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Quantum Hall effect as a “Stfreda Anomaly”
quadrupole density and Hall viscosity
Laughlin state, reinterpret “flux attachment” as “orbital attachment”

Berry Curvature of Bloch states and embedding in Euclidean space

Irrelevance of k-space geometry for FCI, use real-space quantum geometry instead.
FQH/FCI derives from short-distance real-space repulsive interactions
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Electrons carry electric charge: this has two consequences
® they are sources of electric and magnetic fields

® they react to external electric and magnetic fields

| will describe a “theorists model” of the “clean limit”of
the quantum Hall fluid that largely ignores the first of these properties
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long-range part of Coulomb interaction
wants approximate local charge neutraility,
so edges percolate through system

gapless chiral
compressible edge
(chiral CFT/Virasoro algebra) N

gapped
incompressible
bulk fluid

CFT = conformal field theory (TQFT + geometry)

TQFT = topological quantum field theory

Theorists’ model suppresses long-range part
of Coulomb interaction as in Hubbard models



gapless chiral
compressible edge

We already heard a bit about QHE topology (chiral CFT/Virasoro algebra)

gapped
incompressible
bulk fluid

(TQFT + geometry)

Topology classifies a gapped state and its quasiparticle properties,
but has nothing to say about energetics and what drives formation
of such states. | will argue that geometry does.

The quantum Hall effect was first seen in two-dimensional electron
systems with Landau quantization by high magnetic fields. Most of
our ideas about it were developed in that context

More recently, the fractional QHE hs been found in “flat band”
Chern-band systems with ferromagnetism, but no magnetic field or
Landau levels. This provides an opportunity to reexamine our
ideas about it, and discard Landau-level specific ideas that do not
apply in Chern bands.
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This Letter presents variational ground-state and excited-state wave functions which
describe the condensation of a two-dimensional electron gas into a new state of matter.

® Laughlin told us the the (fractional) QHE was exhibited by an incompressible
quantum fluid, by the “fluid”(= something that flows) aspects have never really

been followed up on.

® We also know (from numerics) that the Laughlin state is the correct description
of e.g the incompressible state at |/3 Landau level filling, but why this has also
not really been explained (“it’s a clever wavefunction” is NOT an explanation!)
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® | have learned that it is very useful to use consistent upper/
lower spatial indices

® Cartesian coordinate system (inertial “Laboratory frame”)

Summation convention only
X = azae =rle; + x%ey + e - -
— a — 1 22 d on upper/lower index pairs

€q,a=1,...d are tangent unit vectors of d-dimensional space

e, e, = 5@ : distinguish Euclidean metric 0 , of flat space-time

9 from Kronecker symbol o," and inverse metric 5P

® spatial displacements, velocities have “upper” (contravariant) indices, spatial derivatives, tangent unit
vectors momentum forces, wavevectors have “lower” (covariant) indices.

®  Physically-meaningful equations should be the same in ANY coordinate system. Using consistent indices, the
Euclidean metric 0, should not appear in any non-gravitational equation.

e Newtonian particles (nucleus of atom, ionic cores) have inertial mass tensors m,;, = my.,,0,.

Bloch electrons are NOT Newtonian particles



® Maxwell equations are coordinate-independent. Euclidean
metric of flat space only appears in constitutive equations of the

vacuum
Ea — aazAO o atAa

Cl e O a - _ abc _ — C
aaD = J Prefer I, to B (no right-hand rule ¢“") F = aaAb — abAa — Gach

d

0 B¢ = (0 0F, +0,F +0F, =0 Faraday tensor
da

9419 =0

e"0,E. = —0,B%  0,E,—0,E, =

0,(c“"*H,) = J* + 0,D* 0,H" = J*+ 9,D"

Linear constitutive equations




® stress is a mixed-index tensor

aﬂ%__aﬂi?zjg

® —o, is the current J; of component b of momentum in direction a.
/., is the body force

Pressure

® in Maxwell equations

—_— apc energy density
T, = € ab CD B /

d

a _ Nna a 1 70 ca

f,=EJ’+¢, J°B°

abc




® Viscosity in a fluid: linear response of
stress tensor to a gradient of flow

velocity v(x)

= 1,0, vei(x) + O(v?)

® rate of dissipation:

AU Vanishes if 7, = — 1, (antisymetric)
— = —06/0,V"
® The antisymmetric part of the viscosity

tensor is the “odd” or “Hall” viscosity




® what is an electric quadrupole? (most people don’t know!!!!

® in Physics 101 class we usually learn that a “point quadrupole” is
two dipoles back-to-back that is the source of an electric field

falling of as 1/7* and is a “traceless tensor”. NO,THIS IS
WRONG!

® The electric quadrupole of a charge distribution is its second
moment, which unlike “dipole moment”, is unambiguously defined:

qab — %Z qi(xia . )—Ca)(xib . )_Cb) Z qi(xl.“ — xa) = ()

U= —q"0,Eyx) energy in an electric field



dielectric of permittivity tensor

/

® |aplace equation _gabaaabv = p

® Fourier transform
/ quadrupole

ek k, V(k) = p(k) = q*°k k,

Vik) = 9k ks ® |ong range field comes from
€9k k; singular partas |k| — O

® Part of g%’ x €9 does not contribute to long rage field,
but this does not mean it can be neglected!



® a uniform sphere of charge has a (primitive)
quadrupole that distinguised it from a point
charge (e.g. proton, neutron) , where it is
called the “radius of charge”



= de 7(x)

ldeal Quantum Hall Fluids:

Are incompressible charged 2D fluids localized on a lattice plane that obey the Streda relation

1

for the electric charge density J'(x) = EGH Fab(x) where F _,(x) are the in-plane components

of the Faraday (magnetic flux) tensor. o H = (e ?/2ah)ke™is quantized.

Have an elementary unit with charge ¢, that is a multiple of the electron charge ¢, and
fractionally-charged excitations with charges that are multiples of e* = ¢,/| k|, where k is the
level of an Abelian U(1), Chern-Simons gauge field that couples to the elementary unit.

Have a traceless stress tensor (do not support pressure)

Are dissipationless (gapped, have antisymmetric conductivity and viscosity tensors at T=0)

Have a (primitive) electric quadrupole density Q%(x) where (ke*/h)*det Q > %det Oy

Have gapless edges where the momentum density (generator of edge diffeomorphisms) obeys
the Virasoro algebra

(72(x). 7] = i (Jz(x)é (0 — X)+-=chd"(x - x'))

]

(signed) chiral central charge



Condensed matter has three subsystems:

SN

ha

Win,

Electronic Electromagnetic

(Fermi surface_ OF  (Photons/polaritons)
superconducting

condensate)

Lattice (elastic)
Nuclear coordinates, phonons

e When there is no (bulk) Fermi surface, the electronic subsystem is
iIncompressible, with no autonomous low-energy degrees of freedom

 Usually this means the system is a band insulator, where the electron density is
fixed by the local Bragg vector field, which determines the local volume of the

Brillouin zone.
* The low-energy excitations (phonons) are fluctuations of the Bragg-vector fields




* |n a band insulator, the electrons cannot move

relative to the lattice

e The electronic state is essentially described by a
Slater determinant of local filled Wannier (atomic-
like) orbitals, which have fixed positions relative to
the nuclear coordinates that define the lattice

JO(x) =

In band insulators,

the electronic charge
density on lengthscales
larger than the lattice scale
IS quantized in units given
by the Brillouin zone
volume, given by the (local)
Bragg vector field

(;;)3 |G (x) - Gy (x) X G5(x) |




® |n band insulators (represented as Slater determinants of
Wannier orbitals) all the electrons are “owned” by the
lattice, and are not fluid.

® |n quantum Hall systems, some of the electrons on lattice
planes are “captured” by the magnetic flux (Faraday
tensor ) and can flow parallel to the plane with the

electromagnetic drift velocity defined by £+ v X B = (),

5 b Reciprocal lattice vector
e e’ GC “— normal to Hall lattice planes

2nh 2rx

3D integer quantum Hall conductivity

ab __
GH —




® The mechanism by which the magnetic flux captures electrons is
Landau quantization to form Landau levels, with one orbital per
quantum h/e of magnetic flux through the plane.

hatka — eFabat.xa
nox® = vi(k) — hF(k)ok,

/ \

group velocity Berry curvature

Closed orbit in k-space Semiclassical Bloch dynamics

suppresses Umklapp _
e suppression of Umklapp means the

captured electrons in the Landau level
no longer “know” about the Bragg
) .
vector field, crystal momentum
becomes true momentum, and they
can be described in an effective
" < continuum theory that ignores the

One orbital on  lattice
the lattice plane

~_ per flux quantum
h/e in each level

E



“French

Imperialism” §

Napoleon |

® The quantum Hall fluids are perhaps the clearest examples of topological states

® Originally found in very large magnetic fields,
where circular orbits of electrons moving on a
2D surface are quantized (Landau levels)

magnetic field Hall conductance
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Now part of the new system of

units since 10th November 2018
(replacing the kilogram in Paris)

Old Kilogram
(platinum weight
kept in Paris)

Magnetic Field (T)

New Kilogram
(“Kibble balance”
using quantum
Hall effect)

“New boss”
is NOT the
same as the
“old boss”

(more
democratic,
everyone can

build it)



Their topological nature took some time to become clear

@ | ® counter-propagating “one-way”
A2 edge states (Halperin)

| ... 1® confined system with edge
Bert Halperin must have edge states!

don’t need to fine-tune
magnetic field



I €6 I”

® The topological “chiral” (directional) edge states
are the key property of quantum Hall systems:

® Their “one-way”’ character derives for broken
time reversal symmetry, and allows the
“anomalous” quantum Hall effect to occur in
ferromagnetic systems, even in the absence of
magnetic flux.

kL = 2nn + e®gz/n

___________ Periodic boundary conditions

R TA bulk gap & around edge change with
Eq magnetic flux through bulk

O PV T OV " W O ¢ g O

spectral flow of electron orbitals through
the chiral edge state as ®, changes



® |aughlin described the (fractional) quantum Hall effect as
being due to an “incompressible quantum fluid” of electrons

® This fluid character is very different to the solid character of
another “incompresssible” electronic state: the band insulator:

® |n the band insulator the (local real space VWannier ) electronic
orbitals are locked to the crystal lattice, at fixed points in the unit

cell, one orbital per sublattice per unit cell

® |n the quantum Hall effect, Umklapp is suppressed, and the one-
electron orbitals are detached from the lattice, and are free to

flow, carrying any electrons that occupy them “along for the ride”



® |nh Landau levels, the local orbitals that
electrons occupy are characterized as
“Guiding centers”

® The orbital an electron occupies (“is
attached to”) is centered on the “guiding

center’ of the Landau orbit | o
flow of orbital (guiding center)

T carrying an “attached” electron

—-~
e’ S

“Cox 1 —
Landau orbit of electron "+ f\'\
around guiding center

E

guiding center



® | andau level decomposition of the spatial coordinate

P = —thV, — eA,(x)

Dy Dy| = theB
® |andau orbit radius vector
R = 6%(10@/, ~Pa)
® [andau orbit guiding center
R=r—R

after Landau-level quantization, only
the guiding centers remain as
dynamical variables




® An orthonormal basis of eigenstates of the
one-body Hamiltonian has the form

n is Landau level index

hWp —eA)|n.m) = e n,m/ m labels degeneracy
7 : )=l > / of Landau level

1 a a 1
78 (R — R = x5) |m,n) = (m+3)|n,m)

arbitréry arbitrary choice of origin
positive-dgﬁnite n;etric at|n,m) = \/(m + D |n,m+1)
ith det g =
Wit €18 a|ln0) =0




® A lLaughlin state parametrized by a metric
can now be written in any Landau level:

WP (n, 8 %0) | | (@ = a1 ¥o(n, g, %))

i<j
h(pz o eAi) ‘ lPO(”? ga Xo)> — gn ‘ lI’()(na ga X0)>
a;|Wo(n, g, xp)) =0

® [he metric is 2 hidden geometric variational
parameter of the Laughtin state:



® |n a filled Landau level the charge carriers
(holes) are empty local orbitals, which also
flow in response to an electric field




Without edge states

o
The most remarkable property of the QHE, this would seem to violate

the “Streda anomaly” is a direct
consequence of orbital spectral flow:

local charge conservation in a
gapped system!

electric charge density

.

aJO ab
— Oy electric current density
oF ab
u, T=0 a _ (.-ab ab
Faraday tensor /
a Purely antisymmetric,
Fup = €gpcB non-dissipative, topological

contribution to conductivity
(preferable, as ho from electrons bound

“right-hand cule” is invoked) to lattice (impurities etc)



® Unlike the fictional classical incompressible Euler fluid
(which has infinite sound velocity, and instantaneous
pressure equilibration) the FQHE is a true gapped
incompressible quantum fluid.

® |t does not support sound waves (has a quantum gap in
the bulk) or hydrostatic pressure: no force is transmitted
through its bulk, only around continuous edges.

® A maximum-density droplet of QHE
liquid does not need a confining potential
to keep it from expanding!

A ~

cross-section of QHE fluid droplet




® so if there is no pressure, what happens when a
confining potential tries to compress the fluid?

impulse

\

® This familiar picture gives us a clue!

® |n Landau levels, the confining
potential generates an edge
current, which grows until the

outwards Lorentz force “BI{”
balances the compression

A bulkgap 0 -
B T ulk gap -

T e T O U $§F W O ¢ g O



® A more careful analysis show that there are two

distinct reponses to squeezing by the external center of charge
. . displaced from
COnﬁnlng POtentlak guiding center
® The response to its first derivative (electric field) is a e_/ﬂ
second order perturbation (Landau-level mixing) L X T
because the undeformed Landau orbit has no electric -

dipole moment relative to its guiding center.

electric polarization of orbit

® The response to its second derivative (electric field

gradient) is a first order perturbation (Hall viscosity P
response) because the undeformed Landau orbit has a e
primitive electric quadrupole (second moment of X
charge distribution) relative to the guiding center.
qabaaEb

the second order quadrupolar response
the field gradient deforms the shape along the flow lines



® get local Landau level energy in non-uniform electric field

= h(R) + V(R + R)
= h(R) + V(R) + R*9,V(R)++{R*, R"}9,0,V(R) + .

e (R)=¢€,+ V(R) + (n|R% n)d V(R)+— (n\ {R% R"} |n)0,.0,V(R)

= () — q®0 E,(R)
DA | .,/ ' Db
_% Z M %{@aV(R), o,V(R)} + ...
() n' T En
= 32 E(RER)

— E,(RP(R)+5 7°E,(R)E,(R)

= = E,P“R)+5(m,) v (RV'(R)
induced dipole “kinetic energy” Va — GabEb/B



® The electric polarization of the Landau orbit
(Landau-level mixing) is interesting because it
defines a “Gaililean” effective-mass tensor of
the guiding centers when they flow

A 1 a
P? = y°F, U= - PEA+y"E,E,

1

1 ab a.,b

® For Galileian Landau levels (p~/2m dispersion) m_, defined
above is precisely the Galileian mass tensor.



: : ab _ __ ba
® Hall viscosity 7., = —1,. viscous stress

compression (Hall)

electric quadrupole

odd because fluid is dissipationless

’72[19 — 5:;FceQbe o 5cl?FdeQae

density O
: . rimitive
® note: Hall viscosity is T (P )
traceless because fluid is gradient of
incompressible: nffﬁ? =0 flow velocity
v'=F /B
y
® stress is traceless o = 150, T — - _I_
K )
no pressure = B

(in 1+1d CFT, stress-energy tensor is traceless) @ 9 60 @ 00 © 00 00 O



® properties of a fluid with a quadrupole density

in the interior, there is a bound- ﬁ outward unit
charge density given by (minus) the - normal
double divergence of the
quadrupole density.

— a _ ab
This includes and generalizes earljer P(x) = 0,0 (x)
“Gaussian curvature” formulas Jl?oun ((X) = — aaabQ“b(x)

derived on a sphere

¢ At the edge of the fluid, there is a surface polarization (dipole per unit
length) that reveals the interior quadrupole density:

A _ ab~ ~
n- Pedge = 0O ey

e outwards/inwards edge polarization if O is positive/negative definite.



1 Sl B B B B = = =N = = = N = N N BN BN N B

¢
O B e = = = = /= = - e o= o= o= o= == = ————J

guiding center orbital

_—~ occupation

(step function at edge)

® electron density at edge of integer QHE state revealing the
positive-definite Landau orbit quadrupole density (when

divided by electron charge)

O I
® guiding-center orbital occupations at edge of

This feature is
a consequence

E of the chiral 1D
- Luttinger liquid

on the edge

Laughlin 1/3

FQHE state revealing the negative-definite guiding-center

quadrupole density

® Note that the “anti-Laughlin” 2/3 state has a

positive-definite

guiding-center quadrupole density (minus that of |/3 Laughlin

state).



® some new ideas and results:

® T[he electric polarization rigidly vanishes in the
ground state of a quantum Hall fluid, (there is a gap
for excitations that carry an electric dipole moment)
but the ground state has a finite (primitive) electric
quadrupole density

® This quadrupole density is a central feature in a new
fundamental expression for the Hall viscosity

® In the FQHE, there is an emergent dynamical quadrupole
field that accompanies “flux attachment”, and the energetics
of its formation is what stabilizes the elementary unit of the
fluid, the “composite boson”

® This is the long-wavelength Girvin-MacDonald -Platzman
mode



® The foundation of our understanding of the
FQHE is the 1983 Laughlin wavefunction

_ 112702 — ] is Slater
_ -\ |2,|“/C q 1S
\P X H(Zi Zj) He ) determinant

1<j l
® |t explicitly exhibitAey features, such as
“flux attachment”

® Numerical finite-size exact-diagonalization
confirms it works, but “why”” has never been
precisely explained

® Discovery of FQHE in non-Landau-level zero-
magnetic-flux lattice systems is an opportunity
for a deeper understanding

Courtesy National Gallery of Art, Washington



® The Laughlin state has been the fundamental
souce for interpretations of the (F)QHE

® A popular one has been the idea of “flux
attachment” to form “composite particles”

® |n this picture the Laughlin |/3 state has two “flux attachment
extra “flux quanta” (vortices) attached to it, concept
and this is called “flux attachment”

As a non-Slater-determinant state, with no “Wick’s theorem” to allow
Feynman diagrams etc, the Laughlin state has remained stubbornly
intractable to analytic analysis, so is primarily described by theorists
using heuristic cartoon pictures such as “flux attachment”



® The discovery (first from exact diagonalization 201 |,
then experimentally 2023) that a fractionally-filled
Chern band (with a Streda anomaly) supports

“anomalous” FQHE WITHOUT ANY

MAGNETIC FLUX means that the “flux

attachment” idea (which might seem plausible in Landau
levels) needs a reworking.

® The new language | propose is (mobile) local orbital
attachment. (In a lLandau level there is one orbital

per flux quantum). This applies equally to the FQHE
systems with or without magnetic flux.




e The original “toy model” for the quantum
anomalous Hall effect was the graphene-like
model of spin-polarized electrons with

(complex) second-neighbor hopping 7,

e |n 2011, Chamon, Neupert et al. showed the lower band

can be substantially-narrowed by tuning 7,. When this “flat
band” is 1/3 filled, numerical exact diagonalization studies

“Hofstadter” spectrum of the

model with 7, chosen to give

flattest lower band (the
embedding shown above is used:
the spectum is then periodic in

D O+ 6D

flux per unit cell




® Moire patterns (e.g. twisted bilayer graphene

at “magic angles”) support “flat bands”
dominated by electron-electron interactions

instead of kinetic energy

® Mid 2023:a number of groups
have reported that fractional
quantum Hall states can occur in
these due to ferromagnetism
without magnetic field and at
higher temperatures!

® may lead to a new “platform” for
FQH physics and topological
quantum computing!




e what are the common features of FQH behavior in

both lattices (anomalous) and Landau levels (regular)?

FQH in Landau levels FCI in lattice models

no obvious place for
holomorphic functions, etc

Opportunity to get a better understanding
of FQH by removing Landau-level-specific ideas



e | aughlin state is parametrized by a Euclidean metric

arbitrary origin (c-number) [R%,RY| = — i?

= 2;2 8ab(Ra—l”O)(Rb—rO) = —(a a —+ aaT) [Cl, CZT] — 1

Heisenberg algebra

positive symmetric metric, det g = 1 (harmonic oscillators)

(g, does not have to be the usual metric 0 ;)

e Laughlin state: |¥}(9)) = [ [ (@ - a’)? | 0) a;|0) =

i<j

centered at r))

e “Onion ring” orthonormal basis of
one-electron states

1
[ Y1n(X0, 8)) = N (a’y"10)

m!

area 277> between rings
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he “onion ring” basis in the
| andau level is crucial for

nderstanding the Laughlin state.

e Eachring is a chiral

opological edge state of the
egion it encircles.

e |f central orbital is occupied, the net two orbitals are
empty in the 1/3 Laughlin state.

e \We can say that each electron *

occupies three orbitals”, or
that “three orbitals are attached

to each electron”

e [his language change (“orbital-’

instead of “flux-
attachment” can also apply to FCI, where there is no “flux”



® The key difference between local orbitals in a Landau level
(centered on a guiding center) and (maximally localized)
Wannier orbitals is that Landau orbitals can be moved
adiabatically in the Hall plane.

® This leads to the “composite boson picture” and Abelian
Chern-Simons gauge field.

® Adiabatically drag a hole (empty orbital
in an otherwise-filled Landau level)
around a closed path.

® There is a Berry phase equal to the

number of electrons enclosed by the
path (Arovas Wilczek Schreiffer 1984)

— H(Zz = ’lU) 1_4[(,?:Z — Zj) He—%z;‘zi



® Because there is one electron per
flux quantum, the Berry phase is
equal in magnitude, opposite sign to
the Bohm-Aharonov phase of an
electron moving on the same path.

® if another empty orbital is present
inside the path, the Berry phase is
reduced by 2z

® The closed path is equivalent to
two exchanges. The exchange
factor is z and the holes are
fermions as expected.




exchange

Vm (T4)

—1

particles /\

Vm (xj)

(o (CC])

Filled orbitals (fermionic hole + fermionic
electron) are bosons

The exchange of two filled orbitals is a row
exchange plus a column exchange in the
Slater determinant.

The Berry phase cancels the Bohm-
Aharonov phase, and the composite boson is
effectively neutral so can “condense”

This “composite boson™ picture generalizes
naturally to the FQHE

>_ 1
exchange
orbitals

Slater determinant (filled Landau level)



® The initial discussion of composite bosons in the integer
QHE generalizes to the fractional case

g holes (empty
orbitals)

Chern-Simons index k = pq

Two-qg-hole exchange factor (-1)" = +1

(the condition that this is regular Fermi/Bose

statistics quantizes k in Abelian CS theory)




e, = pe

g orbitals + p
electrons

Now the p particles will cluster at the center of the “bubble” of g orbitals

This will lower the correlation energy from repulsive short-range interactions with particles not in the “bubble “, and create a
(primitive) quadrupole

composite object is a boson if (—1)f=(-1)”



e |n the (clean-limit) quantum Hall effect, the electronic
subsystem remains incompressible, but some of the
electrons (on a 2d lattice plane) are released from
control by the lattice, and form an incompressible fluid
that is controlled by the electromagnetic degrees of
freedom, the Faraday tensor in the 2d lattice plane

B

F b — aaAb — abAa — €abCBC — EabB

a

e The 2d Faraday tensor is used In preference to B because it does
not depend on an (arbitrary) handedness (chirality) convention

Faraday in 2D plane F — B 2D antisymmetric Levi-Civita symbol
(not chiral) ab ab times normal flux (both chiral)



® the fundamental QHE property is not
J¢ = “bEb, but the Stfeda relation

0J"
oF ,

ab
— GH

H

® We can reinterpret this as defining the density of

“captured” electronls in the Hall fluid:
0 __ ab
Jem — H2“H Fab

® The flow velocity is just the electromagnetic drift velocity:

E + F bVD O Vg a GabEb/B

® |[hen the Hall current is

a _ 70 ..a _ __ab
J _JemVD_ HEb



Vg — GabEb/B

Since (for constant B) the gradient of the drift velocity is
proportional to the gradient of the electric field, which couples
to the quadrupole density, the dependence of the new formula
for the Hall viscosity is seen to be very natural!

(Me)pg = 0qFpe Q™ — 0, F 3, O



* The quantized Hall conductivity has the form

2
€
GIC—ZIb — ( b) k_1€ab
2nh

Here e¢* is the charge of the elementary unit (composite boson) of the
incompressible fluid, and k is the integer index of a U(1), Abelian

Chern-Simons effective topological field theory with

electric current
density

electric charge
density “owned” by e.m. field

Spo = Jdtld%gw +AJ) + A JC

a- cim

The elementary charge of topological excitations is £ ¢,/k



1/3 Laughlin state If the central orbital is filled,
the next two are empty

The composite boson
has inversion symmetry
about its center

-------
-
e” =e

- .
- N

-
-
------

»
~ -
-~ -
-------

It has a ‘spin”

1 o5 o
2 2 2
_ 1
1 ()| ..... L=1
—[1I71 — ] =3
3 3|3 ooooo L 2
s = —1

the electron excludes other particles from a
region containing 3 flux quanta, creating a
potential well in which it is bound



2/5 state

1 3 5

2 2 2

([1[0]0]0 ]~ 1—o
2 z|z 2 [2]... —L=
5) 5 5|5 5!

= /dzrr r’op(r) = slgg™

second moment of neutral
composite boson
charge distribution



hopping of a “composite fermion” (electron + 2 flux quanta)
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® adding charge to the |/3 state

® quasi particles = composite bosons of 2/5 state

€ add charge

\

2/30 L /3 X /3 /3= & /3

local charge(relative e O O O
to 1/3 background) 0 total 6/15

v
00

e/3 e/3 e/3




® similarly, quasiholes of 2/5 state are composite
bosons of |/3:

C i remove charge
0

local charge(relative _
e 0 total 5/15

to 2/5 background)

1/3 1/3 1/3 1/3 /3
-e/5 -e/5 -e/5 -e/5 -e/5



® Jain sequences

1

composite fermlon —

“@@@

composite fermlon —

00060



® quadrupole of composite fermions is also important

e atyr = 1/2,there are two particle-hole conjugate species

the electron (or hole) excludes other particles
from a region containing 2 flux quanta, creating a
potential well in which it is bound



pairing of equal-type composite fermions produces
composite boson with larger quadrupole

pairing of opposite-type composite fermions produces
no extra quadrupole, so does not occur in single LL



® PH-symmetric CFL has equal numbers of
both types of cf’s, they must mix to all carry
different dipol
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® Rotationally invariant (TOY) models

® Circular 2D droplet of N

composite bosons with an
unexcited chiral Luttinger liquid
on its edge

® (Planar) angular momentum about center is

L=h (%kN2+SN)

[\

Chern-Simons index “intrinsic orbital angular momentum” of
(a chiral integer) the composite boson (a chiral half-integer)



® The rotationally-invariant disk can be put on a
sphere (not possible without rotational invariance)

h Sﬁ Intrinsic angular momentum
of composite boson (with
correct 3D quantization)

o is nowlnormal to sphere surface

. ASH

shrink unexcited edge to zero
at south pole: for correct choice

® The spin -5 Berry phase as the composite boson o
of monopole flux N(D it disappears

moves on the sphere surface matches the intrinsic
Wen-Zee “spin-connection” picture



® For rotationally-invariant TOY MODELS, the
quadupole density is quantized

ab i . .
e bS 5 «~—Inverse of Euclidean metric tensor that

defines rotational invariance
Ak

Qab
® note that e* = ¢,/k is

2§ = integer elementary fractional
charge

® On the sphere, a Cartesian coordinate system
cannot be used, but a coordinate system with

spatially-varying determinant-1 metric g ,(X) should
be used.



® TJo evaluate the Gaussian curvature Kk at a
point X, choose a curvilinear coordinate
system on the sphere which is “inertial” at

that point:
8ap(Xo) = Oyp T3 (x0) =0 detg(x) =1

K(Xg) = ——a 8bg“b(XO)

® The apparently-impressive success of the “Hall viscosity =
coupling to background geometry” Gaussian curvature model is

seen to just be a spec:al limit of the quadrupole density bound-
charge formula Jl?o q4=—20 0,0




® |n “toy models” with SO(2) symmetry, the
composite boson carries a quantized planar
(azimuthal) angular momentum S, where

(=1)* = (=1)

® The parity under 2D inversion is

Note that the ratio S/k is
q l A orientation independent,
(-1) 2 ==x1 even though individually
S and k depend on
orientation choice

® The correspondence to previous formulas is

- 1
S = pSs = —EpcS) “— “shift on sphere” (VWen and Zee, 1992)
N

“intrinsic orbital angular momentum per electron” (Read, 2009)

(note: 25 and & are not generically integers)



® [hen the quadrupole density is also quantized:

ab __ ab inverse o
Q" = 4_71.]{5 ’ Euclidean m;tric
® This provides full agreement with Reed’s (2009)
formula for Hall viscosity of systems with SO(2)
rotational invariance.

® |n pseudo-isotropic cases, with only discrete three-fold,

four-fold or six-fold rotation symmetry, 0 will still have
this form, but with unquantized S



® | will now take a rapid trip though the
geometry and topology of Bloch-state Berry
curvature



® Geometry and topology were first connected by the
Gauss-Bonnet theorem:

Euler characteristic
or (1- genus)

/dzx (intrinsic curvature)

2D surface

local geometry global topology

1
[ it ot Vhegers
R e invariant under smooth local

seems trivial for a sphere, but still true

for any genus-0 closed surface deformations of the surface

- O o0

genus 0 genus 1 genus 2



® This remarkable relation evolved through mathematical
abstraction to the Chern classes, in particular

/ dxt Ndzx" F,,(x) = 21Cy
M, \

mathematically,
“Chern number” 4

integral over a closed first Chern class (an this is a "U(1)
orientable 2-manifold integer) replaces Euler’s fiber bundle”
characteristic /
Berry curvature \IJ(ZB>>
<8\If(a;) 8\If(x)> B <8\I!(x) 8\I!(x)> — T (CU) quantum state
Ozt | Oz Oz | Out Ry that depends on a
Fu =0, A, —0,A, set of continuous

| ) | parameters
ol $rdat Ay i®r <— Berry phase of boundary



® on a 2-d manifold A{with boundaries QA

Integrated Berry product of Berry
curvature(“flux™ ) phase factors on
In interior boundaries

“punctures”

Stokes theorem



The first Chern invariant.

® for a compact 2d manifold with no boundaries

exp (Z/ Fpdxt A dx”) — 1
M

can take logarithm

Berry curvature

/
/ Fudxt Ndx” = / d°xF = 21
M M

integer “Chern number”
“first Chern class” topological invariant

® [his topological invariant is central to systems with
broken time-reversal symmetry (quantum Hall effect,
Thouless et al. TKNN 1983, Simon 1983)



® The compact 2D manifold of the first Chern
class is now a frequent ingredient in modern
physics, and can occur in many different ways:

-----
......
4 ~

-~~~ Berry phase:

67;@1" . eiSw
Parameter —

. . solid angle enclosed is ambigu
Space IS unit nodulo 4

sphere so 2S must be an integer
quantum spin

Chern number = 2S

DUS]

electronic or photonic
Bloch states in
2D Brillouin zone:

manifold is 2-torus




® The quantum state must be non-degenerate,
so for the 2D bandstucture with spin-orbit
coupling, either time-reversal or spatial

inversion symmetry must be broken to get
Berry curvature.

Fn(k) — Fn(_k’) Fn(k) — _]:n(_k)

The Chern number vanishes

unless time-reversal symmetry
is broken



® Though it’s not relevant for this talk, the recent
“topological insulator” revolution started in 2005 when
Kane and Mele discovered a new “Z,” (as opposed to
“U(1)”) invariant in time-reversal-invariant 2D electronic

bands with Kramers degeneracy.

® They first discovered the new invariant in systems
with broken spatial inversion symmetry, when it can
also be derived from the Berry curvature



An explicitly gauge-invariant rederivation ofrom+

unpub.
the Kane-Mele Z; invariant
® [f inversion symmetry is absent, 2D 4
bands with SOC split except at the o
four points where the Bloch vector is
gﬂmus: 1 Fruus= 5

|/2 x a reciprocal vector. The generic
single genus-| band becomes a pair
of bands joined to form a genus-5
manifold

® This manifold can be cut into two
Kramers conjugate parts, each is a

. . 2 O‘PQ,\ u,h.l’..h*re—s
torus with two pairs of matched 5 e Tt

punctures. In each pair, one puncture
boundary is open one is closed.



® on a punctured 2-manifold oy ool gt

expi | A’k F?(k) =[]

product of Berry phase-factors

L of puncture boundaries
2N n 2
® in [-invariant electronic half-bands with qubi o 67;%.
SOC, punctures come in Kramers pairs: l l o l l
1=1 1=1

/

a perfect square, so
we can take a
square root!




® |f inversion symmetry is present, the bands are
unsplit and doubly-degenerate at all points in k-
space, so the Berry curvature is undefined.

® [or that case, Fu and Kan
formula

e found a beautiful

n k*

T+l-invariant

] e ==
AN

occupied

bands wponts INversion quantum number =
(about any inversion center)

-1 = the Z> invariant

(this changes sign at band-inversion transitions, as stressed by
Bernevig, Hughes and Zhang)




® |t may be useful to point out that the Berry
curvature in k-space associated with Bloch
states is slightly non-standard:

® The states from which the Berry curvature is

obtained are not eigenstates of the
Hamiltonian, but

Wi (k,riy)) = U(—k; i)k, n) 1) (4]
/ \ 1
The Bloch ei ,

A periodic state that wh?ch icchu?s%?e]i?zf; c and a basis of
depends on the spatial independent of spatial Fitarr e e e localized
embedding as well as k embedding the embedding in orbitals

Euclidean space




® This extra feature becomes very clear in tight-binding models:

® the Bloch Hamiltonian only
‘ ' ' “knows” about the

“hopping matrix elements”
L S

between orbitals, but not
how the orbitals are
\. embedded in space

® the Berry curvature in k-space of [¥(k,{r:}}})knows”
about the relative spatial locations of the orbitals, and
allows the effect of perturbation by uniform electric
and magnetic fields to be described

® the Jopological invariants themselves do_not
depend on the geometry of the embedding




Semiclassical motion of a Bloch electron in weak
quasi-uniform applied electromagnetic fields

H=¢,(k) —ep(r) %bé:)) i ?%Cic(f))

L orentz force

group velocity + “anomalous velocity”

® Karplus and Luttinger (1954), Sundaram and between r-space

full duality

Niu (1999)

and k-space!




® The Karplus-Luttinger formula for the intrinsic
band-structure component of the anomalous
Hall effect of a 3D ferromagnetic metal is

equivalent to .
occupation number

/

2
ab € 1 3 ab
— —E d°k F.°(k)n, (k
Onx n 27Tn/BZ n()”()

® This is just the sum of the Berry curvature over all the occupied electron
states in the band-structure, rediscovered by TKNN in the QHE.

® Only topological if all bands are completely filled or completely empty



Berry curvature symmary (generic)

non-degenerate

eigenstate 1 (x) | ‘Pn(x» = En(x) | ‘Pn(x»

expansion in fixed P (%)) = Z w,(x) | n) (n ‘ n’> — 5nn’

orthonormal basis

10,%,(x)) = Z iy/n(x) | ) |1D,Y,(x)) =10,¥,(x)) — |¥,()(V,(x)|0,y,(x))

oxH
n

simple derivative in parameter space (Berry-gauge) covariant derivative

i(¥,(x)]9,%,x) = (x)  Berry connection (W, |D,Y¥,(x)=0

eEXp Y- = €expi %{) o (x)dx" Berry phase
C

(n) () — Z™) Berry curvature

0,A"(x) — 0,A"(x) = F)(x) ry
f=-09,E,x) +hFPs  quantum Lorentz force
— 1) ntum geometric tensor
(DY, (x)|D,Y, (x)) =T)(x) duantumge '
(n) _ N1 gn)

I, =9,/x) SLF (x)

o
quantum metric (induced from Fubini-Study metric)



does work

 guantum Lorentz fOfV does no work

£V == 0,E,x) +hF )i
does work

e precise equivalent to / /does no work

f.=e(E,+¢€,1°B°) =e(E,+ F,x"

e charge bound in movable potential at x (you control x and
move it adiabatically by exerting a force on system)
\

/
th[a — EAa(X) E(X) - — eAO(X) -+ Sn e: \\.// Ae

Berry connection

e quantum speed defined by quantum metric h\ﬁ G, (0X") < Ae

adiabatic motion speed limit



® FOQHE occurs in “flat” Landau levels in a clean
enough system so the repulsive two-body
interaction dominates the (inhomogenous) one-
body (potential) energy, but is small compared to
the energy gaps separating partially-filled Landau
levels from filled and empty ones

“band gaps”

<< interaction-energy << (between
Landau levels)

“bandwidth”
(Landau level
broadening)

® The same idea was applied to make “toy model”
Bloch band “fractional Chern Insulator” systems in

which exact nhumerical diagonalization revealed
FOQHE-like states

Neupert et. al and many others (Regnault, Sheng,....)

2023 update: NOW FOUND EXPERIMENTALLY! ® arXiv:2308.02657 (2023).

® Nature (2023), 10.1038/s41586-023-06452- 3.

pentalayer graphene grXiv:2309.17436 MoTe:

° arXiv:2308.06177



® so there is a proof in principle that zero-field lattice
systems can show Laughlin-like FQHE states.

® How does this fit in with the Laughlin picture of

FQHE in a Landau level? 0 2 _ B

m l‘zo‘2/€2 (h/e)
1<J 1

® according to conventional wisdom the
holomorphic structure of the Laughlin state has
something to do with “being in the lowest

Landau level”’: how can this translate to the
lattice of a Chern insulator?




® |n fact, the “holomorphic” structure of Laughlin and

other “conformal block model wavefunctions™ has
nothing whatsover to do with “being in
the lowest Landau level”

® Instead, it derives from the non-commutative
geometry of the “guiding centers” of Landau orbits,
without any relation to the shape of those orbits
around the center.

R*, RY] = —il5,



® thirty years after its experimental discovery and
theoretical description in terms of the Laughlin state,
the fractional quantum Hall effect remains a rich
source of new ideas in condensed matter physics.

® The key concept is “flux attachment” that forms

“composite particles” and leads to topological
order.

® Recently, it has been realized that flux attachment
also has interesting geometric properties




U — H(Zz - Zj)?’ H o—3% %  Laughlin 1983
(/

1<J
® eclegant wavefunction, describes topologically-
ordered fluid with fractional charge fractional

statistics excitations

® exact ground state of modified model keeping
only short range part of coulomb repulsion

® Validity confirmed by numerical exact diagonalization

30 years later: my answer:

unanswered question: hidden geometry
we know it works, but why!?




some widespread misconceptions about the Laughlin state

No Landau level was specified: all
® ‘it describes particles in the specifics of the Landau level are

lowest Landau level” hidden in the form of U(ri2)

Non-commutative geometry has no
Schrodinger representation (this
requires classical locality); it only has a
Heisenberg representation.

® “It is a Schrodinger
wavefunction”

® “Its shape is determined by
the shape of the Landau The interaction potential U(712)
orbit” determines its geometry (shape)

® “It has no continuously-

tunable variational Its geometry is a continuously-
parameter’ variable variational parameter



® |na 2D Landau level, we apparently start
from a Schrodinger picture, but end with a
“quantum geometry” which is no longer
correctly described by Schrodinger
wavefunctions in real space because of
“quantum fuzziness” (non-locality)

® |t remains correctly described by the
Heisenberg formalism in Hilbert space.



® | andau quantization =(P)[¥n) = E,‘”|\Ijn>

discrete spectrum of macroscopically-
degenerate Landau levels

® Project residual interaction in a single partially
occupied “active” Landau level, all other dynamics
is frozen by Pauli principle when gap between
Landau levels dominates interaction potential

residual problem is non-
commutative quantum
geometry!




original 1/, (33)
!(not smooth)

ldentical quantum particles N, »l
(fermions or bosons )

We now have the final form of the problem:

The potential V,(x) is a very smooth (in fact entire)

function that depends on the form- factor of the partially-
occupied Landau level

The essential clean-limit symmetries are translation and

Inversion:

R, — a+ R,




® VWhere did this come from?

—1hV, — eAy(x)

Pa

:p:mpy:

® | andau orbit radius vector

® [andau orbit guiding center

R=r—R

— 1heB

1

el3

after Landau-level quantization, only
the guiding centers remain as
dynamical variables




® Fundamental representions of the

Heisenberg algebra are defined by any

choice of a complex unit vector like
1 | .

1 .
e (1,7) e \/10( 2+ 1) e’ X e=:i

/2

® this defines a (determinant |) Euclidean-

signature metric  gu, = 3 (€le, + €jeq)

® the metric is a freely-choosable parameter of
the representation.



® Any N=particle state has a representation

U) = F(al,af, ... al)|0) a;]0) = 0

\

A holomorphic function of N variable

® So we see that the “holomorphic” structure is
a property of the non-commutative geometry

of guiding center states after projection into a
Landau level




® VWhere can we find non-commutative

geometry on a lattice!

® A topologically-non-trivial bandstucture
must have at least two orbitals in the unit
cell, but if we project into that band, there is
only one independent state per unit cell

® [he overlap matrix between orbitals is then

rank-deficient, with a kernel of null

eigenvalues

{67;,0;} =S = (1| P]j)

Projection into band

Orbitals are
renormalized
after projection
so that

(@ Pli) =1

{Ciacj} =1



{Ci7 C;r} — Sij
® Because of this, an “onsite’” Hamiltonian

H = Z E.n; + Z Viinin;

will have non tr|V|aI dynamics

® band topology is encoded in the complex
phase of 5, and geometry in the quantum

distance measure
dij =1 =[Sy
® 575 define the fuzzy “quantum lattice” that
generalizes the classical lattice 5;;= 9;;



® A basis of orthogonal states of the projected

band is obtained as the non-zero eigenstates
of S

§ : cl = ! E u'AcT
SZJU])\ — S)\U; )\ A \/S)\ . LA™
j (

® For the basis of coherent (Gaussian) Landau
level states, this leads to the holomorphic
states, which are the non-zero eigenstates of

S(ZE,CBI) __ 6—%(2*2—22'*2'4—,2’*,2’)/623



® the basic physics and energetics of the FQHE
involves flux attachment

® What is missing so far is a detailed physical
understanding of the energetics that drives
the different way flux is attached in different

FOQH states



® The quadratic expansion of this even function around the
origin defines a natural “interaction metric”

® The problem is often simplified by giving it a continuous
rotation symmetry that respects this metric, but this is
non-generic, and not necessary.

® This metric and a rotation symmetry are important in
model FQH wavefunctions based on cft, which have a
stronger conformal invariance property.



® |t is straightforward to solve the two-body
Hamiltonian: Ri2=R; — R»

a b 1 _ o:p2 _ab
Ry, Ryy| = 2il7ze
equivalent to a one-

particle problem H — Vn (R12) etc.

® |f there is a rotational symmetry, the energy
levels (called “pseudopotentials™) completely
characterize the interaction potential.

® a large gap between energy levels favors flux

attachment with a shape close to that of
the “interaction metric”




® Flux attachment is a gauge condensation that removes the
gauge ambiguity of the guiding centers, giving each one a
“natural” origin, so they define a physical electric dipole
moment of the “composite particle” in which they are bound

by the “attached flux”.

® This is analogous to how the “‘the vector potential becomes
an observable” (in a hand-waving way) in the London
equations for a superconductor.

(fuzzy) region from which

particles other that those making up
the “composite particle” are
excluded

center of flux-attachment



® quantum solid

® unit cell is
correlation hole

® defines geometry

® repulsion of other particles make an attractive

potential well strong enough to bind particle

solid melts if well is not strong enough to contain
zero-point motion (Helium liquids)



® |n Maxwell’s equations, the momentum
density is

i = e DIBy D' =e€dVE; + P’

® [The momentum of the condensed matter is

p=dxDB
\

electric dipole moment

® in 2D the guiding-center momentum then is
Dy = eBe, ;0 R?

® The electrical polarization energy of the dielectric
composite particle then gives its energy-momentum
dispersion relation, with no involvement of any
“Newtonian inertia” involving an effective mass




® [he Berry phase generated by
motion of the “other particles”
that “get out of the way’ as the
vortex-like “flux-attachment”
(orbital-attachment) moves with
the particle(s) it encloses can be
formally-described as a Chern-
Simons gauge field that cancels
the Bohm-Aharonov phase, so
that the composite object

propagates like a neutral particle.

-----------
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® |f the composite particle is a boson, it condenses into the
zero-momentum_(zero electric dipole-moment)
inversion-symmetric state, giving an incompressible-fluid
Fractional Quantum Hall state, with an energy gap for
excitations that carry momentum or electric dipole
moment (“‘quantum incompressibility”’, no transmission of
pressure through the bulk).

e All FQH states have an elementary unit (analogous to the unit
cell of a crystal) that is a composite boson under exchange.

® |t may be sometimes be useful to describe this boson as a a
bound state of composite fermions (with their own preexisting
flux attachment) bound by extra flux (Jain’s picture)




0.9

[ e Lt ottt e L IO,
) 0.8 | M ' M+:_§_++}ﬁ$¢ s+t 1
! $E3 AR s B B
goes into | e £
R . % ]
continuum £
% . .
06 % (2 quasiparticle - i et
os | + 2 quasiholes) | VY. Y
RS T+ i %
04 | o 3
‘¢ t 99 ] fermionic
03 | roton ] “roton” A~
0.2 _
. Moore-Read
01 | Topologically-degenerate FQH state -
o< ® 1 1 1 1
0 ] ] ] ] ] ]
0 0.5 1 1.5 2 2.5 3 B

gap «— incompressibility

Collective mode with short-range V Collective mode with short-range three-body
pseudopotential, /3 filling (Laughlin state is exact pseudopotential, /2 filling (Moore-Read state is
ground state in that case) exact ground state in that case)

® momentum /ik of a quasiparticle-quasihole pair is

_ b
proportional to its electric dipole moment pec hka = €ap BPe

gap for electric dipole excitations is a MUCH stronger
condition than charge gap: fluid does not transmit
pressure through bulk!



® the essential unit of the |/3 Laughlin state is the
electron bound to a correlation hole corresponding to
“units of flux”, or three of the available single-particle

states which are exclusively occupied by the particle to
which they are “attached”

® |n general, the elementary unit of the FQHE fluid is a

“composite boson” of p particles with g “attached flux
quanta”

® This is the analog of a unit cell in a solid....



® The 2D in-plane quadrupole density of the QHE fluid is important

because the fluid rigidly has no electric polarization tangent to
the Hall plane when it is not flowing. (There is a gap for
excitations carrying electric dipole moment)

® The model for the FQHE in a single partially-occupied Landau level is

H= ) V(R,—R) [RR' = —i(ileB)e™S5; F,=Bey

1<J guiding centers

This naturally has translation and 2D inversion symmetry (R¢ — — R%) but not unphysical
SO(2) continuous rotational symmetry, which is an extra “toy model” feature used by
most authors.

The use of “extra symmetries” such as SO(2) is “dangerous” as it allows irrelevant
features of the extra symmetry to be confused with generic features of the problem.
However 2D inversion symmetry is a “natural” symmetry to keep, giving the
composite boson a parity but not an angular momentum.



® quadrupoles in the QHE are positive- or negative-definite symmetric
contravariant tensors.

® There are two type of quadrupoles:

-----
.” S

. , , e
® |andau orbits have a (static) electric o R
quadrupole moment relative to the \ ’
guiding center X

by definition, the (static) guiding center is the
time-averaged center of the orbit

.
~ -
''''''

® |n the FQHE,“flux attachment” to form
“composite bosons” also generates a
(dynamic) “guiding-center” quadrupole
moment




® “Berry curvature of Bloch states” is NOT a “standard” Berry
curvature, but enters in the semiclassical dynamics of a Bloch
electron wavepacket subjected to electromagnetic fields

electric field Faraday tensor electromagnetic vector potential

: N\ ) ;
hk&l — e(Ea(X) + I ab(X)xb) R

¢ = Va(k) o gzab(k) kb F(k) = ai oA’ (k) azbgi“(k)

[ \

Group velocity Berry curvature Berry connection

® The wavepacket has a Gaussian form centered at x in Euclidean
space and at k in Bloch space (Brillouin zone). The Bloch band
is non-degenerate at this k



e | uttinger discovered this in 1957 (no-one believed him!)

k, = (e/h)E,

i = vi(k) — W’?(k)kb/

“anomalous velocity”

“current density” /6—2 j % Z&Tab(k) (k) | E
i # © (Zﬂ)d . n n, b
€
Ji=e Y v (k)n F%om,, | E
% n nk # (% n nk b

e |In 2D when all bands are either filled or empty,

2

ab € 1 2 orab
— d-k E FWO(k

n

Integer Chern invariant (TKNN)



e |n an isolated (everywhere non-degenerate) two-
dimensional band, the Berry curvature obeys a sum rule

F ,(K) = abf“f" (k)

Chern invariant of the band

|
_J dzkd" (k) — n — (Iﬂteger)

27

 This is a sum rule, not a definition of C,, which is defined
independently of the Berry curvature.

e The orientation-independent integer-valued antisymmetric
“Chern tensor” ¢ = C e is a property of the Bloch
Hamiltonian H,, and can be determined by examining Its
edge states, without reference to the embedding-
dependent k-space Berry curvature.




e For a Bloch band to exhibit Berry curvature, there must be
n > 1 sublattices so there are »n orbitals in the unit cell (tight-
binding picture)

e Let p.(m k) be the weight of Bloch state k of band m on
sublattice i

pm.k+G)=p(mk) ) pmK =1

e | et the embeddings of each orbital on sublattice i be
changed by 6x.. The change in Berry curvature of band m is

0 0
SF LK) = ) oxf ((sgE — 5({?()7> p(m,K)
{ b a

e This leaves the Chern invariant unchanged but
moves Berry curvature around in the Brillouin zone




® does the Berry curvature on a 2D compact
manifold DEFINE its Chern invariant????

F (%) = = i(0,¥(x)] 0,¥(x)) — (4 < 1)

J dxt Ndx"F , (x) = 27C
S

® NO: this is just a sum rule that any non-singular Berry
curvature on the manifold must satisfy.

The Chern number of a 2D Bloch band is always well-
defined, but its Berry curvature is not defined until its

embedding in the background Euclidean space (with
supports the electromagnetic field) is specified.




Integer QHE seen in 2D Slater-Determinant filled-band systems with a
Streda anomaly (Landau levels, Chern insulators)

Fractional QHE seen in flat-band systems dominated by short-distance
Coulomb repulsion. Incompressible states are due to Coulomb repulsion,
are NOT Slater-determinant states.

Laughlin 1/3 state in Landau level (first-quantized form, second quantization is not useful!)

pl/s =|IaT—aT3O T =
[¥7(8)) (a J) [0) a.|0) =0 [ai,aj]_éij
y. 1<J
adgtlgliie?n sighature metric, —ieF 0" = (h/bﬂz)gaba)b
*a_ b
- | a Bapw "7 =1
Re = pop, et | Ok Lo+ o)
" " Landau level al T gab 2 a)a a)b a)b a)a
[R%,R"] = — i(h/eB)e® \/2?/” ieF , = %(h/fz)(a)gfa)b - wfw,)
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® The Laughlin state \‘I’i/m(g»has a simple form in the
single-particle basis defined by its metric g ;:

1 a 1
~8apR R |m) = (m+3)f2\m)
m=0,1,2,...

This basis divides the 2D plane into a concentric system of elliptical “onion ring”
annuli. Each annulus covers an area 277 through which one quantum ®, = h/e

of magnetic flux passes, and supports one single-particle state which falls off
exponentially outside it.

® The central state m = 0 is a minimum-uncertainty Gaussian
coherent state satisfying

(W] -{R% R} |W) — (PR | ¥)(¥|R"|¥) = -g0¢>



® before moving on to Bloch systems, there is
one interesting observation to make about the
maximally-localized coherent states

| W, (X, g)) in Landau levels:

® Their localization around their center falls off
as a Gaussian: i.e., more rapidly than any
exponential: “hyperlocalized”

® This is atypical, and stems from an underlying

holomorphic structure not present in lattice
models.

The Landau-level system can be regarded as the limit
In which the generic exponential decay length goes to zero




e Numerical studies of the (spin-polarized) flat-band model
show that, for some values of the parameters, a zero-field
fractional anomalous Hall effect occurs at 1/3 band filling in

a model

Projection into Bloch band n

.*.
P, Z f;ic. ¢ + Z Vl-jnl-nj P,
I 1

short-distance

Chern band (nearest-neighbor)
gauge-invariant

repulsive interaction

e |t appears necessary that the band is a “Chern band” with a
non-zero Chern index (i.e., a Streda anomaly).



* Prior to the FCI discovery, our understanding of FQHE has been
Landau-level based

e The numerical observation of the FCI state in “toy models” followed by
the recent experimental observation in Moiré flat-band systems
provides an opportunity to reassess FQHE theory, and drop Landau-
level-specific features such as holomorphic functions and rotational
symmetries which have NO PLACE in an extension of FQHE theory to

the FCI state.

* The question is not “how can a flat band Bloch system mimic a Landau
level”,

e but instead: “what are the common features between Landau level
FQHE systems and Bloch FCI systems”



e Various authors have suggested that the k-space
distribution in the Brillouin zone of single particle Berry

curvature & flb (K) or the quantum geometric tensor Fflb (k)
may play a role in the explanation.

e Based on the existence of FCI behavior in the toy models,
these can be immediately ruled out as conceptually invalid
ideas: The toy models are network models with no
Euclidean-space embedding to define a physically-
meaningful k-space Berry curvature

k-space behaviors proposed to give rise to FCI:

quasi-uniformy@erry curvature “vortgKability”

oz ab e ab
Fu k) = F, (ke k) = | F (k)| (g(k) + ise®)
F,(kK) ~ constant

¢%(k) ~ constant s = 1,det|g| =1



nearest-neighbor
iInteractions
(in local basis)

o After projection into the narrow band,
this model with nearest-neighbor

repulsion appears to show FCI behavior
at 1/3 filling of the narrow band!

(i)

* Proposed way to study this: first
understand when and why FCI behavior
occurs In the band-projected model

e Next examine stability of FCI

behavior with respect to one-particle
dispersion

Model is purely a
network model

No embedding specified

FCI occurs in absence
of EM fields

No “Berry curvature” or
“gquantum geometric tensor”

In Brillouin zone is defined for
this model that exhibits FCI




e Real-space quantum Geometry of Bloch bands without
Euclidean embedding:

Local real-space basis

| R l> <R Z‘RI9]> 5RR I
/ \ orthonormal
unit cell label sublattice label

H = 2 L (R R’) |R l><R’,] | Bloch Hamiltonian

T(R) — Z ‘ R’ + R, l ><R 1 ‘ Lattice translation operator
R',i

ddk Band projection operator

P, = k,n){k,
' J‘BZ (2”)&’ ‘ n>< n‘ PnPn’ — 5nn’Pn




e projected local basis (overcomplete, nhon-orthogonal)

W (R, i) = P, |R,)
(¥ (R,i)|¥ (R, ])) = S;.”)(R — R

e The fundamental quantum-geometry property:

(R,i|P,|R,j) = Slf].")(R —R)

falls off exponentially for large |R-R’|:
(decay length diverges at transitions where Chern index changes )

« conjecture: rapid decay of SZ§.”)(R — R’) with distance on

the Bravais lattice favors FCI.



Y S{R-RWR.j)=swRi) 0<s,<]1
(R',j))eC

D WER, DW(R, i) = 5,
(R,)eC

e The orthonormal basis is

W) = Y W R DI,R D) (V) =6,
\/S/I (R,)eC
A S/1 S/IA
one state I !...1

per (bulk) unit cell
(can form Wannier orbitals)

eigenvalue spectrum

edge states (large cluster)

0
trivial band Chern band



e spectral evolution across the phase transition
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FIG. 4: Eigenvalue spectrum of the overlap matrix after diag-

onalizing over a circular region of the lattice with a ten-bond

radius.



In the case of the Chern band, the maximum eigenvalue s,

indicates the basis set member localized nearest the center of
the cluster, the “central state”, analogous to a coherent state.

In order of decreasing s, the set of “concentric” edge states of
the “onion rings” are denumerated.

The key question for e.g., the 1/3 FQHE state is, how compact
IS the region on which the top three states are supported. This
depends how far from a critical point the system is.

The “lattice uncertainty principle” says that the area covered
by the three orbitals cannot be less than three unit cells.

e |f sufficiently compact, exclusive
occupation of this region could prevent
nearest-neighbor interactions




e At a critical point where the Chern invariant changes, a
massive Dirac/Weyl point gap closes, and reopens

energy gap Aky + 8k) o v (kg+8“ Sk k)
(spatial) conf |
T fopatiah conformal

band n+1

+7T
Cn+1 =1

—
contributions — | ﬂ«- \/

to TKNN integral

from near Dirac point \

_ﬂ/\

+ 7T | |
Ko <0 Ko =0 Ky > 0

-3V3] v=0

= L

band n FIG. 2. Phase diagram of the spinless electron model with
|t2/t1] < 5. Zero-field quantum Hall effect phases (v= 1,
where 6 =ve?/h) occur if | M/t,| <3+/3|sing|. This figure
assumes that ¢, is positive; if it is negative, v changes sign. At
the phase boundaries separating the anomalous and normal
(v=0) semiconductor phases, the low-energy excitations of the
model simulate undoubled massless chiral relativistic fermions.




® as the critical point is approached (xk — 0)

. 1 e
lim |S;(R)| e IRl
|R|—— 0 |R‘

® here |[R|*= g, RR” is measured with the emergent

metric of the Dirac point, which characterizes the
conformal invariance of the critical point.

® note that a quantum distance between the projected orbitals is defined by
| Sz](R o R/) |
V (S:(0)S(0))

(pure-state Bures distance)

dR,i;R’,j —



