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Preliminaries

  Entanglement Entropy in QFT 

ρ S(R) = − trρR log ρR

R

R′ 

ℋR ⊗ ℋR′ 

Region      and stateR

The entropy is divergent in the continuum but…. admits an expansion in powers of 

In d dimensions

ϵ

Area law


Non universal

Finite term 

Depends on the region and the state

The coefficients     regularization dependent

                                                    extensive and local on the boundary

gi
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ϵd−4
+ ⋯ + g0 log(ϵ) + S0

CFT+ Spheres  {( − ) d
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Entropic theorems   
 RG flow irreversibility 



Preliminaries

[Doplicher, Haag, Roberts, 1969]

Perspective: 

Global symmetry            Subset of invariant operators   DHR formalism

Superselection sectors 

Algebraic approach to QFT based on algebras of operators  
corresponding to causal spacetime regions

QFT : Entanglement Entropy of a region

Region  Local algebra 
strong indication that properties  

of the  assignation  
is in the core of the EE 

𝒜(ℛ)

AA

Region  Local algebra ?

“described by a net of 

von Neumann algebras”

non unique assignation!
 is not unique S(R)



Motivations

Boundary dof           Centers/require fine-
tuning  

Mutual Information seems to fail [Casini, MH., 2015]

[Donnelly 2011]
[Donnelly, Wall 2015]

[Ghosh, Soni, Trivedi 2015]

[Huang 2015]

[Buividovich, Polikarpov 2008]

aMI ≠ a⟨Tμ
μ⟩

Anomaly mismatch for gauge theories [Dowker, 2010]



Motivations

Algebra/Region ambiguities on the lattice  [Casini, MH, Rosabal, 2014]

R

R′ 

A  different perspective: Algebraic approach

Region Local algebra



Motivations

Infinite number of choices…the same mutual information 

R′ 

R R

R′ 

Algebra/Region ambiguities on the lattice  [Casini, MH, Rosabal, 2014]

A  different perspective: Algebraic approach

Region Local algebra



Plan of the talk

Algebras and regions in QFT 

QFT with global symmetries 

Relative entropy and conditional expectations 

Novel universal terms in the entanglement entropy

    Chiral Scalar in two dim
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Algebras and regions in QFT

Isotony 

R1

R2
R1 ⊆ R2

𝒜R1
⊆ 𝒜R2



Algebras and regions in QFT

Isotony R1 ⊆ R2 𝒜R1
⊆ 𝒜R2

R1 R2

Additivity 

𝒜R1∨R2
= 𝒜R1

∨ 𝒜R2



Algebras and regions in QFT

Additivity 𝒜(R1 ∨ R2) = 𝒜(R1) ∨ 𝒜(R2)

𝒜(R) ⊆ 𝒜(R′ )′ 

[𝒜(R), 𝒜(R′ )] = 0

Causality 

Isotony R1 ⊆ R2 𝒜R1
⊆ 𝒜R2



Algebras and regions in QFT

Isotony A ⊆ B 𝒪A ⊆ 𝒪B

Additivity 𝒜(R1 ∨ R2) = 𝒜(R1) ∨ 𝒜(R2)

Causality 𝒜(R) ⊆ 𝒜(R′ )′ 

Duality 

𝒜(R) ?= 𝒜(R′ )′ 
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Algebras and regions in QFT

Isotony A ⊆ B 𝒪A ⊆ 𝒪B

Additivity 𝒜(R1 ∨ R2) = 𝒜(R1) ∨ 𝒜(R2)

Causality 𝒜(R) ⊆ 𝒜(R′ )′ 

Duality 

𝒜(R) = 𝒜(R′ )′ 

For simply connected regions (most QFT’s) 

R

But what about regions with non-trivial topology? 



Algebras and regions in QFT

Isotony A ⊆ B 𝒪A ⊆ 𝒪B

Additivity 𝒜(R1 ∨ R2) = 𝒜(R1) ∨ 𝒜(R2)

Causality 𝒜(R) ⊆ 𝒜(R′ )′ 

𝒜(R) = 𝒜(R′ )′  simply connected regions (most QFT’s) 

(R)′ 

R2R1

From causality

Duality 

Consider the regions                       and  R ≡ R1 ∨ R2 R′ 

The region        has non trivial            . The region         has non trivial        R′ R π0(R) πd−2(R)

𝒜R ⊆ 𝒜′ (R)′ 



Algebras and regions in QFT

Isotony A ⊆ B 𝒪A ⊆ 𝒪B

Additivity 𝒜(R1 ∨ R2) = 𝒜(R1) ∨ 𝒜(R2)

Causality 𝒜(R) ⊂ 𝒜(R′ )′ 

𝒜(R) = 𝒜(R′ )′  simply connected regions (most QFT’s) Duality 

(R)′ 

R2R1

𝒜R ⊂ 𝒜′ (R)′ 

From causality

𝒜(R) ?= 𝒜(R′ )′ 



Interestingly, the breaking of duality in region  forces a dual breaking in region       R R′ 

If duality is not satisfied for certain region 

𝒜max(R) ≡ (𝒜(R′ ))′ = 𝒜(R) ∨ {a}

𝒜max(R′ ) ≡ (𝒜(R))′ = 𝒜(R′ ) ∨ {b}

It also implies that the dual sets of non-local operators are complementary

[a, b] ≠ 0

To construct QFT nets satisfying duality requires introducing some non local 
operators that close an algebra that can be associated to a symmetry

Algebras and regions in QFT
𝒜(R) ?= 𝒜(R′ )′ 

generalized symmetry



QFT with global symmetries

Simple example:  Free Dirac field restricted to the algebra of bosonic operators 

ℱ ≡ 1, ψ(x) , ⋯

This is a  symmetry for which the fermion has charge one. 

In the model  we can consider the following localized operator 

Z2

ℱ

VA = ∫
A

dd−1x α(x) (ψ(x) + ψ†(x))

If we have two regions  we can construct the “intertwiner”  

ℐR1R2
= VR1

V†
R2

𝒪 ≡ 1, ψ(x)ψ(y) , ψ†(x)ψ†(y) , ψ(x)ψ†(y) , ⋯

∈ 𝒪



QFT with global symmetries

VR1
V†

R2

But does the intertwiner belong to the algebra of the union in ? 𝒪

With respect to region R ≡ R1 ∨ R2

The intertwiner belongs to the commutant   𝒪(R′ )′ 

𝒪(R1 ∨ R2) = 𝒪(R1) ∨ 𝒪(R2)

(𝒜(R′ ))′ = 𝒜(R) ∨ {a}



QFT with global symmetries

𝒪(R1)

The additive algebra is the product of even operators in the right and in the left 

𝒪(R2)



QFT with global symmetries

VR1
V†

R2

It does not belong to the local algebra…



QFT with global symmetries

τR1

VR1
V†

R2

The commutant   contains  “twist” operators that implement the symmetry 
transformations locally 

𝒪(R)′ 

τR1
= eiπ ∫ dt dd−1x γ(t) βR1

( ⃗x )J0(x)

The spatial test function is zero in region , and one in  so that R2 R1

With respect to region R′ 

τVR1
τ−1 = − VR1

τVR2
τ−1 = VR2

R′ 

𝒜(R)′ = 𝒜(R′ ) ∨ {b}



QFT with global symmetries

τR1

VR1
V†

R2

With respect to region R′ 

The twists belong to the commutant   𝒪(R)′ 

Crucially, this implies that 

[τ, ℐAB] ≠ 0

R′ 



QFT with global symmetries

𝒪(R) ⊂ 𝒪max(R) ≡ 𝒪(R) ∨ ℐR1R2

τ R′ 

VR1 (VR2
)†

𝒪(R′ ) ⊂ 𝒪max(R′ ) ≡ 𝒪(R′ ) ∨ τ

The global symmetry manifests itself in the difference between the maximal 
algebras and the local algebras of regions with specific topologies



Relative entropy and conditional expectations

𝒪 ⊂ ℱ
Given an inclusion of algebras 

A conditional expectation   is a linear map from  to  satisfyingE ℱ 𝒪

E(b1 a b2) = b1 E(a) b2 b1, b2 ∈ 𝒪 , a ∈ ℱ



Relative entropy and conditional expectations

𝒪 ⊂ ℱ
Given an inclusion of algebras 

E(b1 a b2) = b1 E(a) b2 b1, b2 ∈ 𝒪 , a ∈ ℱ

Example:  Tracing out a factor is a conditional expectation

ℱ = 𝒪 ⊗ 𝒜

A conditional expectation   is a linear map from  to  satisfyingE ℱ 𝒪



Relative entropy and conditional expectations

𝒪 ⊂ ℱ
Given an inclusion of algebras 

A conditional expectation          is a linear map from        to        satisfyingE ℱ 𝒪
E(b1 a b2) = b1 E(a) b2 b1, b2 ∈ 𝒪 , a ∈ ℱ

Example:  Tracing out a factor is a conditional expectation

ℱ = 𝒪 ⊗ 𝒜 E(O ⊗ A) = Tr (A) O ⊗ 1𝒜

Another example (our case): Quotient by a symmetry group

𝒪 =
1
G ∑

g

τg ℱ τ−1
g = E(ℱ)



Relative entropy and conditional expectations
Conditional expectations can be composed with states

ω𝒪 → (ω𝒪 ∘ E)ℱ



Relative entropy and conditional expectations
Conditional expectations can be composed with states

ω𝒪 → (ω𝒪 ∘ E)ℱ
Let us remind the relative entropy definition

Sℱ(ω |ϕ) = Tr ω log ω − Tr ω log ϕ
It can be used to define Mutual Information

IAB = S(ωAB |ωA ⊗ ωB)

Relative entropy: 



Relative entropy and conditional expectations
Conditional expectations can be composed with states

ω𝒪 → (ω𝒪 ∘ E)ℱ

Sℱ(ω |ϕ) = Tr ω log ω − Tr ω log ϕ
It can be used to define Mutual Information

IAB = S(ωAB |ωA ⊗ ωB)

The following key equation can be proven    [Petz, 1993]

Sℱ(ω |ϕ ∘ E) = S𝒪(ω |ϕ) + Sℱ(ω |ω ∘ E)
RE+CE

Relative entropy: Let us remind the relative entropy definition



Relative entropy and conditional expectations
Conditional expectations can be composed with states

ω𝒪 → (ω𝒪 ∘ E)ℱ
Let us remind how relative entropy is defined

Sℱ(ω |ϕ) = Tr ω log ω − Tr ω log ϕ
It can be used to define Mutual Information

IAB = S(ωAB |ωA ⊗ ωB)

The following key equation can be proven    [Petz, 1993]

Sℱ(ω |ϕ ∘ E) = S𝒪(ω |ϕ) + Sℱ(ω |ω ∘ E)

Sℱ(ω ∘ E |ϕ ∘ E) = S𝒪(ω |ϕ)

Relative entropy: 

RE+CE

*

*



Relative entropy and conditional expectations

R

Entanglement entropy does not properly exists in QFT 



Relative entropy and conditional expectations
Entanglement entropy does not properly exists in QFT 

Using Mutual Information to define EE in QFT introduces a non-trivial topological 
configuration. 

R1
S

R2
In the presence of symmetries 

we have two choices

𝒪(R) ∨ ℐR1R2𝒪(R)
leading to 

S𝒪(R′ )′ (ω, (ωR1
⊗ ωR2

) ∘ E) = Iℱ(R1, R2)

S𝒪(R)(ω, ωR1
⊗ ωR2

) = I𝒪(R1, R2)



Relative entropy and conditional expectations
Entanglement entropy does not properly exists in QFT. It is just infinite. 

Using Mutual Information to define EE in QFT introduces non-trivial topological 
configurations. 

R1
S

R2
In the presence of superselection 

sectors we have two choices

𝒪(R) ∨ ℐR1R2𝒪(R)
Leading to two relative entropies

S𝒪(R′ )′ (ω, (ωR1
⊗ ωR2

) ∘ E) = Iℱ(R1, R2)

S𝒪(R)(ω, ωR1
⊗ ωR2

) = I𝒪(R1, R2)

The previous formula involving RE and CE implies

Iℱ(R1, R2) − I𝒪(R1, R2) = Sℱ(ω, ω ∘ E)

The algebras are related by
E : 𝒪(R) ∨ ℐR1R2

→ 𝒪(R)



Novel universal terms in the entanglement entropy

We are led to compute

Difference between both states only come from the intertwiners

ω ∘ E (ℐR1R2
) = 0

ℐR1R2
≡ ∑

i

Vi
R1

(Vi
R2

)†

We approach the computation by means of monotonicity of relative entropy. 
A lower bound arises by restricting to the “intertwiner algebra”

Iℱ(R1, R2) − I𝒪(R1, R2) = Sℱ(ω, ω ∘ E) ≥ SℐR1R2
(ω, ω ∘ E)

Iℱ(R1, R2) − I𝒪(R1, R2) = Sℱ(ω, ω ∘ E)



Novel universal terms in the entanglement entropy

AR1

R2

S

The story repeats itself for the spherical shell region. 

And the higher bound? 



Novel universal terms in the entanglement entropy

AR1

R2

S

The story repeats itself for the spherical shell region. 

We have two algebras, with or 
without the twist algebra

Ẽ : 𝒪S ∨ τ[g] → 𝒪S

And an associated relative entropy

S𝒪S∨τ[g]
(ω, ω ∘ Ẽ)

𝒪S ∨ τ[g]𝒪S

There is a conditional expectation 
killing the twists



Novel universal terms in the entanglement entropy

S𝒪R∨ℐR1R2
(ω, ω ∘ E) + S𝒪S∨τ(ω, ω ∘ Ẽ) = log |G |

For finite groups the following entropic certainty relation can be derived

We finally find the higher bound

SℐR1R2
(ω |ω ∘ E) ≤ Iℱ(R1, R2) − I𝒪(R1, R2) ≤ log |G | − Sτ(ω |ω ∘ Ẽ)



Novel universal terms in the entanglement entropy

Finite groups

Lie groups

ΔI = log G

ΔI ≃
1
2

(d − 2) 𝒢 log
R
ϵ

ΔI ≃
1
2

𝒢 log (log
R
ϵ ) ; d = 2



Novel universal terms in the entanglement entropy
Chiral free scalar in two dim.

null coordinate, is an operator in a line.  x+
Conformal, with c = 1/2

j(x+) = ∂+ϕ

H =
1
2 ∫ dx j(x)2 , [ j(x), j(y)] = iδ(x − y)

S(I1 ∪ I3) = S(I2 ∪ I4)

S(I1) = S(I2 ∪ I3 ∪ I4)Checking duality

in EE

one interval

In the line  for any CTS(R) =
c
3

log(R)

two intervals

(

(

(

(

I1

I2

I3

I4

(
(

(

( a1 b1 a2 b2

η = (b1 − a1)(b2 − a2)
(a2 − a1)(b2 − b1)

two intervals



Novel universal terms in the entanglement entropy
Chiral free scalar in two dimensions

for any CT

Haag duality

j(x+) = ∂+ϕ H =
1
2 ∫ dx j(x)2 , [ j(x), j(y)] = iδ(x − y)

S(I1 ∪ I3) = S(I2 ∪ I4)Assuming duality

I(I1, I3) = I(I2, I4) + S(I1) + S(I3) − S(I4) − S(I2)
I(η) = −

c
3

log(1 − η) + U(η)

I(η) = I(1 − η) −
c
3

log(
1 − η

η
) U(η) = U(1 − η)

Checking duality in mutual 
information

I(I1, I3) = S(I1) + S(I3) − S(I1 ∪ I3)

I(I2, I4) = S(I2) + S(I4) − S(I2 ∪ I4)

S(R) =
c
3

log(R)

(

(

(

(

I1

I2

I3

I4

(
(

(

( a1 b1 a2 b2

η = (b1 − a1)(b2 − a2)
(a2 − a1)(b2 − b1)
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Novel universal terms in the entanglement entropy
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U(η) = U(1 − η)

Novel universal terms in the entanglement entropy

ΔI ≃
1
2

𝒢 log (log
R
ϵ )
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Novel universal terms in the entanglement entropy

j(x+) = ∂+ϕ
bosonization

U(η) = 0

I(η) = −
c
3

log(1 − η) + U(η)

: Chiral scalar is a subalgebra of the 

chiral fermion generated by the current
𝒪: Chiral fermion with c = 1/2ℱ

𝒪 ℱ

Twist and intertwines?

 O13 ∈ 𝒪  O13 ∈ (𝒪2 ∪ 𝒪3)′  O13 ∈ 𝒪1 ∪ 𝒪3



Conclusion

Theories based on subsets of local operators invariant under some global symmetry 
lead to a Haag duality/additivity violation 

Novel topological contributions to MI 

Why? Existence of twists and intertwiners / generalized symmetry 

Comment: 
Local symmetries give rise to the same structure: violation of additivity/duality, 
existence of non locally generated operators, wilson and ´t Hooft loops. Solution to 
the mismatch of the Maxwell anomaly 

Assignation of algebra to a region is Non unique  



τ

Thanks!

V V†


