Networks for applied infectious disease epidemiology

WINQ program on complex and quantum systems

Lucille Calmon – May 1, 2024

Infectious diseases

Johnson's warning as epidemic nears period of 'fast growth'

Public urged to avoid travel and stay away from pubs and theatres

 Focus on over-70s, pregnant women and those with health issues

The Guardian, 17/03/2020

Nature, 08/04/2024

NEWS EXPLAINER 08 April 2024

Bird flu outbreak in US cows: why scientists are concerned

A virus that has killed hundreds of millions of birds has now infected cattle in six US states, but the threat to humans is currently low.

By Max Kozlov & Smriti Mallapaty

The New York Times

As Monkeypox Spreads, U.S. Declares a Health Emergency

The designation will free up emergency funds and lift some bureaucratic hurdles, but many experts fear containment may no longer be possible.

Modelling infectious disease dynamics

- Risk evaluation, forecasting/nowcasting
- Comparison of intervention protocols
- Mechanisms behind observed dynamics
- Behaviour ↔ dynamics

Colosi, et al (2022) The Lancet Infectious Diseases

Maniscalco et al. (2024) in prep

3000

6000 5000 · - 4000

- 8000

Mixing in different details

Colizza et al (2007) Comptes Rendus Biologies

- Building blocks of a contact network model
- How can we measure contacts ?
- Tools to leverage on measured contacts to inform models
- Why ? The example of the Swiss pooling tests protocol

Modelling infectious disease dynamics

Clinical progression

Progression modelled with a compartmental model (e.g. SIR).

Transmission

Transmissibility of the pathogen, contact characteristics

Contact network

Network properties (clustering, degree distribution) and contact dynamics.

Modelling disease progression: SIR

Modelling disease progression: Covid-19

Model parameters

- determined from the literature
- drawn from distributions \rightarrow heterogeneous individuals
- fitted

Data on contacts: automated detection

Face to face proximity recorded over time.

Deployed in a workplace, schools, a conference, hospital ward ...

SocioPatterns collaboration

www.sociopatterns.com

Empirical contact networks

- Zoo of high-resolution human behaviours.
- Encode possible transmission routes.
- Includes temporal dynamics, contact duration & timestamps.
- Playground to investigate data needs, impact of different features.

But...

- Short collection windows.
- Limited to settings considered & the individuals wearing sensors.

Machen et al (2013) BMC Infectious diseases Stehlé et al (2011) BMC Medicine Contreras et al (2022) J. R. Soc. Interface

. . .

Leveraging on empirical contact networks

Toolbox to inform models with realistic contacts.

- simulate missing nodes

Genois et al (2015) Nature Communications Fournet et al (2017) *Scientific Reports* Presigny et al (2021) *Physical Review E*

- extend contacts in time

Stehlé et al (2011) BMC Medicine Colosi et al (2022) The Lancet Infectious diseases Longa et al (2024) Communications Physics

- modify context features, e.g. size extension or different timetable

Tool #1: extending in time

Temporal contact data recorded in a secondary school [1]

Synthetic plausible contact data over any period

[1] Mastrandrea et al (2015) *PLOS ONE*

Modelling work informed by low cost realistic input

Guiding questions

- 1. What features must be preserved to obtain "plausible" contacts?
- 2. What are the effects on epidemiological outputs?
- 3. Is there an ideal collection window?

Face to face contacts in schools

- Class mixing: contacts within classes and within specialties more frequent.
- Timetable: increased mixing during breaks and lunch.
- Friendships: contacts reoccur over different days: missing in existing methods

Friendship based approach

For each class and pair of classes:

- **Reccurring contacts**: fraction $f \rightarrow$ include in synthetic the contacts.

Calmon et al (2024) in preparation

- Complete synthetic contacts with additional contacts to preserve class mixing matrix.

 \rightarrow Pick f to reproduce observed similarities in day-to-day contacts

Some contact repetition, different interaction times

Calmon et al. (2024), in preparation

Class mixing and timetable

- Class mixing matrix preserved.
- Similar timetable induced.

Recorded data

Friendship approach

Class mixing approach

Preserves the mixing patterns between classes and the activity timeline (not shown).

Calmon et al. (2024) in preparation

Friendships absent.

Simulated on

- friendship based contacts using 2, 3, 4 days of data
- class mixing based 1, 2, 3, 4 days of data
- **looping** 1, 2, 3, 4 days of data

Outbreak size: total # of cases

Calmon et al (2024) in preparation

Looping the data \rightarrow low probability of small outbreaks.

Friendship based approach \rightarrow promotes larger outbreaks.

Synthetic contacts \rightarrow promotes heterogeneity in outbreak sizes.

Infection pathways

- For each seeded case, and contact extension mechanism: **aggregated spanning tree.**
- Edges weighted with **probability of occurrence**.
- Pairs of trees/networks can be compared.
- Encode the pathways **between students** or from **class to class**.

[1] Piontti et al (2014) Network Science

Comparing transmission trees

Calmon et al (2024) in preparation

- Friendship based trees and trees from looped data are similar.
- Trees predicted by the class mixing approach are strongly affected by the missing friendships.

Comparing transmission trees

Calmon et al (2024) in preparation

- **High similarity** between Friendship based trees and looping & class mixing based trees.
- Robust tree predictions from class mixing based approach to synthetic contacts.

Extension in time

Friendship & class mixing approaches extend empirical contact data for different purposes.

- 1. Epidemic sizes affected by stochasticity in contacts & friendships preservation.
- 2. Friendship based mixing is key to represent student transmission trees.
- 3. Class mixing predicts accurate disease progression between classes.

Retrospective study: modelling pooled tests

Translated from https://www.nau.ch/news/schweiz/coronavirus-eltern-skeptisch-bei-massentests-an-schulen-65879525

Retrospective study: modelling pooled tests

- Build a model to quantify ...
- Transmissibility of the virus at school
- # of averted cases
- Impact on school days lost -

Colosi et al (2024) in preparation

Tool #2: changing features

Characteristics of the stereotypical school.

 \rightarrow

Size modulation of the empirical contacts.

Timetable change + extension in time.

Timetable adaptation: one week

Colosi et al. (2024), in preparation

Modelling the pooled strategy

- Modulated and extended contacts \rightarrow model of the pooling strategy.
- Data cleaning.
- Fit and calibrate the model.
- Design counterfactual scenarios.
- Comparison of different strategies to evaluate pooled tests.

Moving forward

- Contacts in schools can be extended and modulated.
- Organisation in classes and grades + timetable.
- Temporal correlations extended \rightarrow impact on simulated transmission chains.

- What about other contexts ?
- What about impact of illness on contacts & behaviours ?
- What about other modes of transmissions ?

• • •

Complex & simplicial contagion

Mønsted et al (2007) PLOS ONE lacopini et al (2019) Nature Communication Ferraz de Arruda et al (2022) Springer

Joint coupled spreading on (higher-order) networks

Wang et al (2022) Chaos Lucas et al (2023) Physical Review Research

• • • •

• • •

EPICx lab:

Elisabetta Colosi, Giulia Bassignana & Vittoria Colizza

Aix Marseille University:

Alain Barrat

Swiss partners:

Montserrat Fässli, Julia Bielecki, Kathrin Koch

Nordita & WINQ program organisers:

Hanlin Sun, Yu Tian & Henri Riihimäki

European projects:

