An Experimentalist's **Perspective on Testing Field** Theories with the CMB.

L. Page, AlbaNova, June 2007

The current cosmological model agrees with virtually all cosmological measurements regardless of redshift or method.

The model assumes a flat geometry (a couple %), a new form of matter (>15 σ), something that mimics a cosmological constant (many σ), and a deviation from scale invariance (P(k) $\propto k^{n_s=1}$, ~3 σ).

WMAP3 only

WMAP3 + all

- $\Omega_b h^2_{\rho} = 0.02233 \pm 0.0008$
- $\Omega_m h^2 = 0.126 \pm 0.009$
 - $h = 0.735 \pm 0.032$
 - $\sigma_8 = 0.76 \pm 0.05$
 - $au = 0.088 \pm 0.03$
 - $n_s = 0.961 \pm 0.017$

- $\Omega_b h^2 = 0.02186 \pm 0.0007$
- $\Omega_m h^2 = 0.132 \pm 0.004$
 - $h = 0.704 \pm 0.015$
 - $\sigma_8 = 0.776 \pm 0.031$
- $au = 0.073 \pm 0.03$
 - $n_s = 0.947 \pm 0.015$

No SZ marg.

Models based on some kind of field theory of the early universe predict n_s .

Testing Specific Field Theories

Experimental handles

(1) Spectrum of Fluctuations n_s & $lpha=dn_s/d{
m ln}k_s$

(2) Anisotropies from Gravitational Waves.

(3) Non-Gaussanity

n and r are predicted by models of the early universe

Spectral Index, Experimental Challenges

Three different spectra that differ only in spectral index.

The black line is the best WMAP model.

Spectral Index

Normalize the spectra to l=220 (mimics n_s amplitude degeneracy)

The two window functions are for 0.1 deg FWHM beams with a 1% difference in solid angle. Only WMAP has achieved anything like this accuracy.

Spectral Index

Divide by fractional window function.

Conclusion: To probe the index the beams need to be understood to the 1% level.

In addition, there are astrophysical challenges.

Spectral Index: Astrophysical Challenges

The formation of the first stars produces free electrons that:

(1) rescatter CMB photons thereby reducing the anisotropy and

(2) polarize the CMB at large angular scales.

These effects mimic a change in n_s: "the n_s - tau" degeneracy

WMAP measures (2) to break the degeneracy

Low-1 EE/BB

EE Polarization: from reionization by the first stars

Just Q and V bands.

BB Polarization: null check and limit on gravitational waves.

r<2.2 (95% CL) from just EE/BB

Knowledge of optical depth breaks the $n_s - \tau$ degeneracy

 $(1\sigma \operatorname{in} 2d)$

What Does the Model Need to Describe the Data?

changing one of the 6 parameters at a time....

Model does not need: "running," r, or massive neutrinos, $\Delta \chi^2 < 3$.

The data are, of course, less restrictive when there are more parameters.

Expectations at l=100

Dust at 150 GHz from FDS

1000 close packed dets for 1 year at 350 uK-sec^{1/2} raw or 700 uKsec^{1/2} on sky. Boxes inst sensitivity not sky rms sens.

Lensing B modes

From Jo Dunkley

Non-Gaussanity

- The quadrapole is not anomalously low. For the full sky, the 2-pt correlation function is not anomalous.
- All "detections" of non-Gaussanity are based on *a posteriori* statistics. That is, one seeks any oddity in the maps and quantifies it.
- The North-South asymmetry was visible in the COBE data.
- It would be fantastic to find a clear signature of cosmic non-Gaussanity. The WMAP team has not found one.

Distribution by map temp. by frequency (accounting for uneven weighting)

What's Next?

(50 bolometers) L2, data 2012

Columbia Cardiff CUNY Rutgers

Haverford INAOE NASA/GSFC UBC U. Catolica U. KwaZulu-Natal UMass UPenn U. Pittsburgh U. Toronto

New Type of Telescope

Telescope at AMEC in Vancouver. Ship to Chile in 2006.

Arrays of bolometers (S. Staggs is lead)

8x32 Array of 1mm x 1mm detectors. Now in Chile on the telescope.

First Light from ACT

June 8, 2007

Expanding CMB Photosphere

-4.500E-04

+4.500E-04

Stuart Lange, Senior Thesis, 2007

An Experiment for the Century

