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OUTLINE:

Introduction to Circuit QED

• What is Cavity QED?

• Quantum LC Oscillators

• Josephson Junctions & Transmon Qubits

• Qubits coupled to microwave cavities
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QED: Atoms Coupled to Photons

Zero-Point Fluctuations of the Vacuum Affect Atomic Spectra

1s

2p2s
Irreversible spontaneous decay into the photon continuum: 

12 1          1 nsp s T→ + :

Vacuum Fluctuations: electron mass renormalization;

Virtual photon emission and reabsorption, 

Lamb shift lifts 2s-2p degeneracy

Cavity QED:  What happens if we trap the photons

in engineered discrete modes inside a cavity?

3

11 10cQEDT T→
Optical cQED µwave cQED

If cavity has no mode 

at atom’s frequency.
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wave cQED with Rydberg Atoms

Review: S. Haroche Nobel Lecture, Rev. Mod. Phys. 85, 1083 (2013)

 

beam of atoms

3-d superconducting cavity 

(50 GHz)

observe dependence of atom final

state on time spent in cavity

vacuum Rabi oscillations

measure atomic state, or …
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cQED at optical frequencies

(H. J. Kimble, H. Mabuchi)

state of photons is detected, 

not atoms.

… measure changes in transmission of optical cavity
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OUTLINE:

Introduction to Circuit QED

• What is Cavity QED?

• Quantum LC Oscillators

• Josephson Junctions & Transmon Qubits

• Qubits coupled to microwave cavities
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How to be a quantum electrical engineer: Quantization of the LC Oscillator
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How to be a quantum electrical engineer: Quantization of the LC Oscillator
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How to be a quantum electrical engineer: Quantization of the LC Oscillator

Lumped element LC
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Quantizing the electromagnetic oscillator
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Quantum Harmonic Oscillators have many important uses but:

Their level spacing is uniform making them impossible to achieve full 

quantum control with classical signals.

h
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and auxiliary controllers for oscillators:
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Co-Design Center for Quantum Advantage  
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Quantum.Ya

le.edu
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Quantum control paradox:

Microwave resonators 
• can have very long lifetimes (1ms – 1 s) compared to qubits
• contain a large Hilbert space in a simple empty box
• can replace multiple qubits

But:
• require ancilla non-linear element (e.g. a qubit) to provide universal control

Recent theory papers:

‘Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures, Abstract 
Machine Models, and Applications,’ Y. Liu et al., arXiv:2407.10381 

‘Quantum control of bosonic modes with superconducting circuits,’ 
Wen-Long Ma et al., Science Bulletin 66, 1789 (2021)

‘Photon-Number-Dependent Hamiltonian Engineering for Cavities,’ 
Chiao-Hsuan Wang et al. Phys. Rev. Applied 15, 044026 (2021) 

‘Constructing Qudits from Infinite Dimensional Oscillators by Coupling to Qubits,’ Yuan Liu 
et al., Phys. Rev. A 104, 032605 (2021)

X
ancilla

https://arxiv.org/abs/2407.10381
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OUTLINE:

Introduction to Circuit QED

• What is Cavity QED?

• Quantum LC Oscillators

• Josephson Junctions & Transmon 

Qubits

• Qubits coupled to microwave cavities
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Joseph tunnel junctions act as non-linear inductors 

to produce anharmonic oscillators and qubits

~1 mm

Josephson

tunnel

junction

Antenna pads 

are capacitor 

plates

200 nm

AlOx tunnel 

barrier

‘transistor of 
quantum computing’

01 ~ 5 10GHz −

E
n
e

rg
y

0 g=

1 e=

01

12

01 12 

‘Transmon’ Qubit
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Ultra-strong photon-‘atom’ coupling:
 -non-linear quantum optics at the single photon level

‘Circuit QED:’
 -microwave photons inside superconducting circuits
 -artificial atoms (Josephson junction qubits)

Hydrogen atom Superconducting  

oscillator/qubit

C

(Not to scale!)
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Transmon qubit is a synthetic atom with ‘atomic number’  ~1013

But the spectrum is simple.  

Superconductivity gaps out single-particle excitations.

Coulomb interaction gaps out plasma waves in the antenna pads.

States in the low-energy Hilbert space are specified simply by the integer 

number n of Cooper pairs that have tunneled through the junction.

2ˆ ˆ( )Q ne= +

2ˆ ˆ( )Q ne= −
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Josephson Tunnel Junctions

Normal tunnel junction

Al Al

Al203-x

Superconducting tunnel junction

Total number of Cooper pairs that have tunneled 

uniquely determines the low-energy quantum state

of a pair of islands.

Unique ground 

state for N pairs

on an island



19

Transmon qubit is a synthetic atom with ‘atomic number’  ~1013

But the spectrum is simple.  

Superconductivity gaps out single-particle excitations.

Coulomb interaction gaps out plasma waves in the antenna pads.

States in the low-energy Hilbert space are specified simply by the integer 

number n of Cooper pairs that have tunneled through the junction.

2ˆ ˆ( )Q ne= +

2ˆ ˆ( )Q ne= −
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01

01
0

drive 01

Classical control tones at  can rotate

the qubit between 0  and 1  without

exciting the higher lying levels:
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Anharmonic transmon as a two-level qubit
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OUTLINE:

Introduction to Circuit QED

• What is Cavity QED?

• Quantum LC Oscillators

• Josephson Junctions & Transmon Qubits

• Qubits coupled to microwave resonators
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Strong Dispersive Hamiltonian

q† †

r damping
2

z zH a a a a H


  = + + +

resonator qubit dispersive

coupling

rcavity frequency z = +



eg

r −r +


‘strong-dispersive’ limit

32 ~ 2 10 

,  

[Cavity frequency can be used 

to readout state of qubit]



Using (not so) strong dispersive coupling to measure the state of the qubit
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The S matrix for reflection of microwaves from a resonator:
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Can read out qubit state by measuring cavity resonance frequency (which is shifted by the qubit)
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Readout fidelity
vacuum noise → shot noise

31

Quadrature amplitudes 

I,Q are canonically 

conjugate, leading to 

quantum vacuum noise

Measure Q to readout qubit state



Readout fidelity
vacuum noise → shot noise
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Quadrature amplitudes 

I,Q are canonically 

conjugate, leading to 

quantum vacuum noise

Measure Q to readout qubit state We need a readout drive with definite phase

so we can see the reflection phase shift.  But 

this means the incoming microwave pulse has

indefinite photon number:

Number - Phase Uncertainty Principle

1
N   =

0

0

2

0

2

1

2

For coherent states 

1

4

N

N N

N

 




   

 



=





Readout fidelity
vacuum noise → shot noise
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Quadrature amplitudes 

I,Q are canonically 

conjugate, leading to 

quantum vacuum noise

Measure Q to readout qubit state

( )

 

2 2
0

†0
0

2 2 2 2
00 0 0 0

0

0

2

2
c

2 2

2 os(2 ) 1 2 4[ 2 ]

i

Formal derviation (for small )

Coher

o

!

The two reflected waves become orthog nal

t

 

(and therefore i

ent s :

 t

ta

0

d

e

s

i

n
i

i e

n

i N

a

i
e

e e
e

e e n
n

e ee

N

e



 
 

     








 

− −

=

−− − −

=



= =

= =



2

0

1
nguishable) for .

4
N


?



Using (not so) strong dispersive coupling to measure the state of the qubit

34

Dispersive readout proposed in: Blais et al., Phys. Rev. A 69, 062320 (2004)
First experiment:  Wallraff et al., Nature 431, 162 (2004)
Quantum limited amplifiers developed…
First single-shot quantum jumps observed: R. Vijay et al., Phys. Rev. Lett. 106, 110502 (2011) 

Data from: M. Hatridge et al.,
 Science 339, 178 (2013)

Photon shot noise
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Using strong-dispersive coupling to measure the 

photon number distribution in a cavity

Strong Dispersive Hamiltonian

q† †

r damping
2

z zH a a a a H


  = + + +

resonator qubit dispersive

coupling

,  

Reinterpretation of same Hamiltonian:
Quantized Light Shift of Qubit Transition Frequency

† †

r q damping
2

1
2zH a a a a H    = + + + 

Spectrum of qubit 

depends on cavity 

photon number
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Using strong-dispersive coupling to measure the 

photon number distribution in a cavity

3D High Q

Storage 

Resonator

Transmon

qubit

1D Low Q 

readout 

resonator

readout line

Measure photon number in high Q storage cavity via

dispersive coupling to transmon.

Readout transmon state via dispersive coupling to low Q readout resonator.

transmon 

spectroscopy 

drive line

Qubit transition frequency depends on 

number of photons in the 

high-Q storage cavity
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- quantized light shift of qubit frequency

           (coherent microwave state)
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N.B. power broadened

100X
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0

Microwaves are particles!

3 124…



- quantized light shift of qubit frequency

           (coherent microwave state)
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N.B. power broadened

100X
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- quantized light shift of qubit frequency

           (coherent microwave state)

†

q 2

2

z
a a 


+

New low-noise way to do axion dark matter detection by QND photon counting

Zheng et al. arXiv:1607.02529    →     A. Chou: PRL 126, 141302 (2021)
39

0n =1n =2n =

http://arxiv.org/abs/1607.02529


Photon number parity

40
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Remarkably easy to measure using
our quantum engineering toolbox

and

Measurement is 99.8% QND
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- use quantized light shift of qubit frequency
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Measuring Photon Number Parity
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42Nature 511, 444 (2014) 400 consecutive parity measurements  (99.8% QND)   
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Summary of Lecture I:

Introduction to Circuit QED

• What is Cavity QED?

• Quantum LC Oscillators

• Josephson Junctions & Transmon Qubits

• Qubits coupled to microwave cavities

• Control and QND measurement of 

both qubit and cavity
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