim are recalculated and all connected vertices are refined vertices 2. Tracks compete z. induss compute to the state and the state of weight and weight to one, but for the weight of weight of weight \sim for verticesnormalization (only) three standard deviation (corresponding to \sim Add tracks to fit due to within wide z wir $e^{-\frac{1}{2}\chi_i^2/T}$ $\omega_i(\chi_i^2,T) =$ $-\frac{1}{2}\chi_j^2$ $e^{-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0^2/\sqrt{1-\frac{1}{2}\chi_0$ Õ j *e* any linked previously Probability of the track i to be compatible with **Figure 20** the **considered vertex** divided by the sum of probabilities to be compatible with **any other vertex plus** the prior probability of being an **outlier vertex plus** the prior probability of being an **outlier**

² probability greater than 104. Second, the new vertex's fit position may not be within 3
THE ATLAS DETECTOR IN RUN 4

ITk

V.M.M.CAIRO 1999 POSTAGE EN 19
DE SANTO 1999 POSTAGE EN 1999

HL-LHC TRACKING

A detector designed to be pile-up robust, and algorthms designed

The lower the fake rate, the better the CPU and storage usage medicing vertexing vertexing vertexing and the storage of the More of the More Pu-robust vertexi
storage usage

GNN

GNN

24.05.24

4D TRACKING

4D TRACKING

ATL-PHYS-PUB-2023-023

4D FTAG

4D FTAG

A VERY POPULAR RESEARCH TOPIC

ATLAS Experiment

Twice the Higgs, twice the challenge! Physicists at @CERN's ATLAS Experiment explain their new search for pairs of Higgs bosons in the rare bbyy
decay channel. Find out more: cern.ch/go/NLs7 **ATLAS searches for** pairs of Higgs bosons 3:56 15.8K views eets 12 Quote Tweets 351 Likes

Video Twice-higgs-twice-challenge

Updates > Briefing > Twice the Higgs, twice the challenge

Twice the Higgs, twice the challenge ATLAS searches for pairs of Higgs bosons in the rare bbyy decay channel

A VERY POPULAR RESEARCH TOPIC

ATLAS Experiment

Twice the Higgs, twice the challenge! Physicists at @CERN's ATLAS Experiment explain their new search for pairs of Higgs bosons in the rare bbyy
decay channel. Find out more: cern.ch/go/NLs7 **ATLAS searches for** pairs of Higgs bosons 3:56 15.8K views eets 12 Quote Tweets 351 Likes

Video Twice-higgs-twice-challenge

Updates > Briefing > Twice the Higgs, twice the challenge

Twice the Higgs, twice the challenge ATLAS searches for pairs of Higgs bosons in the rare bbyy decay channel

ANOTHER EXAMPLE

From 2

performed under differen ing SM background and the di-Higgs production effective Lagrangian for t we can project an exclusi

PUTTING EVERYTHING TOGETHER

World's best constraints to date on Higgs boson's **searches**

 $V.M.M.CAIRO$ **120 and 20 and 20 and 30 and 30 and 40 and** Observed(expected): -0.6< k_1 <6.6 (-2.1< k_1 <

PUTTING EVERYTHING TOGETHER

https://arxiv.org/pdf/2207.00043.pdf

V.M.M.CAIRO 121

PUTTING EVERYTHING TOGETHER

https://arxiv.org/pdf/2207.00043.pdf

24.05.24

VBF HH PRODUCTION VS KL AND K2V

Fig. 82. VBF HH production cross section as a function of the coupling deviation from the SM value for the HHVV (HHH) vertex in blue (red). The solid line is after acceptance cuts, the dashed line is after analysis cuts applied on the rapidity difference and M_{ij} [455]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

K2V

https://doi.org/10.1016/j.physletb.2023.13

 (b)

SINGLE HIGGS

https://doi.org/10.1016/j.revip.202

FUTURE COLLIDERS

arXiv:1907.02078v2

Table 1: Higgs couplings, defined in Eqs. (2.1) and (2.3), for the SM and various NP scenarios. For the Coleman-Weinberg (CW) Higgs scenario, we also present in the parenthesis the Higgs self-couplings up to the two-loop order, predicted in the two of the simplest conformal extensions of the scalar sector: SM Higgs doublet with another doublet [14], and SM Higgs doublet with two additional singlets [15].

24.05.24

 d_3

1

 d_4

 $hhhh$

 $\mathbf{1}$

 $1 + c_6 \frac{6v^2}{\Lambda^2}$

 $1-\frac{25}{3}\xi$

 $1 - \frac{25}{3}\xi$

 $\frac{11}{3}(4.43)$

 $\frac{11}{3}(4.10)$

 $\simeq 0$

Modern flavor tagging algorithms based on Graph Neural Networks and potential of the potential of the potential of the ITk \rightarrow large sensitivity gains for HH!

V.M.M.CAIRO **1300 Propinsi Amerika Amerika September 1300 Propinsi Amerika September 1300 Propinsi Amerika Septemb**

RUN 3 *b***-TAGGING**

ITK BTAGGING

Moder taggers based on Graph Neural Networks further ex ITk: **up to x2 improvement in light-jet rejection**!

ITK

24.05.24

Barrel Staves Endcap Rings

(R1 & R0/1)

(R0.5 & R0/1)

V.M.M.CAIRO 133

ITK

Validate Local Support design and loading procedure

Thermo-mechanical prototype

- Load with dummy modules
	- silicon heaters with platinum coating
		- power to dissipate 0.7 W/cm² (chip end-o SINGLE DUMMY SENSOF
		- measure *Thermal Figure of Merit*
- R0/1 coupled ring and L0 stave

Electrical prototype

- Load with RD53A modules
- R0/1 coupled ring, L0 stave, L1 stave

Validate Local Support design and loading procedure

Integration prototypes

- Integrate electrical prototype in quarter shell at low z
- Integrate additional stave/ring flavors

Heaters - Wiring

ITK

• **Test box details**

V.M.M.CAIRO 135

24.05.24

LESSONS F[ROM](https://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12009/meta) THE PAST

- Every small detail in construction plays a role later on in performance
- **Large amount of material in the tracker from Pixel services and cooling**
- Estimated a priori, but requires data-driven methods during actual operation
- **Many lessons learned after IBL installation**
	- Hadronic interactions & photon conversions
	- **Track extension efficiency**

LESSONS F[ROM](https://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12009/meta) THE PAST

- Every small detail in construction plays a role later on in performance
- **Large amount of material in the tracker from Pixel services and cooling**
- Estimated a priori, but requires data-driven methods during actual operation
- **Many lessons learned after IBL installation**
	- Hadronic interactions & photon conversions
	- **Track extension efficiency**

TABLE 3.2: Track reconstruction efficiency and absolute systematic uncer-**Example 3 Beginning of 2018**

reconstruction efficiencies measured in the original and distorted geometry samples listed

CMS' MIP TIMING DETECTOR

Beyond Run 4, CMS is also considering to add timing layers in

V.M.M.CAIRO 138

A COMPARISON WITH CMS' MIP TIMING DETECTOR

From CMS MTD TDR: *"The MTD will give timing information for MIPs with 30–40 ps resolution at the beginning of HL-LHC operation in 2026, degrading slowly as a result of radiation damage to 50–60 ps by the end of HL-LHC operations."*

about 200. The integrated luminosity \times efficiency is increased and this gain is equivalent to collecting data for three additional years beyond the ten year run planned for the HL-LHC.

24.05.24

A WORD ON TECHNOLOGY

- Technology that could potentially match the requirements **[starts to arise](https://indico.cern.ch/event/1127562/contributions/4904555/attachments/2525576/4343740/28nm%20TDC%20TWEPP%202022%20poster%20final.pdf)**, but still **requires a lot of R&D**
- **Radiation Hardness is a key challenge!**
- **4D Tracking White Paper for Snowmass reviews state of the art and R&D for use-cases and technologies at e+e- and hadronic colliders**
	- https://arxiv.org/abs/2203.13900
- **CERN-SLAC collaboration on electronics,** also in connection with CERN 28 nm forum

SLAC

Jus

A WORD ON TECHNOLOGY

Presently explored options

The present R&D in position sensitive timing detectors shows the same standard silicon sensors. In the following, I will cover a few examples free

https://indico.cern.ch/event/797047/contributions/3638198/attachments/2308674/3928223/Positions.pdf

TIMING DETECTORS

24.05.24

TIMING DETECTORS

Nuclear Inst. and Methods in Physics Research, A 1040 (2022) 167228

Table 1

Compilation of front-end ASICs and monolithic systems. The first 5 systems use an hybrid design, the bottom 4 are monolithic. The first 4 systems are very advanced or completed, while the bottom 5 are in their R&D phase, so performances might change rapidly.

24.05.24

TIMING DETECTORS https://arxiv.org/abs/2203.13900

Table 1: Requirements for state-of-the-art readout chips designed for timing (. ETROC $[2]$) and for pixel detectors (RD53A / CMS Phase II tracker $[28,67]$.)

TIME RESOLUTION

https://arxiv.org/abs/2203.13900

Time resolution is the crucial new ingredient to achieve 4D tracki duction to its separate components is discussed. The time resolution as follows:

 $\sigma_{timing}^2 = \sigma_{timewalk}^2 + \sigma_{Landau}^2 + \sigma_{Jitter}^2 +$

The time walk and Landau resolution components, intrinsic to the sensor, can be reduced respectively with short drift time and limited thickness in the path of a MIP.

> The time errors arising from instead related to the reado respectively from high signal size.

TIME RESOLUTION

Time resolution is the crucial new ingredient to achieve 4D tracking. In this section a brief introduction to its separate components is discussed. The time resolution of a detector can be expressed as follows:

$$
\sigma_{timing}^2 = \sigma_{timewalk}^2 + \sigma_{Landau}^2 + \sigma_{Jitter}^2 + \sigma_{TDC}^2 \tag{1}
$$

The first two components, time walk and Landau, are intrinsic to the sensor. Time walk refers to the variation of the deposited charge event-by-event, shifting the threshold crossing earlier for larger charges and later for smaller charges. This component can be minimized by either using a variable threshold or a corrected constant threshold. A variable threshold is, for example, the Constant Fraction Discriminator (CFD) where the 20-50% of the pulse maximum is used as the time of arrival. A more common method in integrated electronic chips is to correct the time walk on the time of arrival (TOA) with a calibration based on the time over threshold (TOT), which serves as a proxy for the charge. Beyond variation in the total ionization, the Landau term represents the spatial variation of the deposited charge along the path of a minimum ionizing particle (MIP), as charges from different depths are collected at different times. Since a MIP usually traverses the entire sensor perpendicularly, this component is smaller for thinner devices or sensors with short drift times. In devices where the S/N is high and time walk can be adequately corrected, the irreducible Landau component is usually the limit of the achievable time resolution.

TIME RESOLUTION

The second two components are related to the readout chip's electronics. The jitter is described as

$$
\sigma_{Jitter}^2 = \frac{Noise}{dV/dt} \approx \frac{T_{rise}}{S/N} \tag{2}
$$

Therefore σ_{Jitter}^2 is proportional to the rise time and inversely proportional to the S/N ratio. Since the rise time is proportional to the drift time of charge carriers in the sensor, again a sensor with short drift time and high signal to noise ratio is advantageous.

The time to digital conversion (TDC) component is related to the readout chip's TDC precision to measure TOA and TOT, given by the quantization bin size. In the case of the planned timing detectors at the HL-LHC, they range between 20ps (ATLAS) and 30ps (CMS) for the TOA TDC, and 40ps (ATLAS) and 100ps (CMS) for the TOT used for the time walk correction. Given that quantization errors are described by an uniform probability density, σ_{TDC}^2 is given by the bin size divided by $\sqrt{12}$ which is about 5ps.

To summarize, a candidate timing device would need to have the following characteristics: short drift time (reduces rise time), high signal to noise (reduces jitter component), limited thickness in the path of a MIP (reduces Landau component), and small TDC bin size (reduces TDC component). These properties can be achieved by exploiting several technologies introduced in the following section.

VERTEXING STUDIES

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-023/

VERTEXING STUDIES

THE STRANGE QUARK AS A PROBE FOR NEW PHYSICS

2203.07535

THE STRANGE QUARK AS A PROBE FOR NEW PHYSICS

2203.07535

 $V.M.M.CAIRO$ $(*)$ many more SM analyses would benefit from strange tagging, e.g. $\overline{)}$

THE *STRANGE* **FEATURES**

2203.07535

Particle Identification is crucid

Need p/K discrimination over a momentum range of $(0.2 - 0.7) \times 0.5 \times 125 \approx 12$ to 50 G

2203.07535

Use a Recurrent Neural Net tagger for classifying jet-flavour, train $inv((H \rightarrow qq/gg)$ samples and include **per-jet level inputs** & **va** each jet, *including PDG-based PID > general validity for vario*

See a similar tagger for FCC-ee

Good discrimination of *s-***jets from u/d- and** *g-***jets**

@50% s->80% u/d-

2203.07535

Use a Recurrent Neural Net tagger for classifying jet-flavour, train $inv((H \rightarrow qq/gg)$ samples and include **per-jet level inputs** & **va** each jet, *including PDG-based PID > general validity for vario*

See a similar tagger for FCC-ee

Good discrimination of *s-***jets from u/d- and** *g-***jets**

 $At f$ **No PID to PID < 10 GeV:** ∼**1.5x efficiency**

2203.07535

Use a Recurrent Neural Net tagger for classifying jet-flavour, train $inv((H \rightarrow qq/gg)$ samples and include **per-jet level inputs** & **va** each jet, *including PDG-based PID > general validity for vario*

See a similar tagger for FCC-ee

Good discrimination of *s-***jets from u/d- and** *g-***jets**

At f No PID to PID **No PID to PID < 20 GeV:** ∼**2.0x efficiency**

PID

PID

PID -

No P

LCFII

Rand

2203.07535

Use a Recurrent Neural Net tagger for classifying jet-flavour, train $inv((H \rightarrow qq/gg)$ samples and include **per-jet level inputs** & **va** each jet, *including PDG-based PID > general validity for vario*

See a similar tagger for FCC-ee

Good discrimination of *s-***jets from u/d- and** *g-***jets**

V.M.M.CAIRO 156 At f No PID to PII No PID to PID **No PID to PID < 30 GeV:** ∼**2.5x efficiency**

PID.

PID

PID -

No P

LCFII

Rand

A PHYSICS BENCHMARK: h **→ ss ANALY @ THE INTERNATIONAL LINEAR COLLIDE**

- Foreseen to run at several \sqrt{s} , dedicated 2 couplings studies
	- $\sigma_H \omega \sqrt{s} = 250$ GeV ~ 200 fb (dominated k
		- 2000 fb $^{-1}$ collected in 10y b
			- \rightarrow ~ 400k Higgs \rightarrow ~ 80 h \cdot

But of course, new physics boosts th

$h \rightarrow ss$ ANALYSIS IN A NUTSHELL

• If we can tag strange jets, we can probe the **Higgs strange Yukawa** coupling… But we need π/K discrimination at high momenta!

• This triggered recent studies of what may be possible with a system that pioneered particle ID: the **Ring Imaging Cherenkov detector**

PARTICLE IDENTIFICATION TECHNIC

Various technologies allow to identify hadrons in different mon

RING IMAGING CHERENKOV DETECTORS

RICH detectors use the angle of emitted Cherenkov radiation coupled with momenta measurements, yield particle masses

 0.0

RING IMAGING CHERENKOV DETECTORS

RICH detectors use the angle of emitted Cherenkov radiation coupled with momenta measurements, yield particle masses

THE IMPORTANCE OF STRANGE SCIENC

- Many unexplored physics benchmarks rely on **strange tagging**, in turn ϵ
	- Higgs *& friends* Factories: **Z, W, top, flavor physics in general…**
- Ordinary matter composed by electron and light quarks
	- none of the Higgs boson couplings to such particles has been veri
- Testing Yukawa universality is a key benchmark for future Higgs factories
- Best constraints on **strange Yukawa** derived via a direct SM $h \rightarrow ss$ sear reduced to $k_s \leq 7$ x SM (we probed also u/d)

