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Organizing Principles for Understanding Matter

Symmetry

Topology

• What operations leave a system
      invariant?

• Distinguish phases of matter
      by symmetries

• What stays the same when a 
      system is deformed?

• Distinguish topological phases 
      of matter
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Topology and Quantum Phases

Topological Equivalence :    Principle of Adiabatic Continuity

Quantum phases with an energy gap are 
topologically equivalent if they can be smoothly 
deformed into one another without closing the 
gap.

Topologically distinct phases are separated by 
quantum phase transition.

E

adiabatic deformation

excited states

topological quantum
critical point

Gap
EG

Ground state E0

Many body energy spectrum



Topological Electronic Phases
Free fermion topological phases :   ‘topological band theory’

States adiabatically connected to independent electrons:

  - Quantum Hall (Chern) insulators
  - Topological insulators
  - Weak topological insulators
  - Topological crystalline insulators
  - Topological (Fermi, Weyl and Dirac) semimetals …..

Many real materials
and experiments

Beyond Band Theory:  Strongly correlated topological phases
State with intrinsic topological order

   -  fractional quantized Hall effect
   -  fractional quantum numbers, anyons
   -  topological  ground state degeneracy 

    - Symmetry protected topological states 
    - Surface topological order ……

Much conceptual progress, 
but theory is still far 

from the real electrons

Topological Superconductivity
Proximity induced topological superconductivity

Majorana bound states, quantum information

Tantalizing
experimental progress



Cartoon Example

Polyacetylene:  A 1-dimensional polymer  (CH)n

Carbon (C)

Hydrogen (H) 

An Insulator with two ‘topologically distinct’ phases

A phase B phase



Magic Trick

Extra electron:
charge - e



Magic Trick



Magic Trick



Magic Trick

Charge – e/2Charge – e/2

The added electron has split in half!



The “impossible” occurs at the boundary 
between different topological phases

A Phase B Phase

There are many more examples of this phenomenon

charge e/2



Lecture I:   Topological phases of non-interacting fermions    

                  Topological Band Theory

                  1.  Topology in D = 1
                  2.  Topology in D = 2
                  3.  Z2 topological insulator
                  4.  Topological superconductivity

Lecture II:   Topological phases with strong correlation

                 Coupled wire construction

                 1.   Bosonization, and Luttinger liquid
                 2.   Wire construction for Laughlin state
                 3.   Generalizations

Variations on a theme of ‘splitting the indivisible’



Band Theory

Bloch Theorem :   

! " ! " ! " ! "! ! !" # $ #=! ! ! !

!
! !"

∈

=

! !"#$$B&#'()B'*((
((( +B"&,-(

! " ! "! !" #! !!"#$%&'()*+%,-+.$-"$$ $*,/$ $0

Band Structure :   

! "!! !!

E

kx p/a-p/a

Egap

=kx

ky

p/a

p/a

-p/a

-p/a

BZ

! " !" #ψ ψ⋅= ! ""Lattice translation symmetry ! "!" #ψ ⋅= ! " !

Bloch Hamiltonian ! " !! !" # #− ⋅ ⋅= ! " ! "!

A mapping

Many particle ground state : Slater determinant of occupied single particle energy eigenstates

Theory of electronic structure based on independent electron approximation



Berry Phase
Phase ambiguity of quantum mechanical wave function
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Topology in one dimension : Berry phase and electric polarization

Classical electric polarization : +Qend-Qend

1D insulator

Quantum polarization : a Berry phase
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BZ = 1D Brillouin Zone = S1

Bloch states                          are defined for periodic boundary conditions

Define localized Wannier States :
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Gauge invariance and intrinsic ambiguity of P

•  The end charge is not completely determined by the bulk 
    polarization P because integer charges can be added or 
     removed from the ends  : 

•  The Berry phase is gauge invariant under continuous gauge transformations, 
    but is not gauge invariant under “large” gauge transformations. 
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Changes in P, due to adiabatic variation are well defined and gauge invariant
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Su Schrieffer Heeger Model model for polyacetylene
simplest “two band” model
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Provided symmetry requires dz(k)=0, the states with dt>0 and dt<0 are distinguished by
an integer winding number.   Without extra symmetry, all 1D band structures are 
topologically equivalent.

A,i

B,i

dt>0 :  Berry phase 0
P = 0

dt<0 :  Berry phase p
P = e/2

Gap 4|dt|

Peierls’ instability → dt

A,i+1



“Chiral” Symmetry :

Reflection Symmetry :

Symmetries of the SSH model

•  Artificial symmetry of polyacetylene.  Consequence 
        of bipartite lattice with only A-B hopping:

•  Requires dz(k)=0 :   integer winding number

•  Leads to particle-hole symmetric spectrum:
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•  Real symmetry of polyacetylene.  

•  Allows dz(k)≠0, but constrains dx(-k)= dx(k), dy,z(-k)= -dy,z(k)

•  No p-h symmetry, but polarization is quantized:   Z2 invariant 

P = 0 or e/2   mod e



Domain Wall States
An interface between different topological states has topologically protected midgap states

Low energy continuum theory :
For small dt focus on low energy states with k~p/a !" # # $

%
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Massive 1+1 D Dirac Hamiltonian

“Chiral” Symmetry :
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Egap=2|m|Domain wall
bound state y0

m>0

m<0

! !" # " #!!" # # $= ± +

Zero mode :   topologically protected eigenstate at E=0
                       (Jackiw and Rebbi 76, Su Schrieffer, Heeger 79)

Any eigenstate at +E 
has a partner at -E



Many body ground state:     Charge fractionalization

Splitting the indivisible A ABe/2 e/2

0

E

0

E

Real polyacetylene has spin :    spin – charge separation

0

E

charge + e/2 charge - e/2

spinon :

charge 0
spin  1/2

0

E holon :

charge e
spin  0



1D electrical conductor

Low energy excitations: 
 
•   Right/Left moving “chiral fermions”

•   Localized by commensurate periodic
       potential or disorder. R

L
Split the 1D chiral modes in a 2D insulator:

Trivial Insulator

Trivial Insulator

Topological “Chern” insulator
aka quantum Hall state

separated
chiral
boundary 
modes

From 1 Dimension to 2 Dimensions



Chiral Edge States
Single-particle edge spectrum :

Many-body edge spectrum :        “chiral Fermi liquid”

•  Free Dirac fermion conformal field theory

•  Quantized electrical conductance 
                
•  Quantized thermal conductance:   

Chiral Anomaly :   In presence of electric field the edge charge density not conserved          

E

kx0

conduction band

valence band

p/a-p/a

EF

!!"
#

ν=

! !

"
!"# $
B

πκ = chiral central
charge

!" !" # ψ ψ= − ∂

!ν =

!! =

Insulator

Quantum Hall
State

one-way propagating single particle states

! ! !"
# $ #% $ $& &
#' #'
ρ σ

π π
+ = = =

!



Quantized Hall Effect
2D electrons in magnetic field

! "!" # $ %σ = !

n = Integer to 10-9

rxy  = 1/sxy 

rxx

Quantized Hall
conductance 
von Klitzing et al. ‘1980

!

!
"

Quantized thermal 
Hall conductance
Banerjee, Heiblum, et al. 2017

! !" # $%" # %!" #$ B &'κ π= !

!"#$ "!% &! = ± !! ! ! ! ! !

Stormer, Tsui, Gossard 1981

E



Topology in 2 Dimensions: Chern number (aka TKNN Invariant)
Thouless, Kohmoto, 
Nightingale and den Nijs  82

Physical meaning:  Quantized Hall conductivity
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For 2D band structure, define

!!" !"# $%& ' (σ σ∆ = = ∆Φ =∫

Laughlin argument:    Thread flux DF = h/e

! " !!" # $ %π∆Φ = ⇒ ∆ =!! !!

Alternative calculation:  compute sxy via Kubo formula

E I
ne-ne

DF

=

BZ

!!" !"# $% & &'σ σ= = Φ

!!" # #$= Φ

! "#∆ =

Thouless pump:    Cylinder with circumference 1 lattice constant (a)

(Faraday’s law)

F plays  role of ky



Realizing a Chern Insulator

Haldane model

Band Inversion Paradigm

Eg

k

Chern Band
C=1

k

E

k

E

conduction
band

valence
band

Quantized Hall effect without Landau levels

trivial insulator
inverted

topological insulator



Lattice model for Chern insulator
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|DEsp| > 4t :  Uninverted
                    Trivial Insulator

d(k)
dz
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dy

d(k)

Chern number 0

Chern number 1

Square lattice model with inversion of bands with s and px+ipy symmetry near G

|DEsp| < 4t :  Inverted
                    Chern Insulator

Regularized continuum model for Chern insulator

( ) ( )!" # " #! " " # #$ % &' ' ' 'τ τ τ τ= + + + = ⋅! " !!

Inverted near k=0 for m<0.    Uninverted for 𝑘 → ∞

m = 4t0-DEsp
a = t0 a
v = 2tsp a

k

E
conduction
band tz = +1

valence
band tz = -1

𝜋
𝑎−

𝜋
𝑎

p+ip

s



Edge States
Gapless states at the interface between topologically distinct phases

IQHE state
n=1

Egap
Domain wall

bound state y0

!" # $ # $! ! " " #$ % & ' !σ σ σ= − ∂ + +

!
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# $% $& '

" # % (

!

"
# ! $!
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Vacuum
n=0

Edge states ~ skipping orbits
Lead to quantized transport

! "# $ %! !" # #=

Band inversion transition : Dirac Equation

ky
E0

x

y

Chiral Dirac Fermions

m<0

m>0

n=1
m = -m0

n=0
m = +m0



Generalizations

Higher Dimensions :  “Bott periodicity”   d → d+2

d=4 :  4 dimensional generalization of IQHE

! " ! "!" ! "# # $= ∇ ⋅!" ! ! !

!= + ∧! " " "

!"

# $ %
&

!"
!

"
π

= ∧ ∈∫ ! ! !

Boundary states :  3+1D Chiral Dirac fermions

Non-Abelian Berry connection 1-form

Non-Abelian Berry curvature 2-form

2nd Chern number  =  integral of 4-form over 4D BZ

no symmetry
chiral symmetry

Zhang, Hu ‘01



3D Quantum Hall Effect
z

More generally, the 3 independent Chern numbers (nx,ny,nz) define a 
reciprocal lattice vector G that characterizes a family of lattice planes.

kz

kx

ky

Chern number nz 
independent of kz

!

!!" !"# #
$ %
&

σ ε
π

=



Topological Defects
Consider insulating Bloch Hamiltonians that vary slowly in real space 

defect line

s
! " #! ! "= !

2nd Chern number :
! "#

" $ %
&

!"
! "

#
π ×

= ∧∫ ! !

Generalized bulk-boundary correspondence :
   n specifies the number of chiral Dirac fermion modes bound to defect line

1 parameter family of 3D Bloch Hamiltonians

Example : dislocation in 3D layered IQHE

Gc
!
" !"
π

= ⋅! "

Burgers’ vector

3D Chern number
(vector ┴ layers)

Are there other ways to engineer
1D chiral dirac fermions?

Teo, Kane ‘10



Weyl Semimetal
Gapless “Weyl points” in momentum space are topologically protected in 3D

A sphere in momentum space can have a Chern number:  

! " #! !
" # $= ∈∫ ! " !

S

nS=+1:   S must enclose a degenerate Weyl point:
              Magnetic monopole for Berry flux

!" # #!" ! ! " " # #$ % & & & &σ σ σ+ = + +
! " #!"#$"% ""&'()""*+( % ",!" ! " !"# >

k

E

kx,y,z

Total magnetic charge in Brillouin zone must be zero:   Weyl points
must come in +/- pairs.



Surface Fermi Arc

n1=n2=0

n0=1
k0

k1

k2
kz

kx

ky

E

ky

EF
kz=k1, k2

E

ky

EF

kz=k0

Surface BZ

kz

ky



Chiral Anomaly

In the presence of E and B, the charge at one (or the other) Weyl
point is not conserved:
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I. Anti Unitary Symmetries

•      Time Reversal Symmetry   

              Chern number n=0
              Z2 topological insulator in d=2,3

•       Particle-hole symmetry of single particle BdG Hamiltonian
 
               Z2 topological superconductor d=1
               Z topological superconductor d=2

II.  Topological Superconductivity
 
•       Majorana modes, Kitaev model

•       Quantum Information, Topological quantum computation

! " # $! Θ =

! " # $! Ξ =



2D Chern Insulator:1D
split

Are there time reversal invariant topological phases?

Kramers’ Theorem: for spin ½ all eigenstates are at least 2-fold degenerate

! "
!" #$ πψ ψΘ = !

! "Θ = − !

Anti Unitary time reversal operator :

Spin ½ :  !
!

ψ ψ
ψ ψ

↑ ↓

↓ ↑

   
Θ =   −   

Proof : for a non degenerate eigenstate  ! !" "

!

!

χ χ

χ χ

Θ =

Θ =
! !" " #!Θ = ≠ −

! " # $! Θ =

A Chern insulator is incompatible with time reversal symmetry.

Time Reversal Symmetry
chiral edge states
switch direction



Time Reversal Invariant Topological Insulator

EF

conduction band

valence band

0 p/a-p/a

E

Quantum spin Hall insulator : Split 1D conductor preserving T symmetry

• Crossing at k=0 is Kramers’ degeneracy:
protected by time reversal symmetry

• Requires spin – orbit interaction

• Simplest model:  two copies of Chern insulator

R ↑,↓
L ↑,↓

Helical Edge States :

2D QSHI

↑
↓

↑
↓

1D
split



Z2 Topological Insulator

There are two (and only two) classes of time reversal invariant insulators

Distinguished by Z2 topological invariant n = 0, 1

Two patterns of edge states:

n=0 : Conventional Insulator n=1 : Topological Insulator

Kramers degenerate at
time reversal 

invariant momenta 
k* = -k* + G

k*=0 k*=p/a k*=0 k*=p/a

Even number of bands cross Fermi energy Odd number of bands cross Fermi energy
“impossible” in 1D T-invariant system



1. Sz conserved : independent spin Chern integers :                      
                                                  (due to time reversal)  !! !↑ ↓= −

Determining the Z2 invariant

! "#$%"&!ν ↑ ↓=

2. Inversion (P) Symmetry : determined by Parity of occupied 
                                                2D Bloch states

Quantum spin Hall Effect :
J↑ J↓

E

!

"
#

$ #% $ %! "
" !

υ ξ
=

− = Λ∏∏! " ! " ! " ###
! " $
! " ! " ! "

! "

# ψ ξ ψ
ξ

Λ = Λ Λ

Λ = ±

Numerical methods have been developed to compute the 
Z2 invariant in systems without extra symmetry.

Simplest for systems with extra symmetry:



Quantum Spin Hall Effect in HgTe quantum wells
Theory: Bernevig, Hughes and Zhang, Science ‘06

HgTe

HgxCd1-xTe
HgxCd1-xTe

d

d < 6.3 nm : Normal band order d > 6.3 nm : Inverted band order

Conventional Insulator
Quantum spin Hall Insulator
with topological edge states

G6 ~ s
G8 ~ p

k

E

G6 ~ s
G8 ~ p k

E

Egap~10 meV

! " # $! "ξ Λ = +∏ ! " # $! "ξ Λ = −∏

Band inversion transition:
Switch parity at k=0

( ) ( )!" # ! " " " # " #$ % &' ' 'τ τ σ τ σ= + + +! !

BHZ Model :  4 band T-invariant band inversion model



3D Z2 Topological Insulator

Angle resolved photoemission
spectroscopy on Bi2Se3

( Xia, …, Hasan et al ‘09)

2D electrical
conductor

3D TI

“impossible” 2D T-invariant 
conductor on surface :

  
“single Dirac cone”

massless quasi-particles split

‘Helical metal’ :

• Half the degrees of freedom of ordinary 2DEG
 
• Berry’s phase p

• Quantized magnetoelectric effect
      - ‘q=p’
      - half quantized surface quantized
        Hall effect :

•  Impossible to localize
       - robust to disorder
       - similar to quantum Hall transition, but
          tuned by time reversal symmetry

kx

ky

! " !!" # $σ = ±



BCS Theory of Superconductivity

( )!
!

"
# !"#$ $ Ψ = Ψ Ψ  Ψ 
∑
!

Intrinsic anti-unitary particle – hole symmetry
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Bogoliubov de Gennes
Hamiltonian

mean field theory :  ! ! ! ! "!! !!Ψ ΨΨ Ψ ⇒ Ψ Ψ ΨΨ = ∆ ΨΨ

Bloch - BdG Hamiltonians satisfy
Topological classification problem similar to time reversal symmetry

!!ϕ τ ϕΞ =

Particle – hole redundancy

! "Ξ = +

! "
" !!τ
 

=  
 

=

E

k

E

k

!" # " #!"# !"#$ $−Ξ Ξ = − −! !

same state



Bulk-Boundary correspondence : Discrete end state spectrum

0

D

-D

E

E

-E
0

D

-D

E=0

n=0  “trivial” n=1   “topological”

!
" "! ! γ= =Γ = Γ ≡

Majorana fermion
bound state

1D  �2 Topological Superconductor : n = 0,1

END

!
! !−Γ = Γ

!Γ

(Kitaev, 2000)

Majorana Fermion operator: Particle = Antiparticle

𝛾 is the real part of 
a Dirac fermion :  

Zero mode

!
" " #

! !
# " #

$$$$$$$$$$%$$$$$
& '$$$$%$$$$

!
! !

γ γ γ

γ γ γ

=Ψ +Ψ Ψ = +

= − Ψ−Ψ Ψ = − { }! "! " !"γ γ δ=

! "!γ =

!γ γ=



Split the Qubit

Two state system defined 
fermion occupation of a 
single state :

0  = empty
1  = occupied

1 = Ψ!|0⟩
split

𝛾* 𝛾+
1D topological 
superconductor

Ψ! = 𝛾" + 𝑖𝛾#
Ψ!Ψ = 2𝑖𝛾"𝛾#

Two state system with 
fixed fermion parity

𝑆 =
ℏ
2	�⃗�

𝛾* 𝛾+

𝛾5 𝛾6

e.g. spin qubit
2 coupled 1D TSC

Fixed fermion parity :  −1 $ = 𝛾"𝛾#𝛾%𝛾&

𝑆' = 𝑖𝛾"𝛾# ,   𝑆( = 𝑖𝛾"𝛾%  ,    𝑆) = 𝑖𝛾#𝛾%

split



Kitaev Model for 1D p wave superconductor

! ! ! ! !
" " " "# $ # $! ! ! ! ! ! ! ! ! !
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∑

|µ|>2t  :  Strong pairing phase 
              trivial superconductor

d(k)

d(k)

dz

dx

dz

dx

|µ|<2t  :  Weak pairing phase  
              topological superconductor

Similar to SSH model, except different symmetry :  ! " " # ! " " #! " # ! " #$ $
% % % % % %

−
= − −

- +
t

D



Majorana Chain

! "! ! !" !γ γ→ +

( ) ( )
( ) ( )

!
" #

! !
" " " # " # " "

! !
" " " # " # " "

#

#

#

! ! ! !

! ! ! ! ! ! ! !

! ! ! ! ! ! ! !

" " !

# " " " " !#

" " " " !

µ µγ γ

γ γ γ γ

γ γ γ γ

+ + + +

+ + + +

→

+ → −

∆ + → ∆ +

!!!!!!!!!!!!!!!

!

! ! " " " ! !" ! ! ! !
!

" ! # #γ γ γ γ += +∑

! "#$$ "! ! !µ= =

t1>t2
trivial SC

t1<t2
topological SC

t1 t2g1i g2i

Unpaired Majorana Fermion at end

For D=t : nearest neighbor Majorana chain


