The Search for the Higgs Boson

Trevor Vickey

University of Wisconsin, Madison

September 15, 2008

University of Stockholm Experimental High-Energy Physics Seminar

What is the Higgs Boson?

The Standard Model

The Standard Model (SM) of Particle Physics...

 So far extremely successful at describing nature's fundamental particles and their interactions

3 Generations of Matter

Quarks and Leptons

3 Forces

- Electromagnetic, Weak, Strong
- Forces carried by: $\,\gamma,\,W^{\pm}/Z,\,g\,$

...one missing piece

 The mechanism believed to be responsible for the origin of mass, predicts a single neutral particle.

Three Generations of Matter

The Higgs boson has eluded experimentalists for decades

The Origin of Mass

The SM says that all of the carriers of the Electromagnetic and Weak forces must have the same "symmetric" mass, of zero

- These force carriers are the γ and $\,W^{\pm}/Z\!\!$, respectively
- We know from experiment that the Weak force carriers have a non-zero mass

The Origin of Mass

What breaks the symmetry of the Weak Interactions?

- In the theory, postulate a Higgs Field ϕ and a potential energy function:

$$V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$$

- Assume minimum is not at $\phi=0$ but, some non-zero value: ϕ_0

Analogy to a ball rolling down a hill

 Direction that the ball rolled down has now been singled out from all other directions; the symmetry has been spontaneously broken

Through the Higgs Mechanism, particles obtain an "effective mass"

The Higgs Field

The Higgs Field is a scalar field (think of a temperature map)

• Particles obtain an "effective mass" by interacting with the Higgs field of empty space

Energy in GeV

10-12

10-9

10-6

10-3

ime in s

1018

1012

106

1

From Theory... the exact Higgs mass is unknown

 If SM is valid up to the Plank Scale ~10¹⁹ GeV then M_H is in a limited range:

$$130~{
m GeV/c}^2 \lesssim M_H \lesssim 180~{
m GeV/c}^2$$

If there is new physics ~10³ GeV:

$$50~{
m GeV/c}^2 \lesssim M_H \lesssim 800~{
m GeV/c}^2$$

SM Higgs Sector no longer meaningful for this Λ

What we know about the Higgs

From Experiments of the past...

Higgs searches at the Large Electron-Positron Collider (LEP) at CERN

- Collider ran from 1989 through 2000
- In 2000, center-of-mass energy was 200 210 GeV
- Four detectors: ALEPH, DELPHI, L3 and OPAL

Present Limit from direct searches at LEP:

$$M_H > 114.4 \text{ GeV/c}^2, \text{CL} = 95\%$$

What we know about the Higgs

From Experiments of the present...

Very aggressive searches at the CDF and D-Zero Experiments

- Proton anti-proton collider near Chicago, USA
- Running with a center-of-mass energy of 1.96 TeV
- Now looking into roughly 3 fb⁻¹ of data, but no sign of the Higgs yet
- Running through 2010 is on the table; could provide a total of 8 10 fb⁻¹

Tevatron Run II Preliminary

What we know about the Higgs ICHEP 2008 combined result from CDF and D-Zero [155, 200 GeV]

• Exclude 170 GeV/c² @ 95% CL

🛟 Fermilab

What we know about the Higgs

From other experimental measurements...

 Precision Electroweak measurements are indirectly sensitive to the Higgs mass through radiative corrections

$$\left.\begin{array}{c} & & \\ & &$$

What we know about the Higgs

All experimental data to date favors a light Higgs

- SM: M_H = 87⁺³⁶-27 GeV; M_H < 160 GeV @ 95% CL
- LEP Direct Limit: M_H > 114.4 GeV @ 95% CL

The Large Hadron Collider (LHC)

The Primary Objective of the LHC

Elucidate the mechanism responsible for Electroweak Symmetry Breaking

- Particle accelerator located at CERN (Geneva, Switzerland)
- 26.7 km circumference
- pp collider at $\sqrt{s}=14~{\rm TeV}$
- Instantaneous luminosity of $\sim 10^{33} 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- 40 MHz bunch-crossings with a "pile-up" of 2-20 inelastic collisions per crossing
- First circulating beam September 10, 2008 / Full-energy running in 2009

The Large Hadron Collider

Housed in the former LEP tunnel

- Dipole field at 7 TeV is 8.33 T
- ~350 MJ per beam! DB
- Ultimately ~2800 bunches
- Vacuum 10⁻¹³ atm (~6500 m³ pumped)
- 1232 Dipoles (operate at 1.9 K)
- 858 Quadrupoles
- Typical store lasts ~10 hours
- Can also be used for ion running (Pb)
- Final price tag estimated at 4G EUR

LHC: Large Hadron Collider SPS: Super Proton Synchrotron AD: Antiproton Decelerator ISOLDE: Isotope Separator OnLine DEvice PSB: Proton Synchrotron Booster PS: Proton Synchrotron LINAC: LINear ACcelerator LEIR: Low Energy Ion Ring CNGS: Cern Neutrinos to Gran Sasso

September 10, 2008

First circulating beam!

- 450 GeV Beam 1 (clockwise) ~10:30
- 450 GeV Beam 2 (counter-clockwise) ~15:00

An Unexpected Event?

The media likes to get carried away... Will a Black Hole swallow the Earth? I think we're safe...

Expected Event Rates

ATLAS with LHC at $\ \mathcal{L} = 10^{33} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1}$

Process	Events / s	Events in 10 fb ⁻¹
W→ev	15	10 ⁸
Z→ee	1.5	10 ⁷
ttbar	1	10 ⁹
bbbar	10 ⁶	10 ¹² -10 ¹³
H (m=130)	0.02	10 ⁵

Many of these processes become backgrounds to Higgs searches... ...more on this later

Higgs production at the LHC

SM Higgs discovery final states

At low mass $(M_H < 2M_Z)$

- Dominant decay through bb; enormous QCD background, suppressed in ttH
- $H \rightarrow \tau \tau$ accessible through Vector Boson Fusion (VBF)
- $H \rightarrow WW^{(*)}$ accessible through gluon-gluon fusion and VBF
- $H \rightarrow \gamma \gamma$ has a low BR (decays through top and W loops); but due to excellent γ /jet separation and γ resolution is still very significant
- $H \rightarrow ZZ^* \rightarrow 4I$ also accessible

For higher masses

H→WW and H→ZZ→4I final-states

A Toroidal LHC ApparatuS (ATLAS)

- Collaboration formed in 1992
- As of April 2007: 37 Countries, 167 Institutions, ~2000 Members
- The largest collider detector ever built

General purpose experiment at the LHC

- Not just poised for finding and studying Higgs: Top, Exotics, SUSY, etc.
- Length ~40 m, Radius ~10 m, Weight ~7k tons, Channels ~10⁸

The Inner Tracker

- Comprised of the silicon Pixel Detector (50 x 400 μm), Semiconductor Tracker (silicon strips 80 μm pitch), Transition Radiation Tracker (straw tracker)
- Resides inside of the central solenoid (magnetic field of 2 Tesla)

$$rac{\delta p_T}{p_T} \simeq 5 imes 10^{-4} \oplus 0.01$$

Electromagnetic Calorimeter

Pb and liquid Ar

$$\frac{\delta E}{E} = \frac{0.1}{\sqrt{E}}$$

Hadronic Calorimeter

Fe + scintillator and Cu + liquid Ar

$$rac{\delta E}{E} = rac{0.5}{\sqrt{E}} \oplus 0.03 \, \left|\eta
ight| < 3$$

$$rac{\delta E}{E} = rac{1}{\sqrt{E}} \oplus 0.07 \, \left|\eta
ight| \geq 3$$

Stockholm University

Muons

- Monitored Drift-Tube chambers
- Cathode Strip Chambers
- Resistive Plate Chambers
- Thin Gap Chambers

$$\frac{\delta p_T}{p_T} \simeq 0.1$$
 at 1 TeV

Trigger and Data Acquisition System:

 Level-1 is hardware, Level-2 confined to "Regions of Interest", Event Filter has the ability to access the entire event

September 10, 2008

First beam event in ATLAS!

ATLAS has been told to expect 900 GeV collisions THIS WEEK

ATLAS Data-taking Chain

First test of the end-to-end data-taking chain took place in September 2007

 ESD (Event Summary Data): output of reconstruction (calo cells, track hits, ..): ~1 MB
 AOD (Analysis Object Data): physics objects for analysis (e,γ,m,jets, ...): ~100 kB
 TAG (Event Level Metadata): Reduced set of information for event selection: ~1 kB
 DPD (Derived Physics Data): equivalent of old ntuples: ~10 kB
 Flow of data from CERN Tier 0 to Tier 1 sites all over the world.
 For data processing and analysis, the GRID is an absolute necessity

Strategy and Start-up

The LHC has ushered in a new era...

- 10 TeV running Fall 2008
- Few ~100 pb⁻¹ by the year's end
- Both ATLAS and CMS have already recorded beam data!

Understand the detectors...

- Diagnose hot or dead channels
- Tally up dead material
- Tracking detector alignment
- Tune the detector simulations to better match ATLAS and CMS

...do Standard Model measurements

- Examine our standard candles
- Demonstrate the ability to measure Ws, Zs and top quarks (b-jet identification)

...then search for the Higgs

LHC The first five years?

2008	~100 pb ⁻¹	10 ³¹ cm ⁻² s ⁻¹
2009	~1 fb ⁻¹	10 ³² cm ⁻² s ⁻¹
2010	~10 fb ⁻¹	2 x 10 ³³ cm ⁻² s ⁻¹
2011	~30 fb ⁻¹	2 x 10 ³³ cm ⁻² s ⁻¹
2012	~100 fb ⁻¹	2 x 10 ³⁴ cm ⁻² s ⁻¹

1 pb⁻¹ = 3 days at 10³¹ cm⁻² s⁻¹

The ATLAS and CMS Experiments Both designed to search for the Higgs over a wide mass range

Hermetic calorimetry

• Exceptional measurement of missing transverse energy, jets to high eta

Exceptional particle identification

- Muons Efficiency ~90% Jet Rejection ~10⁵
- Electrons Efficiency ~80% Jet Rejection ~10⁵
- Photons Efficiency ~80% Jet Rejection ~10³
- b-Jet ID Efficiency ~60% Light Jet Rejection ~10²
- Tau ID Efficiency ~50% Jet Rejection ~10²

Electron, muon and photon energy and momentum resolution of ~2-3%

Higgs Discovery Final States

$H \rightarrow ZZ^{(*)} \rightarrow 4 I$

The "Golden Mode"

- Very clean signal (looking for final states with 4e, 4μ, 2e2μ)
- Excellent mass resolution (1.5 2 GeV for M_H = 130 GeV)
- Powerful analysis in a wide mass range

Experimental issues:

- Zbb and tt rejection (leptons non-isolated, with activity around the leptons in the calorimeter and tracker; high impact parameter significance)
- qq→ZZ known at NLO; gg→ZZ is added as 30% of LO qq→ZZ (gg2ZZ not used yet)

Final state produced through W, top and bottom loops

 $H \rightarrow \gamma \gamma$

Powerful for low masses

- Significance of 6 8σ with 30 fb⁻¹
- Excellent mass resolution (~1.5 2 GeV)

Experimental issues

- Electromagnetic calorimeter calibration
- Requires excellent γ/jet separation
- Conversion recovery

Recent developments

- Split events into categories (by jet multiplicity, energy ratios and η region)
- Inclusive, 1 and 2-jet analyses; combine to increase significance
- Use of fits and a Likelihood Ratio for discovery, systematics

Diphoton background now calculated at NLO

Agrees with the data from the Tevatron

Backgrounds can be taken from the sidebands...

 $H \rightarrow \gamma \gamma$

Signal with background

Signal after background subtraction

Inclusive Analysis

$H \to WW \to 2l2\upsilon$

Unlike other channels, full mass reconstruction is not possible

- Essentially a counting experiment
- Accurate background estimate is critical

Most significant ~160 GeV

• BR(H→WW) > 95%

Dominant backgrounds

- ttbar (suppressed with a jet veto)
- WW (exploit spin correlations)

$\mathsf{VBF}\:\mathsf{H}\to\tau\tau$

A very significant channel for low masses

- Important for studying the coupling of Higgs to leptons
- Three final states lepton-lepton, lepton-hadron, hadron-hadron
- Triggers for the fully hadronic mode are under investigation

Mass reconstruction via the collinear approximation

- Approximation breaks down when the two taus are back-to-back
- Mass resolution limited by missing transverse energy (~8 10 GeV)

Experimental issues:

- Tau tagging (Likelihood, Neural Net methods)
- Z+jets background (especially for low masses)
- tt rejection (b-jet ID and veto for lepton-lepton)

$\mathsf{VBF}\:\mathsf{H}\to\tau\tau$

Data-driven control samples are being explored for many backgrounds

- The relative contributions from different jet multiplicities are not known
- Unknowns related to critical analysis cut-specific variables exist

evts / 5 GeV

$\mathsf{VBF}\:\mathsf{H}\to\mathsf{WW}\to\mathsf{l}\upsilon\mathsf{q}\mathsf{q}$

One of the best channels for intermediate and high Higgs masses

• A VBF analysis reaping the benefits of the CJV and Tagging Jets selection

Event Selection

- VBF tagging jets selection
- Central Jet Veto
- Isolated lepton
- 4 jets
- Large missing transverse energy

Mass reconstruction possible

- Backgrounds: ttbar, W+jets, WW+jets
- Exploring data-driven approaches for obtaining background shapes

SM Higgs Discovery Potential

Luminosity for SM Higgs discovery or exclusion

- ~few 100 pb⁻¹, some exclusion @ 95% CL
- + ~1 fb⁻¹, 5\sigma discovery if $M_{\rm H}$ ~160 170 GeV
- ~10 fb⁻¹, discovery over a broad mass range

Supersymmetric Higgs(es)

Motivation for SUSY

60

 α_1^{-1}

Motivation for Supersymmetry

- Naturalness (Hierarchy Problem)
- Unification of the forces (gauge couplings)
- Provides a candidate for Dark Matter

SM

MSSM Higgs at the LHC

Minimal Supersymmetric extension to the SM: (A, H, h, H[±])

- As one example here, consider A / H ${\rightarrow}\mu\mu$
- Not visible in the SM
- Enhanced in the MSSM by ~tan² β ; excellent mass resolution as opposed to $\tau\tau$

MSSM Higgses with ATLAS

The complete region of the m_{A} – tanß parameter space should be accessible to ATLAS

- mA = 50 500 GeV
- $Tan\beta = 1 50$

Is it really the Higgs?

Is it really the Higgs?

Properties that we will want to measure to confirm a Higgs discovery:

- What is the mass and width?
- Does it have charge?
- What are the production processes and crosssections?
- What are the branching-ratios?
- What are the couplings?
- What is its spin?

Reasonably good precision from the LHC ~10-20% level Get precise measurements from a high-energy e+e- collider ~1% level

The advantages of an e+e- collider:

- They're elementary particles
- Able to collide them with well defined energy and angular momentum
- Collisions at the full center-of-mass energy
- "Democratic" particle production
- Possible to fully reconstruct the events

The International Linear Collider (ILC)

Already a huge international effort of R&D on this accelerator

Global design effort well underway

Parameters for the ILC (derived from the scientific goals)

- Center-of-mass energy adjustable from 200 500 GeV (extendible to 1 TeV)
- Total integrated luminosity of 500 fb⁻¹ in 4 years
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%

Cost: ~6.6 Billion USD Location: One of three possible sites

Locations in the Americas, Europe and Asia: Fermilab, CERN and Japan

Timescale: Commissioning sometime beyond 2020?

Conclusions

Conclusions

If it is there, ATLAS and CMS are in a good position to find the Higgs...

- Unless it is discovered first at the Tevatron
- For a SM Higgs ATLAS and CMS need ~1 30 fb⁻¹
- How long will it take to get that much integrated luminosity from the LHC?
- How quickly will we understand the detectors?

Post-discovery questions that would need be answered...

- Is it the simple Standard Model Higgs?
- Does it have the expected couplings to various particle types?
- Are there more Higgs particles (à la Supersymmetry)
- Higgs discovery also raises the "hierarchy" problem

The LHC era has now begun... ATLAS and CMS will address these questions.

Backup Slides

The ATLAS Experiment

The CMS Experiment

The Silicon Read-Out Driver (ROD)

Calibration using Standard Candles

We will have a huge number of Ws and Zs in early running

But, ttbar events are also very well suited for this purpose

- Mass very well known from the Tevatron (~few GeV)
- A large number of ttbar events very early on (~1k events in 30 pb⁻¹)
- Final state gives us an ideal sample to exercise b-jet identification, calibrate the jet energy scale (using W→jj) and tune our Monte Carlo generators (e.g. from the p_T spectra)

ATLAS Cosmic-ray Data-taking

ATLAS is already taking data...

- We get a constant delivery of cosmic rays for free
- Typical trigger rate is 1 200 Hz

MSSM Higgs at the LHC

Summary of CMS reach in M_A tan β

Decay modes	TAUOLA-CLEO
$ au ightarrow e v_e \; v_ au,$	17.8 %
$ au ightarrow \mu u_\mu \ u_ au$	17.4 %
$\tau \rightarrow h^{\pm} neutr. v_{\tau}$	49.5 %
$ au ightarrow \pi^{\pm} u_{ au}$	11.1 %
$ au ightarrow \pi^0 \pi^\pm u_ au$	25.4 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm u_ au$	9.19 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm u_ au$	1.08 %
$ au \to K^{\pm} neutr. v_{ au}$	1.56 %
$\tau \to h^{\pm} h^{\pm} h^{\pm} neutr. v_{\tau}$	14.57 %
$ au ightarrow \pi^{\pm}\pi^{\pm}\pi^{\pm} u_{ au}$	8.98 %
$ au ightarrow \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	4.30 %
$ au ightarrow \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.50 %
$ au ightarrow \pi^0 \pi^0 \pi^0 \pi^\pm \pi^\pm \pi^\pm u_ au$	0.11 %
$ au ightarrow K_S^0 X^{\pm} u_{ au}$	0.90 %
$ au ightarrow (\pi^0) \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\pm} \nu_{ au}$	0.10 %
other modes with K	1.30 %
others	0.03 %

$VBF \; H \to \tau\tau$

Note: All cross-sections are shown in fb

S. Asai et al., ATL-PHYS-2003-005

0.10 %	signa	l (fb)	background (fb)					
1.30 %	VV	gg	$t\overline{t} + jets$	WW	+ jets	γ^*/Z	+ jets	Total
0.03 %				\mathbf{EW}	QCD	\mathbf{EW}	QCD	
Lepton acceptance	5.55		2014.	18.2	669.8	11.6	2150.	4864.
+ Forward Tagging	1.31		42.0	9.50	0.38	2.20	27.5	81.6
$+ P_T^{miss}$	0.85		29.2	7.38	0.21	1.21	12.4	50.4
+ Jet mass	0.76		20.9	7.36	0.11	1.17	9.38	38.9
+ Jet veto	0.55		2.70	5.74	0.05	1.11	4.56	14.2
+ Angular cuts	0.40		0.74	1.20	0.04	0.57	3.39	5.94
+ Tau reconstruction	0.37		0.12	0.28	0.001	0.49	2.84	3.73
+ Mass window	0.27	0.01	0.03	0.02	0.0	0.04	0.15	0.24
$H \to \tau \tau \to e \mu$	0.27	0.01	0.03	0.02	0.0	0.04	0.15	0.24
$H \to \tau \tau \to ee$	0.13	0.01	0.01	0.01	0.0	0.02	0.07	0.11
$H \to \tau \tau \to \mu \mu$	0.14	0.01	0.01	0.01	0.0	0.02	0.07	0.11

CMSSM

Constrained MSSM

- O. Buchmueller et al., <u>arXiv:0707.3447v2</u> [hep-ph]
- CMSSM: M_h = 110 (+8)(-10) ± 3 (theo.) GeV
- Includes CDM, flavor physics and a_µ experimental data

CMSSM parameter	Preferred value
M_0	$(85^{+40}_{-25}) \text{ GeV}/c^2$
$M_{1/2}$	$(280^{+140}_{-30}) \text{ GeV}/c^2$
A_0	$(-360^{+300}_{-140}) \text{ GeV}/c^2$
$\tan\beta$	10^{+9}_{-4}
$\operatorname{sgn}(\mu)$	+1 (fixed)

Values of the CMSSM parameters at the globally preferred χ^2 minimum, and corresponding 1sigma errors. The lower limit of Eq. 2 is included.

Figure 2. Mass spectrum of super-symmetric particles at the globally preferred χ^2 minimum. Particles with mass difference smaller than 5 GeV/ c^2 have been grouped together.

Central Jet Veto and Pile-up

Figure 7: (a) Central Jet Veto performance in the presence of varying levels of pileup for signal and background samples. (b) Performance of the *b*-jet tagging as a function of the forward jet p_T in the events, where the $t\bar{t}$ processes is analyzed.

Impact Parameter

Displaced vertices present in Zb<u>b</u> and t<u>t</u>

Impact Parameter Significance $\equiv d_0/\sigma_{d0}$

Transverse impact parameter resolution ~15 μm for P_T = 20 GeV Transverse primary vertex spread ~15 μm, taken into account

Isolation + Impact Parameter Criteria

O(10²) Rejection for Zb<u>b</u> O(10³) Rejection for t<u>t</u> for signal efficiency O(80%) Effect of pile-up on signal significance ≤5%

Higgs Properties

Higgs Properties: Mass

Mass

Favoured mass of SM Higgs 113.5 < mH < 212 GeV

In this range m_H can be measured to 0.1% using $\gamma\gamma$ and 4ℓ channels

Energy scale can be calibrated to 0.1% using $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$

Higgs Properties: Width

precise measurement of width qq->qqh. h->2γ,WW^(*), 2τ together with gg->WW^(*) allows indirect measurement of Higgs width

observation of other Higgs channels : Wh with h->bb, h-> $\gamma\gamma$ tth with h-> $\gamma\gamma$, WW qqh, with h-> $\mu\mu$ (?) □ self couplings; h->hh (?) $\Delta \Gamma_{\rm H} / \Gamma_{\rm H}$ $(H \rightarrow 77 \rightarrow 4]$ -1 10 direct measurement ATLAS, 300 fb⁻¹ -2 10 200 400600 800 m_H (GeV)

Higgs Properties: Cross-sections

10% of σ in intermediate mass region comes from WW fusion Identified by requiring forward tagging jets and no additional central jets

Errors Statistical: 5 - 20% $\gamma\gamma$ and 4ℓ well understood Modes involving fwd jets more difficult to estimate

Corrected σ compared with perturbative QCD calculations Known to NLO for all and NNLO for gg→H processes

Higgs Properties: Couplings and BRs

Use various Higgs production and decay modes In ratios luminosity uncertainty largely cancels Assuming 300 fb-1

$\sigma.B(t\bar{t}H + WH \to \gamma\gamma)$	$\exists BR(H \to \gamma \gamma)$
$\sigma.B(t\bar{t}H + WH \to b\bar{b})$	$\overrightarrow{BR}(H \to b\overline{b})$
$\frac{\sigma . B(H \to \gamma \gamma)}{\sigma . B(H \to ZZ^*)} \Rightarrow$	$\frac{BR (H \to \gamma \gamma)}{BR (H \to ZZ^*)}$
$\frac{\sigma.B(t\bar{t}H \to \gamma\gamma/b\bar{b})}{\sigma.B(WH \to \gamma\gamma/b\bar{b})}$	$\Rightarrow \frac{g_{Ht\bar{t}}^2}{g_{HWW}^2}$
$\frac{\sigma.B(H \to WW^*/W)}{\sigma.B(H \to ZZ^*/Z)} \Rightarrow$	$\frac{g_{HWW}^2}{g_{HZZ}^2}$

Higgs Properties: Branching Ratios

BR cannot be measured directly at the LHC But possible to infer ratios of couplings from measured rates

Measure	Error	M _H range
$\frac{B(H \to \gamma \gamma)}{B(H \to b\overline{b})}$	30%	80–120
$\frac{B(H\to\gamma\gamma)}{B(H\to ZZ^*)}$	15%	125–155
$\frac{\sigma(t\bar{t}H)}{\sigma(WH)}$	25%	80–130
$\frac{B(H \to WW^{(*)})}{B(H \to ZZ^{(*)})}$	30%	160–180

Higgs Properties: CP

Azimutal angle ϕ between decay planes in the rest frame of Higgs $F(\phi) = 1 + \alpha \cos(\phi) + \beta \cos(2\phi)$

Polar angle θ between lepton and the Z momentum in Z rest frame $G(\theta) = L \sin^2(\theta) + T(1 + \cos^2(\theta)), R = (L-T)/(L+T)$

$$\begin{split} \mathsf{M}_{Z^{\star}} \text{ distribution for } \mathsf{M}_{\mathsf{H}} < 2 \ \mathsf{M}_{Z}, \ \mathsf{d}\Gamma_{\mathsf{H}}/\mathsf{d}\mathsf{M}_{Z^{\star}}^2 &\sim \beta^{\mathsf{n}} \text{ near threshold (n=1 in SM)} \\ \beta^2 &= [1 - (\mathsf{M}_{Z} + \mathsf{M}_{Z^{\star}})^2 / \mathsf{M}_{\mathsf{H}}^2] [1 - (\mathsf{M}_{Z} - \mathsf{M}_{Z^{\star}})^2 / \mathsf{M}_{\mathsf{H}}^2] \end{split}$$

Resent ATLAS fast simulation study on sensitivity to $F(\phi)$ and $G(\theta)$ for exclusion of 0^- , 1^+ , 1^- for $M_H > 2M_Z$: SN-ATLAS-2003-025

Higgs Channels

Five Higgses

From two of the Snowmass points and slopes:

Standard Model Higgs at ATLAS

ATLAS is in a good position to study all of these final states

• We'll come back to this...

Tau ID in ATLAS

- **two algorithms: c**alorimetry-based (*tauRec*) and track-based (*tau1p3p*)
- **Calorimetry:** collimated energy deposition, π^0 s produced, isolation region, EM radius, EM fraction
- **Tracking:** low track multiplicity, isolation region, positive impact parameter, invariant mass and width of track system (3-prong)
- Highlights from Data Preparation Perspective:
 - τ -specific calibrations need to be understood
 - tracking objects associated with calo objects: good sensitivity to detector performance

Tau ID in ATLAS

Tau Efficiency

faking tau	estimated FR
electrons	~2%
muons	~0.5%
jets	~0.1%

FR depends on event activity and tau ID requirements, so this table just gives a <u>rough order of</u> <u>magnitude estimate</u>

Efficiency of reconstruction and rec/id with *tauRec* as a function of (a) Pt and (b) η in Z sample.

LHC

LHC Status

LHC Schedule as presented by Lyn Evans at the October ATLAS Week:

Updated General Schedule – 08.10.07

LHC Start-Up

Slide from G. Landsberg presented at Aspen 2005:

LHC Start-up

From Lyn Evans June 14, 2007 MAC Presentation:

LHC Start-up

From Lyn Evans June 14, 2007 MAC Presentation:

 No provision in success-oriented schedule for major mishaps, e.g. additional warm-up/cooldown of sector

LHC Dipole

LHC DIPOLE : STANDARD CROSS-SECTION

CERN AC/DI/MM - HE107 - 30 04 1999

82

LHC Dipole II

ATLAS

Expected calorimeter performance at day 0

	Expected performance day-0	Physics samples for improvement
ECAL uniformity	1-2% (~0.5% locally)	Isolated electrons, $Z \rightarrow ee$
e/γ E-scale	~ 2 %	$Z \rightarrow ee$
HCAL uniformity	~ 3 %	Single pions, QCD jets
Jet E-scale	< 10%	$\gamma/Z + 1j$, W $\rightarrow jj$ in tt events

Pixel Tracker Module

Each Pixel Module has

- 16 Front-End ICs
 - 2880 channels / IC
 - 18 columns x 160 rows
 - Bump bonds to sensor
- One Module Controller Chip
 - Collects data from the 16 FE chips
 - Translates commands into chip signals

Total Number of Modules

- ▶ 1456 (Barrels)
- 144 x 2 (End-caps)

Read-out Rate:

- B-Layer 160 Mbit/s
- Layer-1 and Endcaps
- Layer-2 40 Mbit/s

There are over 80 million channels in the ATLAS Pixel Tracker

Flexible PCB Front-End ICs Sensor (between PCB and IC) (x16) Module Controller Chip (MCC)

The Pixel Endcap

Sector and Disks

Semiconductor Tracker Module

E 4 Ó

Each side of an SCT Module has

- Two silicon sensors
 - Manufactured by Hamamatsu
 - 768 instrumented strips at an 80 µm pitch
- An array of six binary readout chips
 - **ABCD3TA ASICs**
 - Discriminator
 - Pipeline
 - **Data Compression Logic**
 - **Read-out Buffer**

Total number of modules:

- 2112 (Barrels)
- 988 x 2 (End-caps)

Read-out Rate:

Barrels and End-caps 40 Mbit/s

There are over 6.2 million channels in the **ATLAS Semiconductor Tracker**

The SCT Endcap

Module and Disk

The Silicon Read-Out Driver (ROD)

Primary purpose: Module configuration, Trigger propagation, Data formatting

A hybrid of FPGAs and DSPs

Cosmics Data-Taking

ILC

Measuring Higgs Properties...

ILC

Misc.

Significance

How it is determined for a counting experiment:

- We observe N₀ events in an experiment
- Estimated background rate, \mathbf{N}_{b} , is used as the mean of a Poisson distribution of observed events
- The p-value for our observation of N₀ events is then:

$$\alpha = \sum_{n=N_0}^{\infty} \frac{\exp(-N_b)(N_b)^n}{n!}$$

- The 5σ standard as a sort of rule of thumb to define the sensitivity necessary for a discovery.
- This corresponds to a p-value of ~5.0 x 10⁻⁷

The First Higgs observed at the LHC

