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Why are we interested in Anyons? 

33 in ‘97

A. Kitaev



Classical Memory

1 bit         ⇒ 0  or 1 

N bit memory   ⇒ 2N    possible states

Example 5 bit state =  11010



Quantum Memory

1 qubit ⇒

N qubit memory   ⇒ 2N    dimensional Hilbert space

Example 2 qubit State



Errors

Error = Any process by which the state of your memory is

unintentionally changed.

01001 0100110



Error Correcting Code

One very important bit of information we want to protect

0

1
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Error Correcting Code

Code Space
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Error Correcting Code

Code Space

Example:

0 0 1 

NOT in code 

space.  ERROR!

Must Repair!

0 

One very important bit of information we want to protect



Can’t we do the same for qubits?

1) Quantum No Cloning Theorem!

2) Measuring Disturbs



Can’t we do the same for qubits?

Quantum No Cloning Theorem!

(Zurek et al, 1982)



Proof of No Cloning Theorem:

Suppose such a copying unitary exists.    

Apply unitary to two states |0> and |1>

But this is not a copy of the superposition which would be

QED

Now apply to a superposition                   and use linearity



Nonetheless Quantum Error 

Correction Exists!

Peter Shor:  

Quantum Factoring Algorithm 1994

Quantum Error Correction 1995

Toric Code:  Kitaev 1997



= spin ½

Hilbert Space Dim = 2#spins
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= spin down = |1〉

= spin up = |0〉

Some Operators = Vertex operator

= +1 if an even # of down spins

=  -1 if an odd # of down spins+1

-1
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Some Operators = Vertex operator

= Plaquette operator

= +1 if an even # of down spins

=  -1 if an odd # of down spins

= spin down = |1〉

= spin up = |0〉
= flip spins around a plaquette

Caution: Some 

refs exchange 

σx and σz



Some Operators = Vertex operator
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Some Operators = Vertex operator

= Plaquette operator

= +1 if an even # of down spins

=  -1 if an odd # of down spins

Commuting

= flip spins around a plaquette

# of spins

= # of vertices + # of plaquettes

Is this a complete set?

BUT: Not V’s and P’s 

not all independent!

Fixing P’s and V’s leaves 2 

degrees of freedom unspecified

σz cancels here

σx cancels here



A Code = Vertex operator

= Plaquette operator

= +1 if an even # of down spins

=  -1 if an odd # of down spins

= flip spins around a plaquette

Rule 1) Specify all  Vα=1

(code space)
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A Code

Rule 1) Specify all  Vα=1

Loops only

Rule 2) Specify all  Pβ=1

Equal superposition of flipped plaquettes

States satisfying rules

(i.e., with correct value of stabilizers)

Sum is over all loop configs
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(code space)
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A Code

Rule 1) Specify all  Vα=1

Loops only

Rule 2) Specify all  Pβ=1

Equal superposition of flipped plaquettes

Expect 2 “logical” qubits remain

Fixing P’s and V’s leaves 2 

degrees of freedom unspecified

Sum of all loop configs with 

even parity around both handles

No, Flipping does not change the parity of loops around handle

Does flipping obtain all allowed loop configs?

(code space)



A Code

Sum of all loop configs with 

even parity around both handles

+ + +…

+ + +…

Highly protected code space! 



Handle of torus is essential

What about g-handle torus? (“genus” = g)  

g=2 g=3



How many wavefunctions for toric code on 

g-handle torus?  (g=genus)

Any graph spanning the surface: spins on edges

Euler characteristic:

χ=2 – 2g = #vertices - #edges + #faces

2g = # edges – (#vertices-1) - (#faces -1)

degrees

of freedom
# independent 

vertex operators

# independent 

plaquette operators

22g wavefunctions



Consider such a system in code space

(Here I do not draw spin up and spin down!)

Creating an “error”

apply σx “error” 

to this bond

anticommutes

with neighboring 

vertex operators

creates two 

vertex “defects”

Vα = -1 instead of +1

(loop endpoints)

To restore to code space bring defects back together to re-annihilate

Closed blue loop = = +1 in code space



Another Way to Think About Errors

Start with reference state (all up)

Sum is over all configs

that can be obtained by 

flipping plaquettes



Another Way to Think About Errors

Start with reference state (all up)

apply σx “error” 

to these bond

Sum is over all configs

that can be obtained by 

flipping plaquettes

actual “string”

position is 

uncertain



Creating an “error”

Blue loop around handle = = flips code sector! 

apply σx “error” 

to this bond

How well is the code space protected? 



Creating an “error”

apply  σz “error” 

to this bond

anticommutes

with neighboring 

plaquette operators

creates two 

plaquette “defects”

Pα = -1 instead of +1

+

What about σz errors? 

Error Correction



Creating an “error”

What about σz errors? 

Error Correction

Closed dual loop = = +1 in code space



Creating an “error”

Plaquette Defects Around a Handle

dual loop 

around       = 

handle

measures parity of spins 

= cutting dual loop (differs in 

different sectors).



All error correctable (as long as demon isn’t too fast)

Considered σx

Considered σz

σy = i σz σx

Any operation on one bit  is a combination of these 



Braiding Defects?

time

vertex

defect
plaquette

defect

World lines

in 2+1 D



Braiding Defects

apply  σz to 

make / move

plaquette

defects

Dark blue loop = = -1    due to enclosed

defect



Braiding Defects?

time

vertex

defect
plaquette

defect

=   -1



OK, but why should we care?

Quantum codes based on the Toric code

are about the most robust and practical codes known!

But what does this have to do with: 

Particles / Condensed Matter / Anyons:



= Vertex operator

= Plaquette operator

= +1 if an even # of up spins

=  -1 if an odd # of up spins

= flip spins around a plaquette

Rule 1) Specify all  Vα=1

Rule 2) Specify all  Pβ=1

Let there be a Hamiltonian

Ground state manifold 

is code space…

(Error space is excitations)

Multiple ground states on torus

that cannot be changed or 

distinguished by a local

operations 

“Topological Order”  (Wen)



Quantum Error Correcting Code

Topological Ordered Matter

Ground States = Code Space



Working Definition of Topological Order

1. Ground state degeneracy on a torus

2. Matrix element between ground states: 

This always implies exotic braiding statistics for particles 

+ small



Braiding Defects?

time

vertex

defect
plaquette

defect

=   -1   (!!!)



= Vertex operator

= Plaquette operator

= +1 if an even # of up spins

=  -1 if an odd # of up spins

= flip spins around a plaquette

Rule 1) Specify all  Vα=1

Rule 2) Specify all  Pβ=1

Let there be a Hamiltonian

Ground state manifold 

is code space…

(Error space is excitations)

Multiple ground states on torus

that cannot be changed or 

distinguished by a local

operations 

“Topological Order”  (Wen)

Pretty strange looking Hamiltonian !

But this exactly solvable H tells us about 

an entire phase of matter



Topological Robustness

What if we perturb the Hamiltonian a bit?   Does anything change? 

example

Ground state wavefunction:

Each term is smaller by (λ/Gap)

Matrix proportional to unity up to order (λ/Gap)Length of torus

Ground state degeneracy is topologically robust!

(For large system it fails only when there is a phase transition)

diagonalize



More interesting models like the toric code

(each exactly solvable case describes a phase of matter)



Z3 toric code:  Use qutrits not qubits

Vertex Rule: Arrows add to zero mod 3

(addition is modulo 3 i.e., group Z3) 



Z3 toric code:  Use qutrits not qubits

Plaquette Operator: Increment clockwise, 

decrement counterclockwise

Conserves “flux” mod 3. 



Z3 toric code:  Use qutrits not qubits

Spectrum:    

Z3 “charges”  (plaquette defects) 

Z3 “fluxes”  (vertex defects)

Braiding charge around flux gives phase

“Dyon”  (combination of flux and charge) is an anyon!



Kitaev (‘97) Quantum Double Model for Group G

Edges labeled with elements of discrete group G

Choose any lattice (even irregular) with arrows

Reversing arrow inverts label

Vertex operator

enforce group multiplication 

Plaquette operator

enforce group multiplication 

Nonabelian group gives nonabelian Anyons!
--- mostly equivalent to discrete lattice gauge theory!

Advert: Upcoming work with Jean-Noel Fuchs, Julien Vidal, Anna Ritz Zwilling, Benoit Doucot



Kitaev (‘97) Quantum Double Model for Group G

Plaquette operator

enforce group multiplication 

Nonabelian group gives nonabelian Anyons!
--- mostly equivalent to discrete lattice gauge theory!

Advert: Upcoming work with Jean-Noel Fuchs, Julien Vidal, Anna Ritz Zwilling, Benoit Doucot

Projector to excited plaquette
Character of Rep R

Degenerate Hilbert space from Fusion of Reps:
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Abstracting the Toric Code

Sum is over all loop configs

that can be obtained by 

flipping plaquettes

2. Loop Removal

= 

1. Isotopy

= 

3. Surgery

= 

Continuum Loop Gas

rules 1-3



Modifying the game:

2. Loop Removal

= 

1. Isotopy

= 

3. Surgery

= 

Continuum Loop Gas

By adding phases to 

plaquette operator (messy)

-1

-1

Doubled Semion Model
Levin and Wen, Phys. Rev. B71, 045110 (2005)

Freedman et al, Annals of Physics 310 428 (2004)

Same ground state degeneracy

Defects get different braiding phases

= π/2θ
mid way between

bose and fermi



How much can we generalize? Levin and Wen, Phys. Rev. B71, 045110 (2005)
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How much can we generalize? Levin and Wen, Phys. Rev. B71, 045110 (2005)

1. Allow branching loops (endpoints are defects)

2. Allow multiple “color” edges (color branching rules)

3.

= 

Isotopy

Loop Removal

= ∆

= A   +  B + C

Surgery

Generate all Drinfeld Center TQFTs

Consistent diagram rules 

= Fusion Category



Back to the Toric Code

Anyon permuting symmetry

(V and P look similar) 

Rotate spins (X to Z,   Z to –X) on east and west corners of green

Wen 2003

Every plaquette looks the same



Symmetry Defect (Bombin 2010):

Vertex defect comes back 

as a plaquette defect!

Dislocations

Adding pair of dislocations removes M plaquettes and M -1 spins. 

Removes one constraint – introduces one logical qubit

split between two dislocations 

Roushan Lecture!



THE END

Steven H. Simon

hysics
xfordφ


