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The aim of my present research is to contribute to our
understanding how to unite General Relativity with Special

Relativity and Quantum Mechanics.

The correct answer will be revolutionary, and it will change our
views as rigorously as what the Higgs particle brought about in our

standard understanding of the subatomic particles.

However,

we should Introduce as little ‘New Physics’ as
possible!

string theory might reemerge anyway !
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In this talk, we ask:
Is there anything we can
learn about this question,
from studying

quantum black holes ?

How would

xx

. the young Einstein
have argued?

Shouldn’t we simply use old
physics under new circumstances?

Also when black holes
are involved?
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Our one and only assumption will be that the equations for black
hole dynamics will in no way differ fundamentally from the
equations for particles, molecules, rocks, planets, stars, etc.

Therefore,

scattering will be described by unitary scattering matrices,
The rules of General Relativity are exactly valid,

there should be locality , and invariance under CPT (!)

To recover conservation of information (which is crucial), all we
need to do is

rephrase the boundary conditions at the black hole horizon.
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Black holes contain a region of space-time where particles boosted
to infinite Lorentz contraction meet. How can all this be squared
with standard physics ?

Keep in mind when

reformulating Quantum Gravity such
that it allows application in black holes,

neither String Theory nor AdS/CFT are fool-proof !
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Schwarzschild Metric in spacetime

Karl Schwarzschild

(r , t, θ, ϕ):

ds2 =

1

1− 2GM
r

dr2 −
(
1− 2GM

r

)
dt2 + r2dΩ2 ;

Ω ≡ (θ, ϕ) ,

dΩ ≡ (dθ, sin θ dϕ) .
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Indeed this solution is time reversal (CPT) invariant!
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In perturbative QFT, interaction between particles
always vanish at lowest order. So those you can’t
use those to retrieve the information of the
in-particles by inspecting the out-particles !

But gravitational interactions are non-perturbative.
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The Black Hole Information problem: How can matter coming in
(green arrow) affect matter coming out (red arrow)?
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Kruskal-Szekeres (or ‘tortoise’) coordinates x , y , are defined by

x y =
( r

2GM
− 1
)
er/2GM ;

y/x = et/2GM .

ds2 =
32(GM)3

r
e−r/2GM dx dy + r2dΩ2 .

−∞ < x , y <∞.

x = tan(u−) , y = tan u+ .

− 1
2
π < u± < 1

2
π

At r → 2GM, we have

x = 0 : future event horizon,
y = 0 : past event horizon.
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For every point (r , t, θ, ϕ), there are two points in these new
coordinates: with every (x , y , θ, ϕ) there is also (−x ,−y , θ, ϕ).
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(x , y): x = tan u−, y = tan u+.
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The most important gravitational interaction is now
the Shapiro effect.
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δp
−

in

δu
−

out

δp
+

out

δu
+

in

The positions u of the out going particles will be associated to the
momenta p of the in going particles, and vice versa .
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annihilate a
visible particle!
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in the phantom universe !
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At first sight, the Shapiro shift generates a non-locality of the
kind we don’t want !

Instead of a non-locality, this is a simple manifestation of
curvature. This keeps the e.o.m. local.

What we must do is allow space-time to be cut apart at the
horizon, and glue things together with a shift.

This recovers continuity of the motion of particles.
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The Shapiro effect.

δu−out ≈ δp−in .Partial waves:
δu−`m ≈ δp

−
`m .

This gives algebra:

[u+, u−] = iλ ,

λ ≡ 8πG
`2+`+1

.

u
−

p
−

δu
−

1
2

space-time
flat

space-time
flat

We expand everything in spherical harmonics Y`,m.

Therefore, u− is the Fourier transform of u+. In only one
dimension.

This is how quantum mechanics comes in!
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Stephen Hawking derived the creation and
annihilation operators for particles that
emerge, as seen by a distant observer, in
terms of the operators employed by a local
observer.

However, he assumed that all particle
configurations in region II can be chosen
independently from region I .

This means that he assumed the hidden region II to be an entire, new
universe, but this would not agree with our assumption that a black hole
should behave like rocks or planets.

It should not interact directly with one other distant yet identical rock
or planet.

We’ll return to that!
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How to calculate this:

Consider quantised fields, Φ(~x , t) near the horizon. Since all points
in region I are space-like separated from all points in region II , we
can derive, from Φ, creation operators a† and annihilation
operators a in region I that commute with those of region II .

Write in locally flat apace-time, near the origin:
Φ = AMink(T ) + A†Mink(T ), where T is the local time parameter.

The relation between the time coordinate t and T is exponential:
et = f (T , ~X ).

We calculate the creation and annihilation operators aI (ω) , aII (ω)
and their Hermitean conjugates, in terms of AMink(ω) and its
hermitean conjugate;

here, ω is a variable conjugate to the energy parameter in
regions I and II .
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When we express AMink(k) and A†Mink(k) in terms of the
creation and annihilation operators seen by a distant observer, we
find them to be different, in terms of a Bogolyubov transformation
(transformation mixing aI ,II and a†I ,II ).
In short hand:


AMink(ω)

AMink(−ω)

A†Mink(ω)

A†Mink(−ω)

 = C(ω)


1 0 0 −e−πω

0 1 −e−πω 0

0 −e−πω 1 0

−e−πω 0 0 1




aI (ω)

aII (ω)

a†I (−ω)

a†II (−ω)



C−1(ω) =

√
1− e−2πω

Thus we have: AMink(ω) = C (ω)
(
aI (ω)− e−πωa†II (−ω)

)
, etc.

See arXiv:2410.16891
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If region I would be independent of region II , you would be
describing the universe surrounding a black hole as if it consists of
two universes. Consider the state |Ω〉 obeying A|Ω〉 = 0.
Solution:

in |Ω〉, n1 = n2 and

〈n1, n2|Ω〉 = C (n)δn1, nδn2, n ; C (n) =
e−πωn√

1− e−2πω
.

One may now calculate the probability of having n particles in
region I , assuming that that region represents our universe:

Pn =
∞∑

n2=0

|〈n|Ω〉|2 = C (n)2 =
e−2πωn

1− e−2πω
.
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Pn =
∞∑

n2=0

|〈n|Ω〉|2 = C (n)2 =
e−2πωn

1− e−2πω
.

Here, ω represents the energy of the particles that can be created
or annihilated. 2πω stands for the inverse temperature of the
particles just outside the black hole.

It is the value derived by Hawking: T = 1
8πM

But are we really dealing with a thermal state?
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〈n1, n2|Ω〉 = C (n)δn1, nδn2, n ; C (n) =
e−πωn√

1− e−2πω
.

We see that n1 = n2. For a thermal state this is somewhat odd.
What are those “negative energy particles” doing? The states with
n1 6= n2 disappear when nothing falls in.

The state we have when nothing falls in resembles a thermal

density matrix : |n〉 e−βn〈n|, it seems to indicate a probability
mapping without squaring :

Pn = 〈 |n〉 e−βn〈n| 〉 = C (n) = e−πωn.

Its inverse is also a temperature, but twice the temperature derived
by Hawking.

Now, it is T = 1
4πM .

To

be continued in discussion session.
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Region II is now redundant. It is fixed by what happens in region I .

Essential and, I claim, necessary departure from Hawking:

u+ and u− are not the ‘good’ coordinates, but r and t are. They
do not change as you go from (u+, u−) to (−u+, −u−).

Also, the Schwarzschild metric formed by collapse cannot generate
different coordinates for one space-time point.

We can use this only if: Region II is identical to region I .
Everything in these two regions matches exactly
(including the observers themselves !)

29 / 41
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The momenta of the in-particles control the positions of the
out-particles.

In the conventional situations, these positions and momenta should
live on the full lines, −∞ < x <∞ , −∞ < y <∞.

How is information from the in=particles recovered by the
out-particles?

The Shapiro effect makes in- and out-particles interact strongly.

The momenta p by which the in-particles enter the future horizon,
determines how far the coordinates u of the out-particles move, at
the past horizon:

δu out = λp in , λ = 8πG
`2+`+1

.
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Because region II = region I , the functions ψ(x) will be even
functions:

ψ(x) = ψ(−x) ; also ψ̂(p) = ψ̂(−p).

Therefore, we need to know only the functions for x > 0 and p > 0.

In our calculations, we may therefore limit ourselves to purely even
or purely odd functions !

We must simply ignore region II and the particles there, since they
are exact copies of region I .
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The Fourier transform is usually assumed to map functions on the
infinite real line onto functions on another infinite real line. So:

ψ(x) =
1√
2π

∫ ∞
−∞

eipx ψ̂(p) ;

inverse: ψ̂(p) =
1√
2π

∫ ∞
−∞

e−ipxψ(x)

But, all our observables are on the half-lines. This allows us to use
“cosine Fourier transformations” on our half-lines:
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ψ(x) =

√
2

π

∫ ∞
0

cos(px) ψ̂(p) ;

inverse: ψ̂(p) =

√
2

π

∫ ∞
0

cos(px)ψ(p)

This solves two problems in one blow!
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First, half-space Fourier transformations from future to past
horizon keep the particles on the same half-line. Now the
transformation is unitary on the half-line. No information is lost !

We found the transformation that does that !

If applied to region II , we see that wave functions are indeed sent
backwards in time ...

(merely because we replaced space-time curvature effects by
pseudo-non-local field transformations)
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In the formalism just developed,

note: the in- and out-going particles are not second-quantised in
the r , t direction; there is always exactly one particle on every
`, m point in angular momentum space!

That particle can either be regarded as in-going or as out-going,
we cannot have both an in- and an out-particle on one given `, m
point !

This makes the math very easy! This is the second problem solved!

(But the overall picture can be much improved! - see first attempts on
last slide.)
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Consequently, the computation of the transmission effect from
future to past horizon only works if we have single, scalar particles
of only one kind whose momenta and positions are handled.

And, since gravity does not discriminate between fields of different
colors, the information regarding colors’ of fields, cannot be
transferred this way.

Suggestion: perhaps this can be used to prove that no two
observable particles in the SM can be entirely identical.
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Time to discuss the following?

The coordinate substitution x , y → r , t returns to us the single
universe, but at the cost of a singularity at (x , y)→ (0, 0), now
seen to be a conical singularity (angle = 180◦). But this is a mild
singularity. We could remove it by smearing the metric a bit, at
(x , y)→ (0, 0), accidentally revealing a dense blob of matter there?

The singularity is locally observable, and it resembles a Euclidean
string world sheet. What is its dynamics?

And to discuss:
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Since now all information needed to describe the black hole is in
region I , and it stays there; we suspect it to be conserved.
This implies we must be able now to use an action principle with a
boundary Lagrangian added, to map future on past horizon and

back. We can project the entire Standard Model in region I . Thus,
black holes may get completely integrated in the Standard Model,
simply by a more careful analysis of the boundary conditions
connecting past to future horizon.

However, the computation of the information-transmission effect
from future to past horizon seems to work only if we have
single, scalar particles of only one kind whose momenta and
positions are handled.

(First quantisation)
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On the boundary conditions at future and past horizons

For 1st quantised scalar particles, this is straightforward (we omit
the ` dependence): Just use the ‘half-line Fourier transformation’:

ψ(x) =

√
2

π

∫ ∞
0

dy cos(xy)ψ̂(y) ; (1)

ψ̂(y) =

√
2

π

∫ ∞
0

dx cos(xy)ψ(x) .

But what to do if we have several species of scalar particles?

How should we handle particles with spin (12 or 1, like in the SM)?

Or, how should we replace the single particle states by
2nd -quantised SM-particles?

–∞–
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