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The purpose of these notes

e To understand my lectures, you should be familiar with the concepts in these
notes, at least at some level. The contents are basics of mean-field BCS theory
of superconductivity, and the basics of quantum geometry. The latter will be
taught in many other lectures of the school, so you will probably learn them
during the school, if not already familiar with them.

e [ will go through this background information only very briefly in the begin-
ning of my lectures. Therefore, if you're not familiar with it, especially the
superconductivity part, and want to understand my lectures well, you may
study these notes on your own before the lectures.

The BCS theory of superconductivity

Literature for the BCS theory: A.L. Fetter and J.D. Walecka, Quantum theory of
many-particle systems, Dover, Chapters 36-37; P.G. De Gennes, Superconductivity
of metals and alloys, Westview Press, Chapters 4-5

1 Fermi sea and the possibility of condensation for
fermions

We will learn the basic description of superconductivity/superfluidity of Fermionic
interacting particles. Due to the Pauli exclusion principle, identical fermions occupy
the energy levels of the system until the Fermi level. We assume you know the
concepts of Fermi level p, Fermi energy Er, Fermi wave vector kr (Er and kp are
given by the non-interacting, T' = 0 case), and Fermi sphere. Note also the relation
between the density n = N/V and Fermi wave vector kr for spin 1/2 particles,
where NN is the number of particles and V is the volume:
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Fermi sea refers to the particles (for instance electrons) that are below the
Fermi level. The concept is used often when we wish to remind that the presense of
many other particles in different energy states affects the behaviour of what happens
to one particle, or to two particles in a scattering process. The existence of the Fermi
sea turned out to be essential in explaining the phenomenon of superconductivity,
as we will learn in this lecture.

Condensation is by definition a phenomenon where one single quantum state
(e.g. the ground state) becomes occupied by a macroscopic number of particles: it
cannot happen for noninteracting fermions due to the Pauli exclusion principle.

However, if there is a system with two different types of (non-identical, dis-
tinguishable) Fermions, they can via interactions form effective bosons which may



then form a Bose-Einstein condensate (BEC). This is essentially what happens, e.g.,
in superconductivity in metals and in superfluidity in ultracold Fermi gases.

In metals, the electrons have repulsive interactions due to the Coulomb force.
However, the electrons interact also with the lattice and this can cause effective at-
tractive interactions between the electrons. Or, spin fluctuations may cause effetive
interactions. Consequently, a spin up and a spin down electron can form a so-called
Cooper pair which is effectively a boson. Superconductivity is the condensation of
these Cooper pairs.

2 Cooper instability

L.N. Cooper presented the following calculation:

Consider

- the scattering of two particles

- which have an attractive interaction

- in the presence of a Fermi sea (restricting the possible momenta where the particles
can scatter).

Based on this, he showed that even for arbitrarily small interactions,
pairs (later named as Cooper pairs) will be formed in the system. This is referred
to as instability of the Fermi sea: pair formation happens for any non-zero,
attractive interaction. Thus it is enough to consider only two-particle scattering
(i.e. not many-body physics), added with the constraint of the Fermi sea (which is
a many-body effect), to predict that there will be pairing. It is interesting to note
that also here the simple existence of the Fermi sea and its ability to restrict the
phase space for scattering is crucial; remember above where the restriction of the
phase space for scattering was essential to the existence of well-defined (long-lived)
quasiparticles in the Fermi liquid.

Condensation and superfluidity are essentially many-body effects, and to pre-
dict and describe them one needs a many-body description. We will learn be-
low the BCS (Bardeen-Cooper-Schrieffer) mean-field description of superconduc-
tivity /superfluidity.

3 The BCS theory

Let us consider a system of two types of spin up and spin down electrons. The
Hamiltonian, using field operators, is
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We set here
fr = py, Mg =My (3.2)

Note that here the only degree of freedom, in addition to the spatial one, is the
spin. This could describe spin up and spin down fermions in a continuum system,



or in a lattice with only one (relevant) orbital and thus only one band. In the rest
of the lectures, however, we will introduce orbital degrees of freedom, because the
quantum geometric effects of superconductivity arise from them. However, in order
to learn the basics, we consider here this simplest possible case.

For pedagogical purposes, let us assume that the interaction is a contact inter-
action; even when interctions in real materials are more complicated, the description
using this simplification gives some valuable qualitative insight to superconductiv-

ity:
Vi (r,r’) = Voo (r —1'). (3.3)

The Hamiltonian becomes
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3.1 The mean-field approximation

It is usually extremely difficult or practically impossible to solve exactly a quantum
many-body system with a large number of particles. One of the most used approx-
imations to make the problems tractable is the mean-field approximation. This
means basically that we replace some of the operators in the Hamiltonian by their
mean values (which are just complex numbers, not operators), assuming that the
deviations from the mean values are small.

Let us consider the example of operators A and B and their product AB.
Let us write the operators A and B as their mean values and the deviation from
the mean value (no approximation made at this point, just rewriting), and then
calculate AB:

A= (A)+64 (3.5)
B=(B)+0B (3.6)

=~
AB = (A) (B) + (A) 6B + (B) 6A + 6 ASB. (3.7)

Assuming that the fluctuations around the mean values are small, one can neglect
the last term which is quadratic in the fluctuations, i.e.

0A6B ~ 0 (3.8)
Then insert 4 = A — (A), 6B = B — (B) in (3.7)

=

AB = (A) B+ (B) A — (A) (B). (3.9)



One can generalize this kind of consideration for products of more than two opera-
tors (Wick’s theorem).

Now we do the BCS mean-field approximation to the interaction term of the
Hamiltonian, leading to Hartree-fields and pairing-fields (Fock-fields are zero in the
BCS theory). Let us denote 9, (r) = 1),. Terms of the form () () are neglected here
(they are just numbers, not operators, and thus will cause only a constant shift in
the energy; note, however, that they can be important sometimes, for instance if
one is interested in the absolute energy of the state e.g. compared to some other
state).

Note that here we organize the operators in pairs and then take the expecta-
tion values, unlike in the example above where we had expectation values of single
operators A and B. This is done because in a Fermi system which is expected to
show pairing correlations, this is a good choice: expectation values of single fermion
operators are zero in this case. In general, when doing a mean-field approximation,
some pre-knowledge or an educated guess/argument about the relevant non-zero
expectation values and correlations are needed. When organizing the fermion op-
erators in pairs, one has to sometimes move them with respect to each other. This
may give minus signs due to the Fermi statistics, and one has to keep track on them.
To understand these things more deeply, you may search more information on the
topic " Wick’s theorem”.
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The Fock fields <¢lw¢> = <7/’I7/’T> = 0 here, so the corresponding terms in (3.10)

are zero.
Note that (p,94) # 0, c.tf. (a) # 0 for BEC.

The order parameter of the BCS theory turns out to be given by the pairing
fields in the following way:

A(r) = Vo (¢ (r) ¢y (r)). (3.11)

This quantity will also be the energy gap in the excitation spectrum of the BCS
theory, as we will see later. One can also assume that it does not depend on the
spatial coordinate, this is a good assumption for a homogeneous system within the
usual BCS theory:

Ar)=A=A" (3.12)
We also insert the Hartree fields within redefined chemical potentials. Denot-
ing (Vi) = no, we get

—udgpr + Vony bl = iy (3.13)

a=p—Vony. (3.14)



The Hamiltonian becomes now (terms of the form () () are neglected here)
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Now, let us expand the field operators using the annihilation operators for
momentum states

7i eikrc
e (r) = W; ko (3.16)

The Hamiltonian is then (it is a nice exercise to calculate this):

H = Z kaLTCkT + gkCLLCki + ACLTCik,L + Ac_lekT, (3.17)
k
where
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3.2 Diagonalizing the Hamiltonian: the Bogoliubov transformation

When describing a quantum system, the first thing to do is find the eigenvalues and
eigenfunctions of the Hamiltonian. Since we have done the mean-field approxima-
tion, the Hamiltonian has transformed into the above simple quadratic form which
in fact can be written in matrix form and diagonalized, leading to results that give a
lot of insight into the system. The Hamiltonian in the matrix form is (the coefficient
A is straightforward to calculate):

_ £ A Cxt
H_A+§k:(cj(T c_ki)(Ak _§k><ch¢>. (3.19)

The Hamiltonian is hermitian, so there exists a unitary transformation that diago-
nalizes it, i.e. we can write

H=A+Y (cj(T i ¢) vut (ik —Agk) vut ( ol ) (3.20)
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where we have defined
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is the diagonalized Hamiltonian, with the eigenvalues F,i. The minus sign in the
second eigenvalue is chosen for convenience. Writing

U= (“Tk ““‘) , (3.24)

Utk Uik

and multiplying both sides of Eq. (3.23) by U from the left leads to the eigenvalue

equations
& A Uok \ _ Uk _
(A _fk Vok - :l:Ea'k Vok ) 0= Tu \Im (325)

where the plus corresponds to ¢ = 1 and minus to ¢ = |. Solving these, one obtains

the eigenvalues
ETk :Ejrk = \/512(+A2, (3.26)

and the eigenvectors are given by

gkugk + AugkVok = Eakuiky (327)

—§kv(2,k + AugrVok = Egkvgk. (3.28)

Note that since &, and A are real, U is real as well. The unitarity UTU = I implies
u?rk + ’ugk = 1, from which we obtain

1

Uk = “Tk = Uik = 5 (1 + ﬁ) (329)
k
1 k

Vk = Utk = — Uk = 5 <1 — \/W) (330)

=

1 A

= 3.31
e = 3= (3.31)

The unitary transformation above is called the Bogoliubov transformation. It
defines the relations between the original annihilation operators and the operators
corresponding to the diagonalized Hamiltonian:

Ykt Ckt
U = ) 3.32
( 7T—k¢ ) < CT—k¢ ) (3.32)

(s cna)=(rls v )0t (3.33)

Thus
Ckt = UK VKt — Uk’YT_M (3.34)
cT—k¢ = VkVkt + ’Ulk’yT_kJ, (3.35)



and

Vit = UkCkt + Ukcik¢ (3.36)

Viu = VkCkt — uch_ki. (3.37)

The +’s are called quasiparticle annihilation (creation) operators. They fulfill the
same fermionic anticommutation relations than the original operators, thus they are
well-defined fermionic quasiparticles. A quasiparticle is, in general, an excitation of
an interacting system, characterized e.g. by its energy, effective mass, life time, etc.
Compare to the usual concept of a quasiparticle in a Fermi liquid:
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In the BCS theory, the quasiparticles are linear combinations of annihilation and
creation operators of opposite spins, so it is not easy to make an intuitive picture
about them. They are superpositions of a particle, and a hole of opposite spin and
momentum. In the Fermi liquid, the quasiparticles could be understood, roughly, as
the original particles ”dressed” by the presence of and interactions with the other
particles. Here the quasiparticles are somewhat different, they are superpositions of
particles and holes and thus describe the pairing correlations present in the BCS
state.

The nature of the quasiparticles is described in the below picture. In the BCS
state, one either has, with some probability, both k and —k states occupied, or
both empty. An excitation means that one of these states can be occupied while
the other one is empty. As the picture shows, there are two routes for forming such
an excitation: to destroy one particle, or to create another. The quasiparticle is a
superposition of these possibilities.
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At zero temperature, there are no quasiparticles in the BCS description. This
is easy to see: the Hamiltonian is diagonal when expressed with the quasiparti-
cle operators. This means that the quasiparticles are non-interacting (remember
that in the Fermi liquid theory, the residual interactions between the quasiparticles
were essential), and we can directly apply the statistical physics of non-interacting
fermionic particles. For instance, the occupation number of the quasiparticles is
simply given by the Fermi distribution:

1
(o) = == = F (B, T). p— (3.38)
err +1
Note also that
<711T'7k¢> = <71JLT71];¢> =0. (3.39)

The eigenvalues are always positive, thus in the limit 7' = 0 the occupation
numbers go to zero. Therefore, in the ground state there are no quasiparticles. By
giving energy to the system, one may create excitations, that is, quasiparticles.
Breaking a Cooper pair is equivalent to creating two quasiparticles. To create two
quasiparticles, the energy of 2FEy is needed:

By + B = \/512(+A2+\/£13+A2. (3.40)
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The minimum of & = ( — ﬂ) is zero, thus

[ETk + Eik] = 2A. (341)

min

This means that the order parameter defines the energy gap for creating ex-
citations. The existence of an energy gap is behind many important properties: one
cannot make single particle excitations to the system if one tries to give or take an
amount of energy that is less than the value of the energy gap. In other words, dissi-
pation is restricted. This is basically why supercurrents can flow without resistance.
However, to really prove the existence of supercurrents and superflows one has to
describe the dynamics of the system in a way that goes beyond this lecture. To de-
scribe collective modes of the superfluid, one has to introduce interactions between
the quasiparticles (this can be conveniently done, e.g. with the so-called generalized
random phase approximation (GRPA)), just like in the case of the Fermi liquid.
However, in case of the BCS theory, one can predict many important phenomena,



such as the existence of an energy gap, even without considering quasiparticle in-
teractions.

3.3 The gap equation

Now, let us see how does one actually calculate the value of the order parameter.
Using the Bogoliubov transformation, the order parameter becomes:

A — _% zk: (re_xy) = —% zk:ukvk (1 - <’71T(T’Yk’r> - <’Yf_k¢77k¢>) (3.42)

=

VR 2/ + A2
This is the so-called gap equation. Because we assumed a contact interaction,

this equation is actually divergent. This unphysical divergence can be avoided by
renormalization, for instance, by simply removing the diverging part

1=

(3.43)
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Vo T°B V zk: 2¢e’ (3-44)
where €, = %7 and the two-body T-matrix 725 = 4”%'52 describes the scattering

for two particles.
Usually the gap equation is written in the continuum

‘1/21(: — <217T)3/d3k (3.45)
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From this form, the order parameter A can be solved numerically, at a given temper-
ature T and for a given interaction strength and a chemical potential. If the order
parameter A has a finite value, one generally has a superconducting/superfluid
ground state (i.e. a condensate of Cooper pairs). If it is zero, the ground state is
simply a normal state. Thus one can obtain the critical temperature where the
condensation happens by setting A = 0 in the gap equation and then solving the
temperature T from the equation. This can be done analytically (with some ap-
proximations) and leads to

8EF _9 n
T, = 2F e S 4
kBWe exp< 2kp |as|> (3.47)

where v is Euler’s constant.



One can see from the above that the critical temperature cannot be developed
into a Taylor series with respect to the scattering length (interaction strength) ag.
This means that one cannot predict superconductivity from the ideal gas (ag = 0)
by perturbation theory!

3.4 The BCS wave function

Apart from the diagonalization by the Bogoliubov transformation, an alternative
route leading to the same end-results is a variational calculation where one
makes a parametrized guess (ansatz) for the ground state of the system, calculates
the expectation value of the Hamiltonian using the guess wave function, and then
minimizes this expectation value, leading to certain values for the parameters. If
the BCS ansatz gives a lower energy than the normal state wave function, then one
knows that the normal state is not the ground state.
The BCS ansatz (the BCS wavefunction) is of the following form:

BCs) =[] (uk + el ¢cjm) 0). (3.48)
k
One can then calculate

(BCS| H |BCS) (3.49)

and minimize it. The minimization gives values for the coefficients uy and vy, and
they are the same as found above by the Bogoliubov transformation.

The BCS wave function is quite intuitive. For the noninteracting case, it
becomes trivial: all the wvg’s are unity below the Fermi level and zero above it
(vk = 1 for |k| < |kpl|), and for ux vice versa (ux = 0 for |k| < |kpl|). The
momentum distributions show a sharp edge. A sharp feature at the edge tells about
the existence of a well-defined Fermi surface:

BCS) = [] clyichs 10} (3.50)
k<kp

v

[+ V)2 ;
N =(C Chy )=V (exercise)

When there are interactions and a finite order parameter A, for certain mo-
menta both the uy’s and wvy’s are nonzero. The momentum distributions become
smoothened and there is no more a well defined Fermi surface (sharp edge/drop in
the momentum distribution like for the normal state or the Fermi liquid).
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Aocu, v, — the particles around the Fermi level form Cooper pairs
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Basics of quantum geometry and topology

Literature: R. Resta, The insulating state of matter: a geometrical theory, The Euro-
pean Physical Journal B 79, 121 (2011); B.A. Bernevig and T.L. Hughes, Topological
Insulators and Topological Superconductors, Princeton University Press (2013).

A key question in quantum physics is how to classify, in a conceptually elegant
and efficient way, the various states of matter that have been observed in nature,
and which nowadays can be created by artificial quantum systems and simulators.
The band structure theory for electrons in solids has been quite powerful in this:
we know that electrons in periodic potentials (i.e., lattices, formed for example by
the crystal of nuclei) may have a band structure. If the Fermi level of the system is
within the band gap, we have an insulator. If the band-gap is small, the system is
semiconducting. If the Fermi level is in the conduction band, we have a metal. How-
ever, there are also concepts like the Mott insulator: there the insulating behaviour
is not explained by the simple band theory, but requires taking into account the
strong interactions (correlations) in the system. Another example of an insulator
not explained by band theory is the Anderson insulator, where disorder felt by the
electrons is the underlying cause of non-conductance of current. In recent years, the
concept of a topological insulator has become extremely important. There the insu-
lating behaviour results from quantum geometric and topological properties of the
system. An interesting feature of topological insulators is that, even when the bulk
material is insulating, there can be transport (current) on the surface of the mate-
rial. This current is robust against perturbations (such as scattering from a material
defect) due to the topological properties. In practice, for instance, backscattering
of electrons from a defect can be forbidden due to topological properties.

In recent times, it has become more and more clear that a key underlying
concept for classifying different states of matter are the localization properties of
wavefunctions that describe the system. The eigenfunctions of a periodic system
are the Bloch functions, parametrized by the lattice wavevector (also called crystal
quasimomentum) k which is a good quantum number in a perfectly periodic system:

Yr(r) = eik“"uk(r)7 (3.51)

where uk(r) is periodic with the lattice period. One can transform the Bloch func-
tions to define so-called Wannier functions

wi(r) = ﬁ S Ry (1), (3.52)

keBZ

where N is the number of lattice sites, the k summation is over the first Brillouin
zone (BZ), and R a vector of the Bravais lattice (that is, the position of one lattice
site; since in an infinite lattice they are all equal, it does not matter which one
we choose). The Wannier function characterizes how the particle (e.g., electron)
is spread around the position R (a useful discussion on Wannier functions can be
found for instance in Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)). Whether
the Wannier functions are delocalized, or localized over some finite range of lattice
sites, whether they overlap, etc. has turned out to be a crucial feature determining
the state of the system. It is easy to understand that totally localized and discon-
nected Wannier functions lead to an insulating state while completely delocalized
functions help carry current. Localized but overlapping functions are an interesting
intermediate case. The story of course becomes more complicated when the particles
interact with each other.

12



The properties of Wannier functions naturally depend on the Bloch function.
The key properties turn out to be those related to the quantum geometry and
topology of the system. The basic concepts of quantum geometry and topology, such
as Berry phase, Berry connection, Berry curvature, Chern number and quantum
metric have become important basic building blocks of modern quantum physics.

3.5 Geometry in quantum mechanics: phase and distance

Let us consider quantum states that are eigenstates of the Schrodinger equation
H(k)|¥ (k) = Ex|¥(k)). (3.53)

Here k is a parameter (real number); for instance in a lattice system it could be
the lattice wavevector, but the discussion here is completely general and it can
be something else. The set of wavevectors |¥(k)) that fulfil the equation (3.53)
form a sub-manifold of the Hilbert space. In the lattice case they would be the
Bloch functions of the different energy bands of the lattices. Interesting quantum
geometrical or topological effects usually require a multi-band (multi-component)
system, where the bands (components) can come for instance from lattice geometry,
effective finite lattice unit cell size (caused, e.g., by an effective or real magnetic
field), or existence of two spin components and spin-orbit coupling.

In classical physics, the definition of distance between two points is quite
straightforward: draw the shortest possible line between them and measure it. Of
course, this is more tricky if the geometry is non-trivial: for instance, on the surface
of a sphere the distance between two points is defined differently, as function of the
coordinates, than on a flat surface. Curved space-time geometries appear also in the
context of general relativity. The quantity that takes into account the geometry of
the system in defining the distance is called metric.

Now, we may ask whether it is possible to define the distance between quan-
tum states on a given manifold (for instance the sub-manifold defined by Equation
(3.53)). We use the Bures distance (there are other definitions too, for instance the
standard definition of distance in a Hilbert space has a factor of two difference to
the Bures distance):

Dip = /1 — [(¥(k1)[¥ (k2))[2. (3.54)

As one can easily see, the distance is zero for equal states, and one for orthogonal
ones. Since the definition contains square of the inner product, we obviously loose
any information related to phase of the inner product. Indeed one can define also
the concept of phase difference:

—iAp12 <\P(k1)|\lj(k2>>
T 0[] (3:59)
Apiz = —Imlog(¥(ki)[V(ks)). (3.56)

You have probably learned in earlier quantum mechanics courses that one can al-
ways add an arbitrary phase factor to a quantum state and it does not change
any observable quantity. In another language, multiplying a quantum state by an
arbitrary phase factor is a so-called gauge transformation, and the overall phase of
the wavefunction is a gauge-dependent quantity. Gauge-dependent quantities are
not physical properties of the system, in the sense that they cannot be observed.
The phase difference defined above is gauge-dependent, and therefore does not as
such have a physical meaning. This relation holds also the other way round: if one
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can show that some quantity is gauge independent, it is physically meaningful and
can (at least in principle) be measured. The Bures distance is an example of such
gauge-independent, measurable quantity.

¥ (ks))

U (kz))

O ey k)

Figure 1: A closed path that connects four states in the k space.

So why are we still interested in the phase difference? Well, let us see what
we get if we try to measure the total phase difference when we make a closed loop
between a set of states, see Figure 1, that is, calculate the phase difference between
states 1 and 2, then 2 and 3, 3 and 4, and finally between 4 and 1, and sum them.
The total phase difference becomes

v = Apia+ Apaz + Apszs + Apgy (3.57)
= —Imlog(¥(ky)|¥(ks))(¥(ks)|V(ks))(V(ks)|¥(ka))(V(ka)|¥(ki)).

Now all gauge-arbitrary phases cancel. Example: if for instance |¥(k;)) = [1)+¢%|2)
where |1), |2) are some orthogonal basis states, then the state e?|W¥(k;)) = % (|1) +
e'?|2)) is a physically equivalent state and the gauge-arbitrary phase 6 cancels away.
However, the phase ¢ is physically meaningful and affects the value of the inner
products with |¥(ks)) and |¥(ky)), if those states contain |2).

As a gauge invariant quantity, the total phase difference (3.57) is potentially
an observable quantity! Let us now consider, instead of four states, a smooth curve
in the parameter space k, and discretize it. The phase difference between two points
in the curve separated by a small distance Ak is

(¥(k)|¥(k + Ak))
(W (k)[¥(k + Ak)|
—Imlog(¥(k)|¥(k + Ak)). (3.59)

e 1A (3.58)

Ay
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If the phase varies in a differentiable way, then (take a Taylor series of the above
and keep terms up to the order Ak)

iAp ~ (U(K)|Vi¥(K)) - Ak. (3.60)

If the set of points in the path becomes dense, that is, Ak is infinitesimally small,
we can write the discrete sum of distances from point 1 to point M as an integral
over the corresponding smooth curve C from 1 to M:

M

v = Z Apgsr1 —> v = /CA - dk. (3.61)

s=1

Here the vector A is called the Berry connection:
A =i(U(k)|[Vk¥(k)). (3.62)

The state vectors are assumed to be normalized at any k which means that the
Berry connection is real (just take the derivative, using the chain rule, of both sides
of (¥|¥)? = 1). Therefore one can also write

A= —Im{T(K)|V T (K)). (3.63)

The integral v is called the Berry phase. It has already been observed in numerous
physical systems and has become an important concept of modern quantum (and
classical optical) physics.

3.5.1 Berry curvature

If the curl of the Berry connection is well-defined on a surface ¥ whose boundary
is the curve C (notation C' = 9%), then one can use Stokes theorem to write the
Berry phase in an alternative way

v = A-dk = / Q - ndo. (3.64)
% b

Stokes theorem transforms a line integral to an integral over an area, with the

integrand replaced by its curl. Here n is a vector normal to the surface that is

integrated over. The quantity € is the Berry curvature

Q = VixA (3.65)
= —Im{ViU(K)| x |V T (k)) (3.66)
= (ViU(K)| % |ViP (k). (3.67)

In dimensions other than three the Berry curvature can be written component-wise
((i, j) denote Cartesian coordinates and 9; = 9/0k;) as

The Berry curvature is a gauge-invariant quantity, and naturally then also the Berry
phase calculated from it. Indeed, both can (and have been) observed. The Berry
connection and Berry curvature play a similar role as the vector potential A and
the magnetic field B = V x A, respectively, in elementary magnetostatics. The
vector potential is gauge-dependent and one can choose the gauge (for instance the
Coulomb gauge by V - A = 0), while the magnetic field is a gauge-independent,
physical quantity that can be measured.
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3.5.2 Chern number

We discussed above the Berry phase defined for a certain path C, and via Stokes
theorem, for a surface ¥ that the path C' is a boundary for. But one can define such
a phase also for a closed surface X. Naturally, the path C' is then vanishing. Think
about a part of a sphere being the surface: that can be circulated by a finite path.
But if the whole sphere is the surface, then the ”"path” is vanishing. It can be shown
that the integral of the Berry curvature over such a closed surface is quantized:

/ Q - ndo = 2rC}. (3.69)
by

Here C is an integer, called Chern number of the first class (or often just Chern
number). The closed surface can be, for example, the first Brillouin zone in a lat-
tice system. We will not go through the proof for Equation (3.69), but if you are
interested, you can find it from Section 2.4 of the article by Resta mentioned in Lit-
erature, or Chapter 3.6 of Bernevig’s book. The system is said to be topologically
trivial if C; = 0, and topologically non-trivial if C; is some finite integer. It can
be shown that in order to have non-zero Chern number, the Berry connection must
have singularities somewhere on the surface (i.e. somewhere in the Brillouin zone
in a lattice system).

The Chern number is a topological invariant. It stays invariant between
two topological spaces that are connected by a homeomorphism. Sounds abstract,
but just go to https://en.wikipedia.org/wiki/Homeomorphism to see a movie about
how a coffee cup transforms continuously to a donut which shows that they are
homeomorphic. The topological invariant in that case is the number of holes in the
object. Of course in quantum physics things are more abstract: we are now talking
about topological properties and invariants of the eigenstates of a certain system.
Analogously to the number of holes in a cup and a donut, the topological invari-
ant of a quantum system does not necessarily change due to small changes in the
system Hamiltonian. The fact that the topological invariant is insensitive to small
changes and perturbations can potentially be used, for instance for robust quantum
computing, or protected uni-directional currents. See Figure 2 for illustration of this
point. In the previous section we discussed the analogue between Berry curvature
and the magnetic field. Within this analogy, a non-zero Chern number corresponds
to having a magnetic monopole. This gives some intuition to why the Chern number
must be quantized and it why it is a topological invariant.

A famous example of the significance of the Chern number is the quantum
Hall effect. There the conductance of the system is quantized, that is, it changes
in steps when a magnetic field that penetrates the sample is changed, see Figure
3. It was shown in 1982 by Thouless, Kohmoto, Nightingale and den Nijs that
the conductance is given by the Chern number and thereby topological properties
of the system are the origin of the quantum Hall effect. Thouless got the Nobel
prize 2016 for this and his other theoretical work on topological physics. There
are also other types of topological invariants than the Chern number. Topological
quantum physics has become an extremely important and fast growing field of
research, inspired by the experimental observation of topological insulators and by
the concept of a topological superconductor.
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Figure 2: Arrows on a Mobius stripe. The existence of the twist in the Mdbius
stripe means that the arrows change direction when you go around the loop. The
change of the direction cannot be eliminated just by deformations of the stripe,
without cutting it. Analogously, certain properties of quantum states are robust to
small perturbations, when those properties are caused by the quantum geometry
and topology related to the system’s eigenstates. Image from plus.maths.org.
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Figure 3: Quantum Hall effect. Magnetic field penetrates the sample and quantized

conductance as function of the magnetic field emerges. Image on the right from
Research Gate.
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3.5.3 Quantum metric

Based on the definition of the Bures distance, Equation (3.54), one can calculate
the infinitesimal distance. Start from

D?, =1 — [{(¥(k)|¥(k + dk))|? (3.70)

and use the Taylor expansion to second order

1
[W(k + dk)) ~ [W(k)) + > [0,V (k))dka + 3 > 10,009 (k))dkidk;.  (3.71)
i 0,J
In the calculation (a nice exercise) it is good to remember which quantity is imag-

inary, and separate the real and imaginary parts. Higher than second order terms
are neglected. The result becomes

d
D12<,k+dk = Z 9i; (k) dk;dk;, (3.72)

i,j=1
where we have the quantum metric tensor
9i5 (k) = Re ((0;¥(k)[0; ¥ (k)) — (0; ¥ (k)| ¥ (k)) (¥ (k)[0; ¥ (k))) - (3.73)
One can express it also using the projector Q(k) =1 — |¥(k))(¥ (k)|
9i3 (k) = Re(0;¥(k)|Q(k)|0; ¥ (k)). (3.74)
Now let us recall the definition of the Berry curvature:

We can insert the projector Q (k) into this definition, because as said above, (9; ¥ (k)|¥(k))
is imaginary, and thus the product (9;¥(k)|¥(k))(¥(k)|0;¥(k)) real. We have

Qi3 (k) = —20m (09 (1) Q(k) [0, W (k). (3.76)

We see that (apart from the factor of two difference which is trivial) the quantum
metric and the Berry curvature are the real and imaginary parts of the same quan-
tity. This quantity is called quantum geometric tensor (this tensor is also called
the Fubini-Study metric):

Bij = (01| Q(K)]9, ¥ (k). (3.77)

A simple example that illustrates how the quantum metric is related to dis-
tances between the states is presented in Figure 4. The two-level system forms a
simple manifold where the quantum metric can be easily calculated for the angles
that parametrize the possible states (it is left as an exercise for you to calculate it).
When the angle ¢ is changed, at the north or south poles the state itself doesn’t
change, because ¢ gives just an overall phase factor. Correspondingly, the quan-
tum metric is zero there. While in the equator, change in ¢ can make the new
state (somewhat) orthogonal to the initial one, i.e., there is a finite distance; this is
indicated by the quantum metric which is non-zero.

In summary, the quantum geometric tensor has a real part, the symmetric
tensor called quantum metric describing the amplitude distance between quantum
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Bij(k) = (O, ul(1 — |u)(ul)|Ok,w)
ReB;; = gij quantum metic  g¢2 — S, giylkidh;

[u(0, ¢)) = e~/ cos(0/2) |0) + €/?sin(6/2) |1)

Figure 4: Illustration of the quantum metric for a generic two-state system.

states, and an imaginary part, the antisymmetric tensor called Berry curvature
which is related to the phase distance between two states. The quantum metric,
Berry curvature and the quantum geometric tensor are all gauge-invariant, measur-
able quantities. However, they are basis, or lattice geometry dependent (Simon and
Rudner, Phys. Rev. B 102, 165148 (2020)), i.e. they are influenced by the spatial
positions of the orbitals within the unit cell. This is important to keep in mind when
relating physical quantities to quantum geometric ones; we will discuss subtleties
related to this in the context of superconductivity.

The Berry phase has been observed in a multitude of systems, and also Berry
curvature has been measured. The first direct measurements of the quantum metric
were published in 2019, and it is a concept whose significance in physics is emerg-
ing right now. It has been predicted to appear in a few contexts, one of them is
superconductivity; it has been predicted that the quantum metric of the system
affects superfluidity and superconductivity. In particular, its non-zero value guar-
antees that supercurrent exists even in a situation where the group velocities of
non-interacting electrons are zero (so called flat energy bands). The rest of the
lectures will focus on this topic.

Finally, let us come back to where this discussion started. It was mentioned
that localization properties of the Wannier functions are crucial in describing prop-
erties of quantum phases of matter. As you have learned above, the quantum metric
and Berry curvature depend on derivatives of the eigenfunctions, in a lattice system
this would mean derivatives of the Bloch functions. Via this, there is a connection
between the localization properties of Wannier functions (which are combinations
of Bloch functions) and quantum geometry.

The understanding of all the consequences of quantum geometry, especially
in interacting many-body systems, is only in the beginning. The summer school
lectures will tell you more about this.

A recent perspective article about the potential significance of quantum ge-
ometry can be found here: P. Térmé, Phys. Rev. Lett. 131, 240001 (2023)
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In the lectures of this summer school, we will utilize the review: Quan-
tum geometry in superfluidity and superconductivity S. Peotta, K.-E. Huhtinen,
P. Tormé, Proceedings of the International School of Physics ”Enrico Fermi”,
Ebook Volume 211: Quantum Mixtures with Ultra-cold Atoms, Pages 373-404,
DOI 10.3254/ENFI250023 (2025). This review is easiest to obtain from arXiv,
arXiv:2308.08248

The relevance of quantum geometric superconductivity and superfluidity in
the context of moiré materials is reviewed here: Superconductivity, superfluid-
ity and quantum geometry in twisted multilayer systems, P. Térmé, S. Peotta,
B.A. Bernevig, Nature Reviews Physics 4, 528 (2022)

There is also a recent review on the role of quantum geometry in quan-
tum materials in general (not restricted to superconductivity): Quantum Geom-
etry in Quantum Materials J. Yu, B.A. Bernevig, R. Queiroz, E. Rossi, P. Térma,
B.J. Yang, arXiv:2501.00098 (2025)
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