Sparsification of the Magnetic Laplacian and A CyclePopping Random Walk

Michaël Fanuel joint work with Rémi Bardenet

Université de Lille, CNRS, Centrale Lille UMR 9189 – CRIStAL, F-59000 Lille, France

WINQ 29th April - 3rd May 2024 Week 1 - Dynamics and Topology of Complex Network Systems

1 / 38

Related paper 1: Complex valued graph Laplacian. In this talk.

I M. Fanuel and R. Bardenet, Sparsification of the Regularized Magnetic Laplacian with Multi-Type Spanning Forests, arxiv 2208.14797

Related paper 2: Monte-Carlo estimator for inverse Laplacian.

Not in this talk.

I H. Jaquard, M. Fanuel, P.-O. Amblard, R. Bardenet, S. Barthelmé, N. Tremblay, Smoothing Complex-Valued Signals on Graphs with Monte-Carlo, International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2023.

 $(\Delta + q\mathbb{I})^{-1} = \mathbb{E}$ forest \mathcal{F} [estimator (\mathcal{F})]

3 / 38

KORK 4 BRANEY A BRANCH

Related paper 3: Random walk with cyclepopping. In this talk.

I M. Fanuel and R. Bardenet, On the Number of Steps of CyclePopping in Weakly Inconsistent U(1)-Connection Graphs, arxiv 2404.14803

Sparsification setting

Connected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $|\mathcal{V}| = n$ and $|\mathcal{E}| = m$.

In this talk, all the edge weights of $\mathcal G$ are equal to 1.

Goal

We aim to find a sparse approximation of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.

To do so, we sample edges in $\mathcal E$ and give them positive weights.

Goal

We aim to find a sparse approximation of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.

To do so, we sample edges in $\mathcal E$ and give them positive weights. Actually, we approximate a graph Laplacian of \mathcal{G} .

Goal

We aim to find a sparse approximation of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.

To do so, we sample edges in $\mathcal E$ and give them positive weights. Actually, we approximate a **graph Laplacian** of \mathcal{G} . We consider a case where edges come with extra information.

メロトメ 御 トメ 君 トメ 君 トッ 君 299 7 / 38

 \forall oriented edge uv, we have an **angle** $\vartheta(uv)$ s.t. $\vartheta(vu) = -\vartheta(uv)$.

 \forall oriented edge uv, we have an **angle** $\vartheta(uv)$ s.t. $\vartheta(vu) = -\vartheta(uv)$.

Synchronization of the nodes: Can we find h_u for $u \in \mathcal{V}$ s.t. $\vartheta(uv) \approx (h_u - h_v) \mod 2\pi$?

 \forall oriented edge uv, we have an **angle** $\vartheta(uv)$ s.t. $\vartheta(vu) = -\vartheta(uv)$.

Synchronization of the nodes: Can we find h_u for $u \in V$ s.t. $\vartheta(uv) \approx (h_u - h_v) \mod 2\pi$?

- \blacktriangleright Angular synchronization problem (cryo-electron microscopy, Singer 2011).
- \triangleright Robust ranking from pairwise comparisons (Cucuringu 2016).

 \forall oriented edge uv, we have an **angle** $\vartheta(uv)$ s.t. $\vartheta(vu) = -\vartheta(uv)$.

Synchronization of the nodes: Can we find h_u for $u \in V$ s.t. $\vartheta(uv) \approx (h_u - h_v) \mod 2\pi$?

- \blacktriangleright Angular synchronization problem (cryo-electron microscopy, Singer 2011).
- \triangleright Robust ranking from pairwise comparisons (Cucuringu 2016).

Magnetic Laplacian Δ associated with this connection graph.

Originally for solving Laplacian systems (e.g. Spielman and Srivastava, 2011) Solving linear systems of the form

$$
(\Delta + q\mathbb{I}_n)\boldsymbol{f} = q\boldsymbol{y},
$$

where Δ is a Laplacian and $q \geq 0$, which originates e.g. from semi-supervised learning

$$
\min_{\boldsymbol{f}} \boldsymbol{f}^* \Delta \boldsymbol{f} + q \|\boldsymbol{f} - \boldsymbol{y}\|_2^2.
$$

Originally for solving Laplacian systems (e.g. Spielman and Srivastava, 2011) Solving linear systems of the form

$$
(\Delta + q\mathbb{I}_n)\boldsymbol{f} = q\boldsymbol{y},
$$

where Δ is a Laplacian and $q \geq 0$, which originates e.g. from semi-supervised learning

$$
\min_{\boldsymbol{f}} \boldsymbol{f}^* \Delta \boldsymbol{f} + q \|\boldsymbol{f} - \boldsymbol{y}\|_2^2.
$$

The difficulty/sensitivity of this numerical problem

$$
cond(\Delta + q\mathbb{I}_n) \triangleq \frac{\lambda_{\max}(\Delta + q\mathbb{I}_n)}{\lambda_{\min}(\Delta + q\mathbb{I}_n)}.
$$

8 / 38

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ K 9 Q Q

Originally for solving Laplacian systems (e.g. Spielman and Srivastava, 2011) Solving linear systems of the form

$$
(\Delta + q\mathbb{I}_n)\boldsymbol{f} = q\boldsymbol{y},
$$

where Δ is a Laplacian and $q \geq 0$, which originates e.g. from semi-supervised learning

$$
\min_{\boldsymbol{f}} \boldsymbol{f}^* \Delta \boldsymbol{f} + q \|\boldsymbol{f} - \boldsymbol{y}\|_2^2.
$$

The difficulty/sensitivity of this numerical problem

$$
cond(\Delta + q\mathbb{I}_n) \triangleq \frac{\lambda_{\max}(\Delta + q\mathbb{I}_n)}{\lambda_{\min}(\Delta + q\mathbb{I}_n)}.
$$

If $\tilde{\Delta} + q\mathbb{I}_n$ is a (sparse) approximation of $\Delta + q\mathbb{I}_n$, the system $(\widetilde{\Delta} + q \mathbb{I}_n)^{-1} (\Delta + q \mathbb{I}_n) \boldsymbol{f} = (\widetilde{\Delta} + q \mathbb{I}_n)^{-1} \boldsymbol{b},$

is expected to have a smaller condition number.

Originally for solving Laplacian systems (e.g. Spielman and Srivastava, 2011) Solving linear systems of the form

$$
(\Delta + q\mathbb{I}_n)\boldsymbol{f} = q\boldsymbol{y},
$$

where Δ is a Laplacian and $q \geq 0$, which originates e.g. from semi-supervised learning

$$
\min_{\boldsymbol{f}} \boldsymbol{f}^* \Delta \boldsymbol{f} + q \|\boldsymbol{f} - \boldsymbol{y}\|_2^2.
$$

The difficulty/sensitivity of this numerical problem

$$
cond(\Delta + q\mathbb{I}_n) \triangleq \frac{\lambda_{\max}(\Delta + q\mathbb{I}_n)}{\lambda_{\min}(\Delta + q\mathbb{I}_n)}.
$$

If $\tilde{\Delta} + q\mathbb{I}_n$ is a (sparse) approximation of $\Delta + q\mathbb{I}_n$, the system $(\widetilde{\Delta} + q \mathbb{I}_n)^{-1} (\Delta + q \mathbb{I}_n) \boldsymbol{f} = (\widetilde{\Delta} + q \mathbb{I}_n)^{-1} \boldsymbol{b},$

is expected to have a smaller condition number.

NB: There is a technicality if $q = 0$ [an](#page-13-0)d Δ is the combinatoria[l La](#page-15-0)[pla](#page-17-0)[ci](#page-12-0)an[.](#page-16-0) \Box

- 1. [Combinatorial Laplacian and sparsification](#page-18-0)
- 2. [Magnetic Laplacian and sparsification](#page-40-0)
- 3. [Sampling edges with a loop-erased random walk](#page-61-0)

9 / 38

4. [Numerical simulations](#page-71-0)

Combinatorial Laplacian and sparsification

イロト (御) (君) (君) (君) のんぐ 11 / 38

Edge-vertex incidence matrix $(m \times n)$ s.t. row uv is $(\boldsymbol{\delta}_u - \boldsymbol{\delta}_v)^\top$.

11 / 38

 QQ

イロト イ団 トメ 差 トメ 差 トー 差し

Edge-vertex incidence matrix $(m \times n)$ s.t. row uv is $(\boldsymbol{\delta}_u - \boldsymbol{\delta}_v)^\top$.

$$
B_0 = \begin{bmatrix} & & & & 1 & & 2 & & 3 & & 4 \\ 12 & & & & & & & \\ 22 & 0 & & & & & & \\ 34 & 0 & & & & & & \\ 24 & 0 & & & & & & \\ 0 & & & & & & & & \end{bmatrix}
$$

.

イロト 不優 ト 不思 ト 不思 トー 思

11 / 38

 QQ

Edge-vertex incidence matrix $(m \times n)$ s.t. row uv is $(\boldsymbol{\delta}_u - \boldsymbol{\delta}_v)^\top$.

$$
B_0 = \begin{bmatrix} & & & & 1 & & 2 & & 3 & & 4 \\ 12 & & 1 & & & & & \\ 22 & & 0 & & 1 & & & \\ 34 & & 0 & & 0 & & & \\ 24 & & 0 & & 1 & & & \end{bmatrix}
$$

イロト 不優 ト 不思 ト 不思 トー 思 QQ 11 / 38

.

Edge-vertex incidence matrix $(m \times n)$ s.t. row uv is $(\boldsymbol{\delta}_u - \boldsymbol{\delta}_v)^\top$.

$$
B_0 = \begin{bmatrix} & & & 1 & & 2 & & 3 & & 4 \\ 12 & & 1 & & -1 & & 0 & & \\ & 0 & 1 & & -1 & & & \\ & 0 & 0 & & 1 & & & \\ & & 24 & & 0 & 1 & & 0 & & \end{bmatrix}
$$

メロトメ 御下 メミトメミト 一番 QQ 11 / 38

.

Edge-vertex incidence matrix $(m \times n)$ s.t. row uv is $(\boldsymbol{\delta}_u - \boldsymbol{\delta}_v)^\top$.

$$
B_0 = \begin{bmatrix} & & & 1 & & 2 & & 3 & & 4 \\ 12 & & 1 & & -1 & & 0 & & 0 \\ 23 & & 0 & & 1 & & -1 & & 0 \\ 34 & & 0 & & 0 & & 1 & & -1 \\ 24 & & 0 & & 1 & & 0 & & -1 \end{bmatrix}
$$

メロトメ 御下 メミトメミト 一番 QQ 11 / 38

.

Combinatorial Laplacian:

$$
L = B_0^* B_0 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -1 & 0 & 0 \\ 2 & -1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 & 2 \\ 0 & -1 & -1 & 2 & 2 \end{bmatrix}.
$$

12 / 38

 299

メロトメ 御 トメ 君 トメ 君 トッ 君

Combinatorial Laplacian:

$$
L = B_0^* B_0 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -1 & 0 & 0 \\ 1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}.
$$

 \blacktriangleright $f^*Lf \propto \sum_{uv \in \mathcal{E}} |f(u) - f(v)|^2$

Combinatorial Laplacian:

$$
L = B_0^* B_0 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -1 & 0 & 0 \\ 1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}.
$$

\n- $$
f^*Lf \propto \sum_{uv \in \mathcal{E}} |f(u) - f(v)|^2
$$
\n- Let \mathcal{G} be connected. We have $\text{null}(L) = \text{span}(\mathbf{1})$.
\n

Combinatorial Laplacian:

$$
L = B_0^* B_0 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -1 & 0 & 0 \\ 4 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}.
$$

$$
\blacktriangleright \ \ \pmb{f}^*Lf \propto \sum_{uv \in \mathcal{E}} |f(u) - f(v)|^2
$$

In Let G be connected. We have $null(L) = span(1)$.

 \blacktriangleright Classical decomposition:

$$
L = D - W
$$

with $D = Diag(\text{deg})$ and $\text{deg}(u) = \text{nb}$ of neighbors of $u \in \mathcal{V}$.

Recall

$$
L = B_0^* B_0 \text{ with } B_0 \in \mathbb{R}^{m \times n}.
$$

Recall

$$
L = B_0^* B_0 \text{ with } B_0 \in \mathbb{R}^{m \times n}.
$$

Graph Laplacian

$$
L = \sum_{{\rm edge}\; uv \in \mathcal{E}}\; (\overbrace{\boldsymbol\delta_u - \boldsymbol\delta_v}^{\rm column})(\boldsymbol\delta_u - \boldsymbol\delta_v)^*\;.
$$

13 / 38

 299

イロト イ団 ト イミト イモト 一店

Recall

$$
L = B_0^* B_0 \text{ with } B_0 \in \mathbb{R}^{m \times n}.
$$

Graph Laplacian

$$
L = \sum_{\text{edge } uv \in \mathcal{E}} (\delta_u - \delta_v) (\delta_u - \delta_v)^*.
$$

Sparsify: take $S \in \mathcal{E}$,

$$
\widetilde{L}(\mathcal{S}) = \sum_{\substack{\text{edge } uv \in \mathcal{S}}} \frac{\text{weight} > 0}{\widetilde{w}_{uv}} (\boldsymbol{\delta}_u - \boldsymbol{\delta}_v)(\boldsymbol{\delta}_u - \boldsymbol{\delta}_v)^*.
$$

イロト イ団 ト イミト イモト 一店 2990 13 / 38

Recall

$$
L = B_0^* B_0 \text{ with } B_0 \in \mathbb{R}^{m \times n}.
$$

Graph Laplacian

$$
L = \sum_{\text{edge } uv \in \mathcal{E}} (\delta_u - \delta_v) (\delta_u - \delta_v)^*.
$$

Sparsify: take $S \in \mathcal{E}$,

$$
\widetilde{L}(\mathcal{S}) = \sum_{\substack{\text{edge } uv \in \mathcal{S}}} \frac{\text{weight} > 0}{\widetilde{w}_{uv}} \left(\boldsymbol{\delta}_u - \boldsymbol{\delta}_v\right) \left(\boldsymbol{\delta}_u - \boldsymbol{\delta}_v\right)^*.
$$

 $\widetilde{L}(S)$ is obtained by sampling & reweighting rows of B_0 .

$(1 \pm \epsilon)$ multiplicative approximation

Loewner order

Let X, Y be $m \times m$ Hermitian matrices. We have

 $X \preceq Y$ iff $f^*Xf \leq f^*Yf$ for all $f \in \mathbb{C}^m$.

$(1 \pm \epsilon)$ multiplicative approximation

Loewner order

Let X, Y be $m \times m$ Hermitian matrices. We have

 $X \preceq Y$ iff $f^*Xf \leq f^*Yf$ for all $f \in \mathbb{C}^m$.

Let $\epsilon > 0$. How do we sample a set of edges S such that

$$
(1 - \epsilon)L \preceq \widetilde{L}(\mathcal{S}) \preceq (1 + \epsilon)L
$$

occurs with high probability?
$(1 \pm \epsilon)$ multiplicative approximation

Loewner order

Let X, Y be $m \times m$ Hermitian matrices. We have

 $X \preceq Y$ iff $f^*Xf \leq f^*Yf$ for all $f \in \mathbb{C}^m$.

Let $\epsilon > 0$. How do we sample a set of edges S such that

$$
(1 - \epsilon)L \preceq \widetilde{L}(\mathcal{S}) \preceq (1 + \epsilon)L
$$

occurs with high probability?

We wish to have as few edges as possible.

A spanning tree is a connected spanning subgraph without cycle.

Figure: A spanning tree of a 7×7 square grid.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$ э Ω 15 / 38

A spanning tree is a connected spanning subgraph without cycle.

Figure: A spanning tree of a 7×7 square grid.

Uniform measure. For all spanning tree S

$$
\mathbb{P}_{\mathrm{ST}}(\mathcal{S}) = \frac{1}{\det L_{\hat{r}}}.
$$

15 / 38

 $Q \cap$

Theorem (Kaufman, Kyng, Solda (2022)) Let $\delta \in (0,1)$. There exists a sparsifier \widetilde{L}_t built with a batch of t independent spanning trees $\sim \mathbb{P}_{ST}$, such that if

$$
t \gtrsim \frac{1}{\epsilon^2} \log\left(\frac{n}{\delta}\right),\,
$$

with $\epsilon \in (0, 1)$ then, with probability at least $1 - \delta$.

$$
(1 - \epsilon)L \preceq \widetilde{L}_t \preceq (1 + \epsilon)L.
$$

Here, $n = |\mathcal{V}|$ is the number of nodes. See also Kyng & Song (2018).

Magnetic Laplacian and sparsification

メロト メタト メミト メミト G. 299 18 / 38

$$
\begin{array}{c}\n\frac{\vartheta(24)}{\mathcal{A}} \times \frac{\vartheta(34)}{3} \\
\frac{1}{\vartheta(12)} \times \frac{2}{\vartheta(23)}\n\end{array}
$$

Row uv is $(\boldsymbol{\delta}_u - e^{i \vartheta(uv)} \boldsymbol{\delta}_v)^\top$.

イロト イ団 ト イミト イモト 一店 298 18 / 38

$$
\begin{array}{c}\n \stackrel{\vartheta(24)}{\longrightarrow} \xrightarrow{4} \xrightarrow{\vartheta(34)} \\
 \stackrel{\vartheta(12)}{\longrightarrow} \xrightarrow{2} \xrightarrow{\vartheta(23)} \xrightarrow{3}\n \end{array}
$$

Row uv is $(\boldsymbol{\delta}_u - e^{i \vartheta(uv)} \boldsymbol{\delta}_v)^\top$.

$$
B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 12 & 1 & 2 & 3 \\ 2 & 0 & 3 & 4 \\ 0 & 24 & 0 & 34 \end{bmatrix}.
$$

メロト メタト メミト メミト 一毛 … 299 18 / 38

$$
\begin{array}{c}\n \stackrel{\vartheta(24)}{1} \longrightarrow \stackrel{4}{2} \longrightarrow \stackrel{\vartheta(34)}{3} \\
 \stackrel{\vartheta(12)}{1} \longrightarrow \stackrel{2}{\longrightarrow} \stackrel{\vartheta(23)}{1}\n \end{array}
$$

Row uv is $(\boldsymbol{\delta}_u - e^{i \vartheta(uv)} \boldsymbol{\delta}_v)^\top$.

$$
B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 12 & -e^{i\vartheta(12)} & & & \\ 0 & 1 & & & \\ 34 & 0 & 0 & & \\ 24 & 0 & 1 & & \end{bmatrix}
$$

メロトメ 倒 トメ 君 トメ 君 トー 君 299 18 / 38

1

 $\begin{matrix} \end{matrix}$.

$$
\begin{array}{c}\n \stackrel{\vartheta(24)}{1} \longrightarrow \stackrel{4}{2} \longrightarrow \stackrel{\vartheta(34)}{3} \\
 \stackrel{\vartheta(12)}{1} \longrightarrow \stackrel{2}{\longrightarrow} \stackrel{\vartheta(23)}{1}\n \end{array}
$$

Row uv is $(\boldsymbol{\delta}_u - e^{i \vartheta(uv)} \boldsymbol{\delta}_v)^\top$.

$$
B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 12 & -e^{i\vartheta(12)} & 0 \\ 23 & 0 & 1 & -e^{i\vartheta(23)} \\ 0 & 0 & 1 & 0 \\ 24 & 0 & 1 & 0 \end{bmatrix}
$$

メロト メタト メミト メミト 一毛 … 299 18 / 38

1

 $\begin{matrix} \end{matrix}$.

$$
\begin{array}{c}\n\sqrt[3]{2}\n\end{array}
$$
\n
$$
\begin{array}{c}\n1 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n2 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n2 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n3 \\
\hline\n\end{array}
$$

Row uv is $(\boldsymbol{\delta}_u - e^{i \vartheta(uv)} \boldsymbol{\delta}_v)^\top$.

$$
B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 12 & -e^{i\vartheta(12)} & 0 & 0 \\ 0 & 1 & -e^{i\vartheta(23)} & 0 \\ 0 & 0 & 1 & -e^{i\vartheta(34)} \\ 24 & 0 & 1 & 0 & -e^{i\vartheta(24)} \end{bmatrix}.
$$

K ロ K K 個 X K 社 X K 社 シー コー の R (M) 18 / 38

$$
\begin{array}{c}\n \stackrel{\vartheta(24)}{\longrightarrow} \longrightarrow^4 \longrightarrow^{\vartheta(34)} \\
 \downarrow^{\vartheta(12)} \longrightarrow^2 \longrightarrow^3 \longrightarrow^3\n \end{array}
$$

Row uv is $(\boldsymbol{\delta}_u - e^{i \vartheta(uv)} \boldsymbol{\delta}_v)^\top$.

$$
B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 12 & -e^{i\vartheta(12)} & 0 & 0 \\ 0 & 1 & -e^{i\vartheta(23)} & 0 \\ 0 & 0 & 1 & -e^{i\vartheta(34)} \\ 24 & 0 & 1 & 0 & -e^{i\vartheta(24)} \end{bmatrix}.
$$

Non-triviality of B depends on cycle consistency!

Define $c = 234$ and $\theta(c) = \vartheta(23) + \vartheta(34) + \vartheta(42) \mod 2\pi$.

Holonomy

The holonomy of the connection along any oriented cycle c is

$$
\prod_{e \in c} \phi_e \triangleq \exp(-i \theta(c))
$$

where $\phi_{uv} = e^{-i \vartheta(uv)}$.

イロト イ押 トイヨ トイヨ トー Ω 19 / 38

Define $c = 234$ and $\theta(c) = \vartheta(23) + \vartheta(34) + \vartheta(42) \mod 2\pi$.

Holonomy

The holonomy of the connection along any oriented cycle c is

$$
\prod_{e \in c} \phi_e \triangleq \exp(-i \theta(c)) = \text{hol}(c),
$$

where $\phi_{uv} = e^{-i \vartheta(uv)}$.

イロト イ押 トイヨ トイヨ トー Ω 19 / 38

Define $c = 234$ and $\theta(c) = \vartheta(23) + \vartheta(34) + \vartheta(42) \mod 2\pi$.

Holonomy

The holonomy of the connection along any oriented cycle c is

$$
\prod_{e \in c} \phi_e \triangleq \exp(-i \theta(c)) = \text{hol}(c),
$$

where $\phi_{uv} = e^{-i \vartheta(uv)}$.

If $\cos \theta(c) \geq 0$, we say that c is weakly inconsistent.

Define $c = 234$ and $\theta(c) = \theta(23) + \theta(34) + \theta(42) \mod 2\pi$.

Holonomy

The holonomy of the connection along any oriented cycle c is

$$
\prod_{e \in c} \phi_e \triangleq \exp(-i \theta(c)) = \text{hol}(c),
$$

where $\phi_{uv} = e^{-i \vartheta(uv)}$.

If $\cos \theta(c) \geq 0$, we say that c is weakly inconsistent. \triangleright We say that a U(1)-connection graph is weakly inconsistent if all its cycles are weakly inconsisten[t.](#page-50-0) G.

Magnetic Laplacian

$$
\Delta = B^* B = \begin{bmatrix} 1 & -\phi_{12}^* & 0 & 0 \\ -\phi_{12} & 3 & -\phi_{23}^* & -\phi_{24}^* \\ 0 & -\phi_{23} & 2 & -\phi_{34}^* \\ 0 & -\phi_{24} & -\phi_{34} & 2 \end{bmatrix}
$$

20 / 38

 $Q \cap R$

イロト イ団 ト イミト イモト 一店

with $\phi_{uv} = \exp(-i \vartheta(uv)).$

Magnetic Laplacian

$$
\Delta = B^* B = \begin{bmatrix} 1 & -\phi_{12}^* & 0 & 0 \\ -\phi_{12} & 3 & -\phi_{23}^* & -\phi_{24}^* \\ 0 & -\phi_{23} & 2 & -\phi_{34}^* \\ 0 & -\phi_{24} & -\phi_{34} & 2 \end{bmatrix}
$$

with
$$
\phi_{uv} = \exp(-i \vartheta(uv))
$$
.
\n \blacktriangleright $f^* \Delta f \propto \sum_{uv \in \mathcal{E}} |f(u) - \phi_{vu} f(v)|^2$

Magnetic Laplacian

$$
\Delta = B^* B = \begin{bmatrix} 1 & -\phi_{12}^* & 0 & 0 \\ -\phi_{12} & 3 & -\phi_{23}^* & -\phi_{24}^* \\ 0 & -\phi_{23} & 2 & -\phi_{34}^* \\ 0 & -\phi_{24} & -\phi_{34} & 2 \end{bmatrix}
$$

with $\phi_{uv} = \exp(-i \vartheta(uv)).$

- \blacktriangleright $f^*\Delta f \propto \sum_{uv \in \mathcal{E}} |f(u) \phi_{vu}f(v)|^2$
- Inull $(\Delta) = \{0\}$ iff there exists at least one c s.t. $\cos \theta(c) \neq 1$.

Magnetic Laplacian

$$
\Delta = B^* B = \begin{bmatrix} 1 & -\phi_{12}^* & 0 & 0 \\ -\phi_{12} & 3 & -\phi_{23}^* & -\phi_{24}^* \\ 0 & -\phi_{23} & 2 & -\phi_{34}^* \\ 0 & -\phi_{24} & -\phi_{34} & 2 \end{bmatrix}
$$

with $\phi_{uv} = \exp(-i \vartheta(uv)).$

- \blacktriangleright $f^*\Delta f \propto \sum_{uv \in \mathcal{E}} |f(u) \phi_{vu}f(v)|^2$
- Inull $(\Delta) = \{0\}$ iff there exists at least one c s.t. $\cos \theta(c) \neq 1$.

20 / 38

イロト イ部 トメ 君 トメ 君 トー 君

In what follows, we assume $\exists c \text{ s.t. } \cos \theta(c) \neq 1$.

Magnetic Laplacian

$$
\Delta = B^* B = \begin{bmatrix} 1 & -\phi_{12}^* & 0 & 0 \\ -\phi_{12} & 3 & -\phi_{23}^* & -\phi_{24}^* \\ 0 & -\phi_{23} & 2 & -\phi_{34}^* \\ 0 & -\phi_{24} & -\phi_{34} & 2 \end{bmatrix}
$$

with $\phi_{uv} = \exp(-i \vartheta(uv)).$

 \blacktriangleright

- \blacktriangleright $f^*\Delta f \propto \sum_{uv \in \mathcal{E}} |f(u) \phi_{vu}f(v)|^2$
- Inull $(\Delta) = \{0\}$ iff there exists at least one c s.t. $\cos \theta(c) \neq 1$.
- In what follows, we assume $\exists c \text{ s.t. } \cos \theta(c) \neq 1$.

$$
\Delta = D - W_{\phi}
$$

with $D = Diag(\text{deg})$ and $\text{deg}(u) = \sharp$ neighbors of $u \in \mathcal{V}$.

Cycle-rooted spanning forest Kenyon (2017)

 S is cycle-rooted spanning forest (CRSF) of \mathcal{G} , i.e., a spanning subgraph of \mathcal{G} in which each connected component has exactly one cycle.

イロト イ押ト イヨト イヨト

21 / 38

 $\mathbb{P}_{\text{CRSF}}(\mathcal{S}) = \frac{1}{\det(\Delta)}$ Π non-oriented cycle $c \subseteq S$ $2(1-\cos\theta(c))$.

Multi-type spanning forest Kenyon (2019)

where $\rho(\mathcal{S})$ is the number of components without cycle.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 22 / 38

Sparsification guarantees Fanuel & Bardenet, arxiv 2208.14797 Let $q > 0$ and let

$$
d_{\text{eff}} = \text{Tr}(\Delta(\Delta + q\mathbb{I}_n)^{-1})
$$
 and $\kappa = ||\Delta(\Delta + q\mathbb{I}_n)^{-1}||_{\text{op}}.$

Statistical guarantees

Theorem (Informal)

There exits a sparsifier $\tilde{\Delta}_t$ built with a batch of t independent MTSFs \sim P_{MTSF}, such that if

$$
t \gtrsim \frac{\kappa}{\epsilon^2} \log \left(\frac{d_{\text{eff}}}{\kappa \delta} \right) = \epsilon^{-2} \cdot decreasing \; fct \; of \; q,
$$

with $\epsilon \in (0, 1)$ then, with probability at least $1 - \delta$,

$$
(1 - \epsilon)(\Delta + q\mathbb{I}) \preceq \widetilde{\Delta}_t + q\mathbb{I} \preceq (1 + \epsilon)(\Delta + q\mathbb{I}).
$$

23 / 38

Sparsifier with t i.i.d. MTSFs

The sparsifier is

$$
\widetilde{\Delta}_t = \frac{1}{t} \sum_{\ell=1}^t \widetilde{\Delta}(\mathcal{S}_{\ell})
$$

with

$$
\widetilde{\Delta}(\mathcal{S}) = \sum_{\text{edge } uv \in \mathcal{S}} \frac{1}{l(uv)} (\boldsymbol{\delta}_u - \phi_{uv} \boldsymbol{\delta}_v) (\boldsymbol{\delta}_u - \phi_{uv} \boldsymbol{\delta}_v)^*,
$$

and where the leverage score of $e \in \mathcal{E}$ is

$$
l(e) = [B(\Delta + q\mathbb{I}_n)^{-1}B^*]_{ee}.
$$

24 / 38

 2990

イロト イ御 トメ 君 トメ 君 トー (者)

Sampling edges with a loop-erased random walk

Connection-aware transition matrix and CyclePopping

Let x and y be neighboring nodes. Define

$$
\Pi_{xy} = \frac{1}{\deg(x)} \cdot \exp(-i \vartheta(xy)),
$$

where $deg(x)$ is \sharp of neighbors of x. Note $\Pi = \mathbb{I} - D^{-1}\Delta$.

Stricto sensu, Π is not a transition matrix.

- \blacktriangleright 1/ deg(x): transition probability from x to y
- $\triangleright \vartheta(xy)$ is an angle used to define CYCLEPOPPING. Recall

$$
\prod_{xy \in c} \exp(-i \vartheta(xy)) \triangleq \exp(-i \theta(c)).
$$

Weak inconsistency: $\cos \theta(c) > 0$ for all cycle c. CYCLEPOPPING considers $cos \theta(c)$ as the probability to pop (erase) c . CRSF sampling $\sim \mathbb{P}_{CRSF}$ (Kassel and Kenyon, 2017) Extension of Wilson's algorithm (1996)

CYCLEPOPPING

Fix an ordering of the nodes. Initialize $S = \emptyset$.

- 1. Start from the first node in the ordering and not in S .
- 2. Do a nearest-neighbor random walk until
	- ightharpoontal intersects S. Then, this branch is added to S.
	- \triangleright or the walk self-intersects, i.e., makes a cycle c. Then, draw $B \sim \text{Bern}(1 - \cos \theta(c))$.
		- If $B = 0$, the cycle c is **popped** (erased), and the walk continues from the knot (go to step 2.).
		- Else if $B = 1$, c is accepted, and the lasso is added to S .

The sequence 1-2 is repeated until $\mathcal S$ covers the graph. Finally, we forget edge orientations.

MTSF Sampling $\sim \mathbb{P}_{MTSF}(\mathcal{S})$ Similar algorithm for sampling MTSFs.

The only change is that the walker can, at node u ,

- become a root with a probability $q/(\deg(u) + q)$,
- \triangleright or do a step uniformly to a neighbor of u.

CYCLEPOPPING

29 / 38

CYCLEPOPPING

제 미 시 제 에 시 제 관 시 제 관 시 교 및 299 29 / 38

T: the number of steps to finish CyclePopping Fanuel & Bardenet, arxiv 2404.14803

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

T: the number of steps to finish CyclePopping Fanuel & Bardenet, arxiv 2404.14803

Law of T Theorem For a weakly inconsistent $U(1)$ -connection graph, we have $\mathbb{E}[T]=\text{Tr}\left(\mathsf{D}\Delta^{-1}\right)$ with Δ the magnetic Laplacian and D the degree matrix. Furthermore, $T \stackrel{(law)}{=} n + \sum |\gamma| \text{ with } \mathcal{X} \sim \text{Poisson}(m, \text{Loops}),$ $[\gamma] \in \mathcal{X}$

30 / 38

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

T: the number of steps to finish CyclePopping Fanuel & Bardenet, arxiv 2404.14803

Law of T Theorem For a weakly inconsistent $U(1)$ -connection graph, we have $\mathbb{E}[T]=\text{Tr}\left(\mathsf{D}\Delta^{-1}\right)$ with Δ the magnetic Laplacian and D the degree matrix. Furthermore, $T \stackrel{(law)}{=} n + \sum |\gamma| \text{ with } \mathcal{X} \sim \text{Poisson}(m, \text{Loops}),$ $[\gamma] \in \mathcal{X}$

where $m([\gamma]) = \frac{1}{mult(\gamma)} \prod_{xy \in [\gamma]} \frac{1}{\deg}$ $\frac{1}{\deg(x)}\prod_{c\in cycles(\gamma)}\cos\theta(c).$

To better understand CyclePopping

A based loop γ is an oriented walk $\gamma = (x_0, \ldots, x_k)$ in the graph G, with $x_k = x_0$ for some integer $k \geq 2$.

Figure: Based loop γ based at x.

31 / 38

メロト メ御 トメ ミトメ ミト

Numerical simulations
Condition number after preconditioning Magnetic Laplacian case $(q = 0)$

- ▶ We draw random connection graphs.
- \triangleright We compute cond($\tilde{\Delta}^{-1}\Delta$) where $\tilde{\Delta}$ is obtained with several methods.

Baselines

- \blacktriangleright i.i.d. leverage score sampling.
- \blacktriangleright uniform spanning tree sampling.

Edge weights

- \triangleright sketched leverage scores with Johnson-Lindenstrauss lemma.
- \blacktriangleright uniform heuristics

$$
l(e) = |\mathcal{S}|/m.
$$

Simulation settings: random connection graphs

 \blacktriangleright Multiplicative Uniform Noise (MUN). With probability p , and independently, there is an edge $e = uv$ for $1 \le u \le v \le n$ with

$$
\vartheta(uv) = (h_u - h_v)(1 + \eta \epsilon_{uv})/(\pi (n-1))
$$

where $\epsilon_{uv} \sim \mathcal{U}([0, 1])$ are independent noise variables.

Uniform noise (MUN) $n = 2000, p = 0.01, \eta = 10^{-3}.$

We display cond $(\widetilde{\Delta}^{-1}\Delta)$.

Random MUN connection on top of a real graph $n = 255, 265$ nodes and $m = 1, 941, 926$ edges.

Figure: cond($\Delta^{-1}\Delta$) Stanford-MUN: $\eta = 10^{-2}$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $Q \cap$ 36 / 38

Research perspectives

- \triangleright Go beyond the case of weakly inconsistent connection graphs with CYCLEPOPPING.
- ▶ Fast numerical implementation of CYCLEPOPPING.
- I Generalization to diagonally dominant Hermitian matrices.
- ▶ Approximate leverage scores.
- It Use more general connection graphs (e.g. $SO(3)$).

Thanks for your attention!

[https://github.com/For-a-few-DPPs-more/](https://github.com/For-a-few-DPPs-more/MagneticLaplacianSparsifier.jl) [MagneticLaplacianSparsifier.jl](https://github.com/For-a-few-DPPs-more/MagneticLaplacianSparsifier.jl)

We acknowledge support from ERC grant BLACKJACK (ERC-2019-STG-851866) and ANR AI chair BACCARAT (ANR-20-CHIA-0002). PI: R. Bardenet.

Importance sampling with capped cycle weights

Define the importance sampling distribution

$$
p_{\text{IS}}(\mathcal{C}) \propto q^{|\rho(\mathcal{C})|} \prod_{\text{cycles } \eta \in \mathcal{C}} 2\{1 \wedge (1 - \cos \theta(\eta))\},\,
$$

and the corresponding importance weights

$$
w(C) \propto \prod_{\text{cycles } \eta \in C} \left\{ 1 \vee \left(1 - \cos \theta(\eta) \right) \right\},\
$$

We define a sparsifier with importance weights:

$$
\widetilde{\Delta}_t^{(\mathrm{IS})} = \frac{1}{\sum_{s=1}^t w(C'_s)} \sum_{\ell=1}^t w(C'_\ell) \widetilde{\Delta}(C'_\ell), \text{ with } C'_\ell \stackrel{\text{i.i.d.}}{\sim} p_{\mathrm{IS}} \text{ for } 1 \le \ell \le t.
$$

Proposition

Let $p \in (0,1)$. Let C'_1, C'_2, \ldots , be i.i.d. random MTSFs with the capped distribution p_{IS} , and consider the sequence of matrices

$$
(\widetilde{\Delta}_t^{\mathrm{(IS)}})_{t\geq 1}.
$$

Finally, let $z > 0$ be such that

$$
\Pr(||\boldsymbol{u}||_2 \leq z) = p \text{ for } \boldsymbol{u} \sim \mathcal{N}(0, \mathbb{I}_{n^2}).
$$

Then, as $t \to \infty$,

$$
\Pr\left[-z(\Delta + q\mathbb{I}_n) \preceq \widetilde{\Delta}_t^{(\text{IS})} - \Delta \preceq z(\Delta + q\mathbb{I}_n)\right] \to 1 - p.
$$

References

- I A. Kassel and R. Kenyon, Random curves on surfaces induced from the Laplacian determinant, Ann. Probab. 2017.
- I A. Kassel, Learning about critical phenomena from scribbles and sandpiles, ESAIM: Proc., 2015.
- R. Kenyon. Spanning Forests and the Vector Bundle Laplacian. Ann. Probab., 2011.
- I R. Kenyon. Determinantal Spanning Forests on Planar Graphs. Ann. Probab., 2019.
- ▶ D. A. Spielman and N. Srivastava. Graph Sparsification by Effective Resistances. SIAM Journal on Computing, 2011.
- ▶ R. Kyng and Z. Song. A Matrix Chernoff Bound for Strongly Rayleigh Distributions and Spectral Sparsifiers from a few Random Spanning Trees, FOCS, 2018.

References (continued)

- I T. Kaufman, R. Kyng, and F. Solda. Scalar and Matrix Chernoff Bounds from ℓ_{∞} -Independence, SODA, 2022.
- I M. Cucuringu. Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and SDP Synchronization. IEEE Transactions on Network Science and Engineering, 2016.
- I A. Singer. Angular Synchronization by Eigenvectors and Semidefinite Programming. Applied and Computational Harmonic Analysis, 2011.