Thanks to the Organizers for a great conference! Lars Bergstrom

Ulf Danielsson

Ariel Goobar

Anupam Mazumdar

Joakim Edsjo

Jakob Nordin Yashar Akrami Linda Ostman Anne Jifalt

Where is SUSY?

Savas Dimopoulos Stanford University

Stockholm, June 20, 2007

Large Hadron Collider Coming Soon in 2008

Large Hadron Collider

Energy Frontier $2 \text{ TeV} \rightarrow 14 \text{ TeV}$ Luminosity Frontier $2 \text{ fb}^{-1}/\text{yr} \rightarrow 30 \text{ fb}^{-1}/\text{yr}$

Will find the Higgs

Will explore the solutions to the hierarchy problem

Mystery of Equidistant Scales

Natural Theories:

Theories that explain these hierarchies without 'fine-tuning'

Approaches to the Gauge Hierarchy Problem

Stages:

- Philosophy (1974)
- Technicolor (1978)
- Supersymmetric Standard Model (1981)
- Low Scale Gravity (1998)

[Susskind, Weinberg]

[S.D., Georgi]

[Wilson]

[Antoniadis, Arkani-Hamed, S.D., Dvali]

[Randall, Sundrum]

- Warped Gravity (1999)
- Little Higgs (2001)

[Arkani-Hamed, Cohen, Georgi]

Approaches to the Gauge Hierarchy Problem

Stages:

- Philosophy (1974)
- Technicolor (1978)

[Wilson]

[Susskind, Weinberg]

• Supersymmetric Standard Model (1981)

[S.D., Georgi]

• Low Scale Gravity (1998)

[Antoniadis, Arkani-Hamed, S.D., Dvali]

• Warped Gravity (1999)

[Randall, Sundrum]

• Little Higgs (2001)

[Arkani-Hamed, Cohen, Georgi]

Four decades of SUSY

70'S Mathematical Formalism No physical models - charge, color broken

80'S Supersymmetric Standard Model Unification Prediction

Four decades of SUSY

90'S LEP Rollercoster LEP I: Unification prediction confirmed

Four decades of SUSY

90'S LEP Rollercoster LEP I: Unification prediction confirmed

LEP I. Unification prediction confirme LEP II: No sparticles found

00's Challenging Naturalness

Cosmological Constant, Landscape, Split SUSY

Supersymmetric Standard Model '81

Doubles the number of particles

quark \longrightarrow squarkgauge boson \longrightarrow gauginolepton \longrightarrow slepton2 Higgs \longrightarrow Higgsinos

To keep the Higgs mass at the weak scale

Susy particles @ 0.1 TeV scale \longrightarrow Accessible at colliders

Soft SUSY Breaking

Parametrize SUSY breaking just as quark masses parametrize chiral breaking

Do accessible physics without knowing inaccessible short-distance details

Soft SUSY Breaking

Parametrize SUSY breaking just as quark masses parametrize chiral breaking

> Universality of soft terms Super-GIM mechanism

Approximate degeneracy of scalars LHC: Lots of particles accessible!

Proton Stability \Rightarrow DM Stability

New particles \Rightarrow new ways to mediate proton decay

Proton Stability \Rightarrow DM Stability

New particles \Rightarrow new ways to mediate proton decay

Proton Stability \Rightarrow DM Stability

New particles \Rightarrow new ways to mediate proton decay

Lightest Supersymmetric Particle (LSP) is stable If neutral and colorless -- Dark Matter

Smoking gun: "Missing Energy" signatures Follow from proton stability!

Gauge Coupling Unification 40 30 $lpha^{-}$ 20 10 $10^{\overline{15}}$ 10^{9} 10^{12} 10^{6} 10^{3} E (GeV)

MSSM 1981 Predictions S. D., Georgi

Degenerate Soft Terms Many sparticles to be discovered at once

> Stable ~100 GeV LSP Missing Energy at Colliders Dark Matter

Unification

New proton decay channels

 $\sin^2 \theta_{\rm w}$ vs $\alpha_3 \rightarrow$ already confirmed at LEP!

Late 90's

Everybody expected LEP2/Tevatron to be discovery machines

Nothing discovered! No sparticles or Higgs...

Supersymmetric Standard Model

Grade Report: Circa 2000

<u>Successes</u>

Unification

Dark Matter

Shortcomings

Higgs? Sparticles? FCNC, CP ~110 parameters Proton Decay Gravitino & Moduli Problems

Supersymmetric Standard Model

Grade Report: Circa 2000

<u>Successes</u>

Unification

Dark Matter

Shortcomings

Higgs? Sparticles? FCNC, CP ~110 parameters Proton Decay Gravitino & Moduli Problems

Fermions

Scalars

Supersymmetric Standard Model

Grade Report: Circa 2000

Successes

Unification

Dark Matter

Shortcomings

Higgs? Sparticles? FCNC, CP ~110 parameters Proton Decay Gravitino & Moduli Problems

Fermions

Scalars

Hierarchy Problem

Cosmological Constant

This could be flawed
In theories with few vacua

Getting $\rho_{vacuum} \sim (10^{-15} M_W)^4$

Looks like divine intervention! Since any bigger value would rip apart galaxies

However... (Weinberg 1987)

Therefore, if there are enough vacua with different ρ_{vacuum} , the "galactic" principle can explain why we live in a universe with small, but nonzero, ρ_{vacuum}

This reasoning correctly predicted a small $\rho_{_{vacuum}}$

and has recently gained momentum because string theory may well have a vast "landscape" of metastable vacua

 10^{100s}

Bousso, Polchinski; Kachru, Kallosh, Linde, Trivedi; Susskind; Douglas, Denef et.al.

'Innumerable suns exist, innumerable earths revolve around these suns, in a manner similar to the way the planets revolve around the sun. Living beings inhabit these worlds'

Giordano Bruno, 1584

'Innumerable suns exist, innumerable earths revolve around these suns, in a manner similar to the way the planets revolve around the sun. Living beings inhable use worlds'

Giordano Bruno, 1584

The presence of so many vacua can drastically affect what we consider natural or likely, through:

1) Statistical reasoning

2) Environmental reasoning

Statistical reasoning

changes notion of Naturalness in the Landscape:

favors high-scale SUSY

Environmental reasoning

Cosmological Constant Problem <---- "Galactic" Principle

$$0 < m_n - m_p - m_e < E_{nucleon}$$
 $(\approx 8 MeV)$

Environmental reasoning

Cosmological Constant Problem <---- "Galactic" Principle

$$0 < m_n - m_p - m_e < E_{nucleon} (\approx 8 \, MeV)$$

 M_W decreases: unstable Hydrogen

Environmental reasoning

Cosmological Constant Problem ← "Galactic" Principle

$$0 < m_n - m_p - m_e < E_{nucleon} \\ (\approx 8 MeV)$$

 M_W decreases: M_W increases: unstable Hydrogen only stable Hydrogen sets the weak scale Challenge:

Preserve the successes of SSM: Unification + DM

Just keep the fermions of the SSM!

MSSM

$M_{\rm Pl.}$ 10¹⁶ TeV

1 TeV

Split Susy

Scalars

(Squarks, sleptons, ...)

Arkani-Hamed & S.D. (2004) Giudice & Romanino Wells

 10^{16} TeV $M_{\rm PL}$ $? \left\{ \begin{array}{c} 10^{15} \text{ TeV} \\ 10 \text{ TeV} \end{array} \right.$ $M_{\rm susy}$ 1 TeV M_{weak}

Arkani-Hamed & S.D. (2004) Giudice & Romanino Wells

Arkani-Hamed & S.D. (2004) Giudice & Romanino Wells

Unification + Dark Matter

Gauge Coupling Unification

Squarks and Sleptons don't alter unification

Problems solved in one stroke

- Sparticles
- Proton decay
- FCNC; CP

- The number of new parameters is reduced from 110 to 7
- Gravitino and Moduli problems also solved

The Higgs Mass

Arvanitaki, Davis, Graham, Wacker hep-ph/0406034

Long-Lived Light Gluinos

Must decay through squarks

$$\tau_{\tilde{g}} \simeq 2 \text{ sec.} \left(\frac{350 \text{ GeV}}{m_{\tilde{g}}}\right)^5 \left(\frac{M_{\text{Susy}}}{10^6 \text{ TeV}}\right)^4$$

Long-Lived Light Gluinos

Must decay through squarks

$$\tau_{\tilde{g}} \simeq 2 \text{ sec.} \left(\frac{350 \text{ GeV}}{m_{\tilde{g}}}\right)^5 \left(\frac{M_{\text{Susy}}}{10^6 \text{ TeV}}\right)^4$$

LHC: 1 gluino/sec for m_{gluino}=350 GeV

Long-Lived Light Gluinos

Must decay through squarks

LHC: 1 gluino/sec for mgluino=350 GeV

R - hadrons

R-baryons *§qqq*

Neutral R-hadrons do not stop

Slow charged R-hadrons stop

Bethe-Bloch

Gluino is a reservoir of kinetic energy:

Hard to stop unless R-hadron is charged

Matter conversion

The interaction:

 $R_{meson} + Nucleon \rightarrow R_{Baryon} + \pi$

is exothermic (Q = 400 MeV)

$$\sigma \sim \sigma_{strong} \frac{v_{final}}{v_{initial}}$$

Half the time the R-Baryon is charged

How many stop?

Stopped, late-decaying Gluinos!

Stopped, late-decaying Gluinos!

Stopped, late-decaying Gluinos!

Dark Matter Detection

G.F.Giudice, and A. Romanino, hep-ph/0406088, A. Pierce, hep-ph/0406144

Annihilating DM detection

•Signals:

Excess in the continuous cosmic ray spectrum

 γ – lines from neutralino annihilation to 2 photons or a photon and a Z boson

 χ_{o} χ_{o

GLAST

Signal depends on the DM distribution

HESS

Other Split SUSY Couplings

Higgs Quartic

 $\lambda |H|^4 - m^2 |H|^2$

Gaugino Yukawas

$$\kappa_u H \widetilde{H_u} \widetilde{W} + \kappa_d H^{\dagger} \widetilde{H_d} \widetilde{W} \\ \kappa'_u H \widetilde{H_u} \widetilde{B} + \kappa'_d H^{\dagger} \widetilde{H_d} \widetilde{B}$$

$$\lambda(M_s) = \frac{1}{8} \left(g^2 + g'^2 \right) \cos^2 2\beta$$

$$\kappa_u(M_s) = g \sin \beta$$
$$\kappa_d(M_s) = g \cos \beta$$

Run from the weak scale to M_{susy}

Four predictions, four independent tests of high-scale SUSY !
Split SUSY signatures

- Higgs Mass 120 160 GeV
- Gauginos and Higgsinos
- Dark Matter
- EDMs
- Gluino lifetime reveals m_{susy}
- κ 's and λ in terms of tan β and m_{susy}

Strong evidence for a fine tuning mechanism, in the EW sector. No subtleties of gravity.

Late 00's

Thanks to the Organizers for a great conference!

Lars Bergstrom

Ulf Danielsson

Ariel Goobar

Anupam Mazumdar

Joakim Edsjo Jakob Nordin Yashar Akrami Linda Ostman