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Related paper 1: Complex valued graph Laplacian.
In this talk.

I M. Fanuel and R. Bardenet, Sparsification of the Regularized
Magnetic Laplacian with Multi-Type Spanning Forests,
arxiv 2208.14797
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Related paper 2: Monte-Carlo estimator for inverse
Laplacian.
Not in this talk.

I H. Jaquard, M. Fanuel, P.-O. Amblard, R. Bardenet, S.
Barthelmé, N. Tremblay,
Smoothing Complex-Valued Signals on Graphs with
Monte-Carlo, International Conference on Acoustics, Speech
and Signal Processing (ICASSP) 2023.

(∆ + qI)−1 = E forest F [estimator(F)]
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Related paper 3: Random walk with cyclepopping.
In this talk.

I M. Fanuel and R. Bardenet, On the Number of Steps of
CyclePopping in Weakly Inconsistent U(1)-Connection
Graphs,
arxiv 2404.14803
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Sparsification setting

Connected graph G = (V, E) with |V| = n and |E| = m.

In this talk, all the edge weights of G are equal to 1.
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Goal

We aim to find a sparse approximation of G = (V, E).

To do so, we sample edges in E and give them positive weights.

Actually, we approximate a graph Laplacian of G.

We consider a case where edges come with extra information.
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U(1)-connection graph

1

ϑ(12) ϑ(23)

ϑ(34)ϑ(24)

2 3

4

∀ oriented edge uv, we have an angle ϑ(uv) s.t. ϑ(vu) = −ϑ(uv).

Synchronization of the nodes:
Can we find hu for u ∈ V s.t. ϑ(uv) ≈ (hu − hv) mod 2π?

I Angular synchronization problem
(cryo-electron microscopy, Singer 2011).

I Robust ranking from pairwise comparisons
(Cucuringu 2016).

Magnetic Laplacian ∆ associated with this connection graph.
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Motivation for a sparsifier
Originally for solving Laplacian systems (e.g. Spielman and Srivastava, 2011)

Solving linear systems of the form

(∆ + qIn)f = qy,

where ∆ is a Laplacian and q ≥ 0, which originates e.g. from
semi-supervised learning

min
f
f∗∆f + q‖f − y‖22.

The difficulty/sensitivity of this numerical problem

cond(∆ + qIn) ,
λmax(∆ + qIn)

λmin(∆ + qIn)
.

If ∆̃ + qIn is a (sparse) approximation of ∆ + qIn, the system

(∆̃ + qIn)−1(∆ + qIn)f = (∆̃ + qIn)−1b,

is expected to have a smaller condition number.
NB: There is a technicality if q = 0 and ∆ is the combinatorial Laplacian.
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Outline

1. Combinatorial Laplacian and sparsification

2. Magnetic Laplacian and sparsification

3. Sampling edges with a loop-erased random walk

4. Numerical simulations
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Combinatorial Laplacian and sparsification
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Fix edge orientations.

1

1

12 23

3424

2

2

3

3

4

4

Edge-vertex incidence matrix (m× n) s.t. row uv is (δu − δv)>.

B0 =


1 2 3 4

12

1 − 1 0 0

23

0 1 − 1 0

34

0 0 1 − 1

24

0 1 0 − 1

.
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Fix edge orientations.
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Combinatorial Laplacian

Combinatorial Laplacian:

L = B∗0B0 =


1 2 3 4

1 1 −1 0 0
2 −1 3 −1 −1
3 0 −1 2 −1
4 0 −1 −1 2

.

I f∗Lf ∝
∑

uv∈E |f(u)− f(v)|2

I Let G be connected. We have null(L) = span(1).
I Classical decomposition:

L = D −W

with D = Diag(deg) and deg(u) = nb of neighbors of u ∈ V.
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Sparsification: edge sampling

Recall
L = B∗0B0 with B0 ∈ Rm×n.

Graph Laplacian

L =
∑

edge uv∈E

column
(δu − δv)

row
(δu − δv)∗ .

Sparsify: take S ∈ E ,

L̃(S) =
∑

edge uv∈S

weight> 0

w̃uv (δu − δv)(δu − δv)∗.

L̃(S) is obtained by sampling & reweighting rows of B0.

13 / 38



Sparsification: edge sampling

Recall
L = B∗0B0 with B0 ∈ Rm×n.

Graph Laplacian

L =
∑

edge uv∈E

column
(δu − δv)

row
(δu − δv)∗ .

Sparsify: take S ∈ E ,

L̃(S) =
∑

edge uv∈S

weight> 0

w̃uv (δu − δv)(δu − δv)∗.

L̃(S) is obtained by sampling & reweighting rows of B0.

13 / 38



Sparsification: edge sampling

Recall
L = B∗0B0 with B0 ∈ Rm×n.

Graph Laplacian

L =
∑

edge uv∈E

column
(δu − δv)

row
(δu − δv)∗ .

Sparsify: take S ∈ E ,

L̃(S) =
∑

edge uv∈S

weight> 0

w̃uv (δu − δv)(δu − δv)∗.

L̃(S) is obtained by sampling & reweighting rows of B0.

13 / 38



Sparsification: edge sampling

Recall
L = B∗0B0 with B0 ∈ Rm×n.

Graph Laplacian

L =
∑

edge uv∈E

column
(δu − δv)

row
(δu − δv)∗ .

Sparsify: take S ∈ E ,

L̃(S) =
∑

edge uv∈S

weight> 0

w̃uv (δu − δv)(δu − δv)∗.

L̃(S) is obtained by sampling & reweighting rows of B0.

13 / 38



(1± ε) multiplicative approximation

Loewner order

Let X,Y be m×m Hermitian matrices. We have

X � Y iff f∗Xf ≤ f∗Y f for all f ∈ Cm.

Let ε > 0. How do we sample a set of edges S such that

(1− ε)L � L̃(S) � (1 + ε)L

occurs with high probability?

We wish to have as few edges as possible.
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A spanning tree is a connected spanning subgraph without cycle.

Figure: A spanning tree of a 7× 7 square grid.

Uniform measure. For all spanning tree S

PST(S) =
1

detLr̂
.
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Theorem (Kaufman, Kyng, Solda (2022))
Let δ ∈ (0, 1). There exists a sparsifier L̃t built with a batch of t
independent spanning trees ∼ PST, such that if

t &
1

ε2
log
(n
δ

)
,

with ε ∈ (0, 1) then, with probability at least 1− δ,

(1− ε)L � L̃t � (1 + ε)L.

Here, n = |V| is the number of nodes.
See also Kyng & Song (2018).
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Magnetic Laplacian and sparsification
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Twisted edge-vertex incidence matrix

1

1
ϑ(12) ϑ(23)

ϑ(34)ϑ(24)

2

2

3

3

4

4

Row uv is (δu − eiϑ(uv)δv)
>.

B =


1 2 3 4

12

1 − eiϑ(12) 0 0

23

0 1 − eiϑ(23) 0

34

0 0 1 − eiϑ(34)

24

0 1 0 − eiϑ(24)

.
Non-triviality of B depends on cycle consistency!
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Cycle holonomy

11
ϑ(12) ϑ(23)

ϑ(34)ϑ(24)

22 33

44

Define c = 234 and θ(c) = ϑ(23) + ϑ(34) + ϑ(42) mod 2π.

Holonomy

The holonomy of the connection along any oriented cycle c
is ∏

e∈c
φe , exp(− i θ(c))

= hol(c),

where φuv = e− iϑ(uv).

I If cos θ(c) ≥ 0, we say that c is weakly inconsistent.
I We say that a U(1)-connection graph is weakly inconsistent

if all its cycles are weakly inconsistent.
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Magnetic Laplacian of a connected graph

Magnetic Laplacian

∆ = B∗B =


1 −φ∗12 0 0
−φ12 3 −φ∗23 −φ∗24

0 −φ23 2 −φ∗34

0 −φ24 −φ34 2


with φuv = exp(− iϑ(uv)).

I f∗∆f ∝
∑

uv∈E |f(u)− φvuf(v)|2

I null(∆) = {0} iff there exists at least one c s.t. cos θ(c) 6= 1.
I In what follows, we assume ∃ c s.t. cos θ(c) 6= 1.
I

∆ = D −Wφ

with D = Diag(deg) and deg(u) = ] neighbors of u ∈ V.
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Cycle-rooted spanning forest
Kenyon (2017)

S is cycle-rooted spanning forest (CRSF)
of G, i.e., a spanning subgraph of G
in which each connected component
has exactly one cycle.

PCRSF(S) =
1

det(∆)

∏
non-oriented
cycle c⊆S

2 (1− cos θ(c)) .
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Multi-type spanning forest
Kenyon (2019)

Let q > 0.

S is a multi-type spanning forest (MTSF)
of G, i.e., a spanning subgraph of G
in which each connected component
has either exactly one cycle or no cycle.

PMTSF(S) =
qρ(S)

det(∆ + qI)
∏

non-oriented
cycle c⊆S

2
(

1− cos θ(c)
)
,

where ρ(S) is the number of components without cycle.
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Sparsification guarantees
Fanuel & Bardenet, arxiv 2208.14797

Let q ≥ 0 and let

deff = Tr(∆(∆ + qIn)−1) and κ = ‖∆(∆ + qIn)−1‖op.

Statistical guarantees

Theorem (Informal)
There exits a sparsifier ∆̃t built with a batch of t
independent MTSFs ∼ PMTSF, such that if

t &
κ

ε2
log

(
deff

κδ

)
= ε−2 · decreasing fct of q,

with ε ∈ (0, 1) then, with probability at least 1− δ,

(1− ε)(∆ + qI) � ∆̃t + qI � (1 + ε)(∆ + qI).

23 / 38



Sparsifier with t i.i.d. MTSFs

The sparsifier is

∆̃t =
1

t

t∑
`=1

∆̃(S`)

with

∆̃(S) =
∑

edge uv∈S

1

l(uv)
(δu − φuvδv)(δu − φuvδv)∗,

and where the leverage score of e ∈ E is

l(e) = [B(∆ + qIn)−1B∗]ee.
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Sampling edges with a loop-erased random walk
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Connection-aware transition matrix and CyclePopping
Let x and y be neighboring nodes. Define

Πxy =
1

deg(x)
· exp(− iϑ(xy)),

where deg(x) is ] of neighbors of x. Note Π = I− D−1∆.

Stricto sensu, Π is not a transition matrix.
I 1/ deg(x): transition probability from x to y
I ϑ(xy) is an angle used to define CyclePopping. Recall∏

xy∈c
exp(− iϑ(xy)) , exp(− i θ(c)).

Weak inconsistency: cos θ(c) ≥ 0 for all cycle c.
CyclePopping considers cos θ(c) as
the probability to pop (erase) c.
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CRSF sampling ∼ PCRSF (Kassel and Kenyon, 2017)
Extension of Wilson’s algorithm (1996)

CyclePopping

Fix an ordering of the nodes. Initialize S = ∅.
1. Start from the first node in the ordering and not in S.
2. Do a nearest-neighbor random walk until

I either the walk intersects S. Then, this branch is added to S.
I or the walk self-intersects, i.e., makes a cycle c.

Then, draw B ∼ Bern(1− cos θ(c)).
I If B = 0, the cycle c is popped (erased),

and the walk continues from the knot (go to step 2.).
I Else if B = 1, c is accepted,

and the lasso is added to S.

The sequence 1-2 is repeated until S covers the graph.
Finally, we forget edge orientations.
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MTSF Sampling ∼ PMTSF(S)
Similar algorithm for sampling MTSFs.

The only change is that the walker can, at node u,
I become a root with a probability q/(deg(u) + q),
I or do a step uniformly to a neighbor of u.
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CyclePopping
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CyclePopping

29 / 38



T : the number of steps to finish CyclePopping
Fanuel & Bardenet, arxiv 2404.14803

Law of T

Theorem
For a weakly inconsistent U(1)-connection graph, we have

E[T ] = Tr
(
D∆−1

)
with ∆ the magnetic Laplacian and D the degree matrix.

Furthermore,

T
(law)
= n+

∑
[γ]∈X

|γ| with X ∼ Poisson(m,Loops),

where m([γ]) = 1
mult(γ)

∏
xy∈[γ]

1
deg(x)

∏
c∈cycles(γ) cos θ(c).
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To better understand CyclePopping

A based loop γ is an oriented walk γ = (x0, . . . , xk) in the graph
G, with xk = x0 for some integer k ≥ 2.

•x • •

• • •

• • •

Figure: Based loop γ based at x.
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Numerical simulations
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Condition number after preconditioning
Magnetic Laplacian case (q = 0)

I We draw random connection graphs.
I We compute cond(∆̃−1∆) where ∆̃ is obtained with several

methods.
Baselines
I i.i.d. leverage score sampling.
I uniform spanning tree sampling.

Edge weights
I sketched leverage scores with Johnson-Lindenstrauss lemma.
I uniform heuristics

l(e) = |S|/m.
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Simulation settings: random connection graphs

I Multiplicative Uniform Noise (MUN).
With probability p, and independently, there is an edge
e = uv for 1 ≤ u < v ≤ n with

ϑ(uv) = (hu − hv)(1 + ηεuv)/(π(n− 1))

where εuv ∼ U([0, 1]) are independent noise variables.
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Uniform noise (MUN)
n = 2000, p = 0.01, η = 10−3.

We display cond(∆̃−1∆).
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Random MUN connection on top of a real graph
n = 255, 265 nodes and m = 1, 941, 926 edges.

Figure: cond(∆̃−1∆) Stanford-MUN: η = 10−2.
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Research perspectives

I Go beyond the case of weakly inconsistent connection graphs
with CyclePopping.

I Fast numerical implementation of CyclePopping.
I Generalization to diagonally dominant Hermitian matrices.
I Approximate leverage scores.
I Use more general connection graphs (e.g. SO(3)).
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Thanks for your attention!

https://github.com/For-a-few-DPPs-more/
MagneticLaplacianSparsifier.jl

We acknowledge support from ERC grant BLACKJACK
(ERC-2019-STG-851866) and ANR AI chair BACCARAT

(ANR-20-CHIA-0002). PI: R. Bardenet.
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Importance sampling with capped cycle weights

Define the importance sampling distribution

pIS(C) ∝ q|ρ(C)|
∏

cycles η∈C
2
{

1 ∧
(
1− cos θ(η)

)}
,

and the corresponding importance weights

w(C) ∝
∏

cycles η∈C

{
1 ∨

(
1− cos θ(η)

)}
,

We define a sparsifier with importance weights:

∆̃
(IS)
t =

1∑t
s=1w(C′s)

t∑
`=1

w(C′`)∆̃(C′`), with C′`
i.i.d.∼ pIS for 1 ≤ ` ≤ t.
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Proposition
Let p ∈ (0, 1). Let C′1, C′2, . . . , be i.i.d. random MTSFs with the
capped distribution pIS, and consider the sequence of matrices

(∆̃
(IS)
t )t≥1.

Finally, let z > 0 be such that

Pr(‖u‖2 ≤ z) = p for u ∼ N (0, In2).

Then, as t→∞,

Pr
[
−z(∆ + qIn) � ∆̃

(IS)
t −∆ � z(∆ + qIn)

]
→ 1− p .

40 / 38



References

I A. Kassel and R. Kenyon, Random curves on surfaces
induced from the Laplacian determinant, Ann. Probab.
2017.

I A. Kassel, Learning about critical phenomena from scribbles
and sandpiles, ESAIM: Proc., 2015.

I R. Kenyon. Spanning Forests and the Vector Bundle
Laplacian. Ann. Probab., 2011.

I R. Kenyon. Determinantal Spanning Forests on Planar
Graphs. Ann. Probab., 2019.

I D. A. Spielman and N. Srivastava. Graph Sparsification by
Effective Resistances. SIAM Journal on Computing, 2011.

I R. Kyng and Z. Song. A Matrix Chernoff Bound for
Strongly Rayleigh Distributions and Spectral Sparsifiers
from a few Random Spanning Trees, FOCS, 2018.

41 / 38



References (continued)

I T. Kaufman, R. Kyng, and F. Solda. Scalar and Matrix
Chernoff Bounds from `∞-Independence, SODA, 2022.

I M. Cucuringu. Sync-Rank: Robust Ranking, Constrained
Ranking and Rank Aggregation via Eigenvector and SDP
Synchronization. IEEE Transactions on Network Science
and Engineering, 2016.

I A. Singer. Angular Synchronization by Eigenvectors and
Semidefinite Programming. Applied and Computational
Harmonic Analysis, 2011.

42 / 38


	Combinatorial Laplacian and sparsification
	Magnetic Laplacian and sparsification
	Sampling edges with a loop-erased random walk
	Numerical simulations

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.109: 
	0.108: 
	0.107: 
	0.106: 
	0.105: 
	0.104: 
	0.103: 
	0.102: 
	0.101: 
	0.100: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


