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Related paper 1: Complex valued graph Laplacian.
In this talk.

» M. Fanuel and R. Bardenet, Sparsification of the Regularized
Magnetic Laplacian with Multi-Type Spanning Forests,

arxiv 2208.14797
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Related paper 2: Monte-Carlo estimator for inverse
Laplacian.
Not in this talk.

> H. Jaquard, M. Fanuel, P.-O. Amblard, R. Bardenet, S.
Barthelmé, N. Tremblay,
Smoothing Complex-Valued Signals on Graphs with
Monte-Carlo, International Conference on Acoustics, Speech
and Signal Processing (ICASSP) 2023.

(A + qH)_l =E forest .F[eStimator(]:)]
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Related paper 3: Random walk with cyclepopping.
In this talk.

> M. Fanuel and R. Bardenet, On the Number of Steps of
CyYCLEPOPPING in Weakly Inconsistent U(1)-Connection
Graphs,
arxiv 2404.14803
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Sparsification setting

Connected graph G = (V,€) with |V| = n and |E] = m.

In this talk, all the edge weights of G are equal to 1.
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Goal

We aim to find a sparse approximation of G = (V, £).

To do so, we sample edges in £ and give them positive weights.

6/38



Goal

We aim to find a sparse approximation of G = (V, £).

To do so, we sample edges in £ and give them positive weights.

Actually, we approximate a graph Laplacian of G.

6/38



Goal

We aim to find a sparse approximation of G = (V, £).

To do so, we sample edges in £ and give them positive weights.

Actually, we approximate a graph Laplacian of G.

We consider a case where edges come with extra information.
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U(1)-connection graph

7N\
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U(1)-connection graph

4
9(24) 9(34)
1 > 2 7 \ 3
9(12) 9(23)

V oriented edge uv, we have an angle J(uv) s.t. J(vu) = —9(uv).
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U(1)-connection graph

4

19(24)/‘ ,\19(34)
1 > 2 > 3
¥(12) ¥(23)
V oriented edge uv, we have an angle J(uv) s.t. J(vu) = —9(uv).

Synchronization of the nodes:
Can we find h,, for u € V s.t. ¥(uv) = (hy — hy) mod 277
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» Angular synchronization problem
(cryo-electron microscopy, Singer 2011).

> Robust ranking from pairwise comparisons
(Cucuringu 2016).
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U(1)-connection graph

4
19(24)/‘ ,\19(34)
1 > 2 > 3
¥(12) ¥(23)
V oriented edge uv, we have an angle J(uv) s.t. J(vu) = —9(uv).

Synchronization of the nodes:
Can we find h,, for u € V s.t. ¥(uv) = (hy — hy) mod 277

» Angular synchronization problem
(cryo-electron microscopy, Singer 2011).

> Robust ranking from pairwise comparisons
(Cucuringu 2016).

Magnetic Laplacian A associated with this connection graph.
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Motivation for a sparsifier
Originally for solving Laplacian systems (e.g. Spielman and Srivastava, 2011)
Solving linear systems of the form

(A+qln) f = qy,

where A is a Laplacian and ¢ > 0, which originates e.g. from
semi-supervised learning

min f*Af +q|f - yll3.
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Motivation for a sparsifier
Originally for solving Laplacian systems (e.g. Spielman and Srivastava, 2011)
Solving linear systems of the form

(A+qln) f = qy,

where A is a Laplacian and ¢ > 0, which originates e.g. from
semi-supervised learning

min f*Af +qlf -yl
The difficulty /sensitivity of this numerical problem

)\max(A + q]In)
)\min(A + q]ln) )

If A+ qll, is a (sparse) approximation of A + ¢l,,, the system
(A +qL,) YA+ gL,) f = (A + qIL,) b,

cond(A + ¢ll,) =

is expected to have a smaller condition number.

NB: There is a technicality if ¢ = 0 and A is the combinatorial Laplacian.
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Outline

1. Combinatorial Laplacian and sparsification

2. Magnetic Laplacian and sparsification

3. Sampling edges with a loop-erased random walk

4. Numerical simulations
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Combinatorial Laplacian and sparsification
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Fix edge orientations.

4
24 34
2N
1 > 2 > 3
12 23
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Fix edge orientations.

Edge-vertex incidence matrix (m x n) s.t. row uv is (8, — &,) .

By =

24/\4 ,\34

2

\

12
23
34
24

12

1

\
r

2

23

3

r

3

4

11/38



Fix edge orientations.

Edge-vertex incidence matrix (m x n) s.t. row uv is (8, — &,) .

By =

24/\4 ,\34

2

\

12
23
34
24

12

OO O = =

\
r

2

23

3

r

3

4

11/38



Fix edge orientations.

Edge-vertex incidence matrix (m x n) s.t. row uv is (8, — &,) .

By =

24/\4 ,\34

2

\

12
23
34
24

12

OO O = =

\
r

2

1
0
1

1

23

3

r

3

4

11/38



Fix edge orientations.

Edge-vertex incidence matrix (m x n) s.t. row uv is (8, — &,) .

By =

24/\4 ,\34

2

\

12
23
34
24

12

OO O = =

\
r

2

1
0
1

1

23

0
-1
1

L4

3

4

11/38



Fix edge orientations.

Edge-vertex incidence matrix (m x n) s.t. row uv is (8, — &,) .

By =

24/\4 ,\34

2

\

12
23
34
24

12

OO O = =

\
r

2

1
0
1

1

23

0
-1

1

0

L4

3

0
0
-1
-1

11/38



Combinatorial Laplacian

Combinatorial Laplacian:

2 3 4

1 1 -1 0 0

i} s | -1 3 -1 -1
L=BBo= 1 ¢ 1 o _1
sl 0 -1 -1 2
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Combinatorial Laplacian

Combinatorial Laplacian:

2 3 4

1 1 -1 0 0

i} s | -1 3 -1 -1
L=BBo= 1 ¢ 1 o _1
sl 0 -1 -1 2

> FULE o< Yyeee If () — F(0)7

12 /38



Combinatorial Laplacian

Combinatorial Laplacian:

-1 3 -1 -1

1
N 2
L=BBo= 1 ¢ 1 o _1
4

> FILF o< Ypes [ (w) = f0)7
» Let G be connected. We have null(L) = span(1).
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Combinatorial Laplacian

Combinatorial Laplacian:

-1 3 -1 -1

1
N 2
L=BBo= 1 ¢ 1 o _1
4

> FILF o< Ypes [ (w) = f0)7
» Let G be connected. We have null(L) = span(1).

» Classical decomposition:
L=D-W

with D = Diag(deg) and deg(u) = nb of neighbors of u € V.
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Sparsification: edge sampling

Recall
L = Bj By with By € R™*".
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Sparsification: edge sampling

Recall
L = Bj By with By € R™*".

Graph Laplacian

column row
L= > (6u—0,)(8,—6,)".
edge uvel
Sparsify: take S € &,
- weight> 0
LS)= Y W (6u—8,)(6,—8,)".

edge wweS

E(S) is obtained by sampling & reweighting rows of By.
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(1 £ €) multiplicative approximation

Loewner order

Let X,Y be m x m Hermitian matrices. We have

X <Y iff f*Xf < f*Yf for all f € C™.
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Loewner order

Let X,Y be m x m Hermitian matrices. We have

X <Y iff f*Xf < f*Yf for all f € C™.

Let € > 0. How do we sample a set of edges S such that

(1—e)L=L(S) = (1+¢)L

occurs with high probability?
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(1 £ €) multiplicative approximation

Loewner order

Let X,Y be m x m Hermitian matrices. We have

X <Y iff f*Xf < f*Yf for all f € C™.

Let € > 0. How do we sample a set of edges S such that

(1—e)L=L(S) = (1+¢)L

occurs with high probability?

We wish to have as few edges as possible.

14 /38



A spanning tree is a connected spanning subgraph without cycle.

— | I
[

[ 1

Figure: A spanning tree of a 7 x 7 square grid.
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A spanning tree is a connected spanning subgraph without cycle.

— | I
[

[ 1

Figure: A spanning tree of a 7 x 7 square grid.

Uniform measure. For all spanning tree S

1

Psr(5) = det L; "
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Theorem (Kaufman, Kyng, Solda (2022))

Let 6 € (0,1). There exists a sparsifier Ly built with a batch of t
independent spanning trees ~ Psr, such that if

1 n
1z log ().
with € € (0,1) then, with probability at least 1 — 0,
(1-eL =Ly =(1+e)L.

Here, n = |V| is the number of nodes.
See also Kyng & Song (2018).

16 /38



Magnetic Laplacian and sparsification
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Twisted edge-vertex incidence matrix

7N\
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Twisted edge-vertex incidence matrix

4
19(24)/‘ ,\19(34)
1 > 2 > 3
9¥(12) 9(23)
Row uw is (8, — e ?(“)§,) T,
1 2 3

12
23
34
24
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Twisted edge-vertex incidence matrix

4
19(24)/‘ ,\19(34)
1 > 2 > 3
9¥(12) 9(23)
Row uw is (8, — e ?(“)§,) T,
2 3

12
23
34
24

=N elel e
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Twisted edge-vertex incidence matrix

4
19(24)/‘ ,\19(34)
1 > 2 > 3
9¥(12) 9¥(23)
Row uw is (8, — e ?(“)§,) T,
1 2 3
19 1 — (iv(12)
B— 23 0 1
34 | 0O 0
24 | 0 1
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Twisted edge-vertex incidence matrix

4
19(24)/‘ ,\19(34)
1 > 2 > 3
9(12) 9(23)
Row uw is (8, — e ?(“)§,) T,
1 2 3
12 [ 1 —ev02) 0
19(23)

B— 23 0 1 e
34 | 0O 0 1
24 | 0O 1 0
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Twisted edge-vertex incidence matrix

4
19(24)/‘ ,\z?(34)
1 > 2 > 3
9(12) 9(23)
Row uv is (8, — eV §,) T,

1 2 3 4

12 [1 —e?02) 0 0

p_ 2 0 1 eiv(23) 0
T3 |0 0 1 — €l 9B4)
24 | 0 1 — 929
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Twisted edge-vertex incidence matrix

4

19(24)/‘ ,\z?(34)
1 > 2 > 3
9¥(12) 9¥(23)
Row uv is (8, — eV §,) T,

1 2 3 4

12 [1 —¢v02) 0 0

p_ 2 0 1 eiv(23) 0
T a0 0 1 — 939
24 | 0 1 0 — 724

Non-triviality of B depends on cycle consistency!

18 /38



Cycle holonomy
4

9(24) 9(34)
1 ) 4 \ 3
9(12) 9(23)

Define ¢ = 234 and 6(c) = 9(23) + 9¥(34) + 9(42) mod 27.

Holonomy

The holonomy of the connection along any oriented cycle ¢
is

IT 6 £ exp(~i6(c))

ecc

where ¢y, = e~ 19(uv),
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9(24) 9(34)
1 ) 4 \ 3
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Holonomy

The holonomy of the connection along any oriented cycle ¢
is

IT 6 £ exp(~16(c)) = hol(c),

ecc
where ¢y, = e~ 19(uv),

\. J

» If cosf(c) > 0, we say that c is weakly inconsistent.
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Cycle holonomy
4

9(24) 9(34)
@
9(12) 9(23)

Define ¢ = 234 and 6(c) = 9(23) + 9¥(34) + 9(42) mod 27.

Holonomy

The holonomy of the connection along any oriented cycle ¢
is

IT 6 £ exp(~16(c)) = hol(c),

ecc

where ¢y, = e~ 19(uv),

» If cosf(c) > 0, we say that c is weakly inconsistent.
» We say that a U(1)-connection graph is weakly inconsistent

if all its cycles are weakly inconsistent.
19/38



Magnetic Laplacian of a connected graph

Magnetic Laplacian

I =91, 0 0

3 =933 —9Py
0 —¢a3 2 —¢y
0 —¢u —¢31 2

with ¢y, = exp(—id(uv)).
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Magnetic Laplacian of a connected graph

Magnetic Laplacian

1 —¢1p 0 0
_p*R —¢12 3 —¢33 - 54
A=BB=1 —¢23 2 =Py
0 —¢oy —314 2
with ¢y, = exp(—id(uv)).
> f*A.f X Zuvef ’f(u) - ¢vuf(v)|2
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Magnetic Laplacian of a connected graph

Magnetic Laplacian

1 =9, O 0
e | 012 3 93 —9yy
A=BB=1 —¢23 2 =Py
0  —¢aa —P3a 2
with ¢y, = exp(—id(uv)).
> f*A.f X Zuvef ’f(u) - ¢vuf(v)‘2

» null(A) = {0} iff there exists at least one ¢ s.t. cosf(c) # 1.
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Magnetic Laplacian of a connected graph

Magnetic Laplacian

I —¢ip O 0
¥ P12 3 =033 —dyy
A=B"B =
0  —¢a3 2 —¢3
0  —¢u —¢aa 2
with ¢y = exp(—id(uv)).

> f*A.f X Zuvef ’f(u) - ¢vuf(v)‘2
» null(A) = {0} iff there exists at least one ¢ s.t. cosf(c) # 1.

» In what follows, we assume 3 ¢ s.t. cosf(c) # 1.
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Magnetic Laplacian of a connected graph

Magnetic Laplacian

1 ¢, 00
« —¢12 3 —dhy —P
A=B*B=
0 —¢23 2 —¢5
0 —¢ou —da 2
with ¢y = exp(—id(uv)).
> f*A.f X Zuvef ’f(u) - ¢vuf(v)‘2
» null(A) = {0} iff there exists at least one ¢ s.t. cosf(c) # 1.
» In what follows, we assume 3 ¢ s.t. cosf(c) # 1.
>
A=D-W,

with D = Diag(deg) and deg(u) = # neighbors of u € V.
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Cycle-rooted spanning forest
Kenyon (2017)

. |
[ S is cycle-rooted spanning forest (CRSF)
l | of G, i.e., a spanning subgraph of G
N in which each connected component
o IJ has exactly one cycle.
1
Porsr (S) = 5 @) I[I 2@ --cosb(c)).

non-oriented
cycle ¢cCS
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Multi-type spanning forest
Kenyon (2019)

Let ¢ > 0.

_ H [ S is a multi-type spanning forest (MTSF)
of G, i.e., a spanning subgraph of G
_ in which each connected component

has either exactly one cycle or no cycle.

-~

qp(S)

= QoA T D) H 2(1 — cos 0(0)),

non-oriented
cycle cCS

Prirse(S)

where p(S) is the number of components without cycle.
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Sparsification guarantees
Fanuel & Bardenet, arxiv 2208.14797
Let ¢ > 0 and let

dot = Tr(A(A + q]In)fl) and £ = ||A(A + q]In)leop.

Statistical guarantees

Theorem (Informal)

There exits a sparsifier Ay built with a batch of t
idependent MTSFs ~ Pyrsr, such that if

~ g2 KO

K d : .
t 2 —log <eﬂ> = ¢ 2. decreasing fct of q,

with € € (0,1) then, with probability at least 1 — 4,

(1—€)(A+ql) <Ay + gl < (1+€)(A + ql).
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Sparsifier with ¢ i.i.d. MTSFs

The sparsifier is

with

AS) = Y (0w~ ud) (B — bundi)"

[(uv)

edge uwweS

and where the leverage score of e € £ is

I(e) = [B(A + ql,) "' B*]ee.
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Sampling edges with a loop-erased random walk
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Connection-aware transition matrix and CYCLEPOPPING

Let z and y be neighboring nodes. Define

1
Hx = : —i9 )
V= deg (@) exp(—id(zy))
where deg(z) is # of neighbors of . Note M =1— D71A.

Stricto sensu, Il is not a transition matrix.
» 1/deg(x): transition probability from z to y
» J(xy) is an angle used to define CYCLEPOPPING. Recall

[T exp(=id(zy)) £ exp(~i6(c)).

TYyeEC

Weak inconsistency: cosf(c) > 0 for all cycle c.

CYCLEPOPPING considers cosf(c) as
the probability to pop (erase) c.
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CRSF sampling ~ Pcrsr (Kassel and Kenyon, 2017)

Extension of Wilson’s algorithm (1996)

CYCLEPOPPING

Fix an ordering of the nodes. Initialize S = ().

1. Start from the first node in the ordering and not in §.
2. Do a nearest-neighbor random walk until

» cither the walk intersects S. Then, this branch is added to S.

» or the walk self-intersects, i.e., makes a cycle c.
Then, draw B ~ Bern(1 — cos6(c)).
»> If B =0, the cycle c is popped (erased),
and the walk continues from the knot (go to step 2.).
> Else if B =1, c is accepted,
and the lasso is added to S.

The sequence 1-2 is repeated until S covers the graph.
Finally, we forget edge orientations.
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MTSF Sampling ~ Pyrrsp(S)

Similar algorithm for sampling MTSFs.

The only change is that the walker can, at node u,
» become a root with a probability ¢/(deg(u) + q),

» or do a step uniformly to a neighbor of u.
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CYCLEPOPPING
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CYCLEPOPPING

(=Joe(+)
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T the number of steps to finish CYCLEPOPPING
Fanuel & Bardenet, arxiv 2404.14803

Theorem

For a weakly inconsistent U(1)-connection graph, we have

E[T] = Tr (DA™Y)

with A the magnetic Laplacian and D the degree matrix.
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T the number of steps to finish CYCLEPOPPING
Fanuel & Bardenet, arxiv 2404.14803

Theorem

T (law)

For a weakly inconsistent U(1)-connection graph, we have

E[T] = Tr (DA™Y)

with A the magnetic Laplacian and D the degree matrix.
Furthermore,

n+ Z |v| with X ~ Poisson(m, Loops),
[rlex
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T the number of steps to finish CYCLEPOPPING
Fanuel & Bardenet, arxiv 2404.14803

Theorem

T (law)

For a weakly inconsistent U(1)-connection graph, we have

E[T] = Tr (DA™Y)

with A the magnetic Laplacian and D the degree matrix.
Furthermore,

n+ Z |v| with X ~ Poisson(m, Loops),
[rlex

where m(h’]) = m sze[y] m Hcecycles(fy) COS 0(0)
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To better understand CYCLEPOPPING

A based loop 7 is an oriented walk v = (zo, ..., x) in the graph
G, with x = xg for some integer k > 2.

. yl
) Y
l
I
L]

|

Figure: Based loop 7 based at z.
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Numerical simulations
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Condition number after preconditioning
Magnetic Laplacian case (¢ = 0)

» We draw random connection graphs.

> We compute cond(A~1A) where A is obtained with several
methods.

Baselines
P> ii.d. leverage score sampling.
» uniform spanning tree sampling.
Edge weights
P sketched leverage scores with Johnson-Lindenstrauss lemma.

» uniform heuristics

l(e) = |S|/m.
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Simulation settings: random connection graphs

» Multiplicative Uniform Noise (MUN).
With probability p, and independently, there is an edge
e=uwuv for 1 <u < v <n with

I(uv) = (hy — hy) (1 + new)/(7(n — 1))

where €, ~ U([0,1]) are independent noise variables.
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Uniform noise (MUN)

n = 2000, p = 0.01, n = 1073.

We display cond(A~1A).

10° T
—%=DPP(K) unif
DPP(K) JL-LS
. B — iid JL-LS
@ ——STJL-LS
-g 106 L ——no precond.
=3
c
c
o
5.3
Ti10’t
o
o
0 I
10 1 2 3 4
2
=1 «
° '
g -7
cOpr —— - ——A— o« i
g 1 2 3 4

number of edges over number of nodes
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Random MUN connection on top of a real graph
n = 255,265 nodes and m = 1,941,926 edges.

=—DPP(K) unif
——ST unif
—no precond.

condition number

10 1.2 1.5 1.8 2.1

z

21 X
2

1®)

g /

c OF

S 1.2 1.5 1.8 2.1

number of edges over number of nodes

Figure: cond(A~tA) Stanford-MUN: 5 = 1072,
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Research perspectives

» Go beyond the case of weakly inconsistent connection graphs
with CYCLEPOPPING.

» Fast numerical implementation of CYCLEPOPPING.
> Generalization to diagonally dominant Hermitian matrices.
> Approximate leverage scores.

» Use more general connection graphs (e.g. SO(3)).
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Thanks for your attention!

https://github.com/For-a-few-DPPs-more/
MagneticLaplacianSparsifier.jl

We acknowledge support from ERC grant BLACKJACK
(ERC-2019-STG-851866) and ANR AI chair BACCARAT
(ANR-20-CHIA-0002). PI: R. Bardenet.
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https://github.com/For-a-few-DPPs-more/MagneticLaplacianSparsifier.jl
https://github.com/For-a-few-DPPs-more/MagneticLaplacianSparsifier.jl

Importance sampling with capped cycle weights

Define the importance sampling distribution

p1s(C) x ¢l°©) H 2{1 A (1 —cosb(n))},

cycles neC

and the corresponding importance weights

w(C) x H {lv(l—cosﬂ(n))},

cycles neC

We define a sparsifier with importance weights:

iid

AEIS) Z w(CHA(C)), with C) "~ pg for 1 < ¢ < t.
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Proposition
Let p € (0,1). Let C{,Cl, ..., be i.i.d. random MTSFs with the
capped distribution prs, and consider the sequence of matrices

(A1
Finally, let z > 0 be such that
Pr(|ulls < 2) = p for u~ N(0,T,2).
Then, as t — oo,

Pr|—z(A +4l,) < z%IS) —A=z(A+ qﬂn)} —1—p.
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