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We demonstrate that the statistical fluctuations in resonant radiation detectors operating

in homodyne and heterodyne modes offers additional, complementary information to that

obtained from their direct operation as click detectors. We use this to refine tests of the

coherent state hypothesis of interest in connection with gravitational wave fields.

I. INTRODUCTION

Experiments over the last century have revealed that nature obeys the laws of quantum mechan-

ics to great accuracy in many circumstances. But few of these experiments significantly involve

gravity, and thus far no observed phenomenon in gravity has required elucidation using its (pre-

sumed) quantum dynamics. The relatively recent observation of gravitational radiation [1, 2]

plausibly opens new possibilities in this regard, since it gives direct access to the gravitational

quanta - in great abundance! It has been suggested that statistical fluctuations in gravitational

wave signals might be promising in this regard [3–7].

Classical or semiclassical calculations of the interactions between matter and gravitational radi-

ation implicitly assume a coherent state description for the gravitational radiation field. For some

– but not all – analogous problems in electrodynamics, this can be justified formally using so-called

the optical equivalence theorem [8]. Thus, phenomena that indicate deviations from the coherent

state hypothesis for the gravitational radiation field would force us away from that classicality

assumption [7] and require that we bring in a richer quantum description.

Recently [7] we suggested that the statistics of resonant bar detectors, when they function as
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quantized “click” detectors [6] are promising in this regard. Here, we extend that work to consider

interferometric quantum phase measurement strategies using resonant detectors. These methods

access additional information that is complementary, in the sense of quantum theory, to “click”

detection.

Discrimination of sub-Poissonian quantum states of gravitational radiation is especially chal-

lenging [7, 9, 10]. We find that use of homodyne techniques, which bring in phase sensitivity, and

heterodyne techniques, which enhance selected quadratures, can be helpful in this regard.

Our proposed tests of acoherence rely on the foundational work of Ref. [6]. There it was sug-

gested that a stimulated absorption probability of order unity can be achieved for gravitational

radiation using challenging, but feasible, parameters for resonant bar detector designs. The stim-

ulated absorption rate is, γs = γ0⟨a†a⟩ in the single-mode approximation for the gravitational

radiation field with annihilation operator a. Here γ0 is the spontaneous emission rate. The spon-

taneous emission rate (γ0) and stimulated absorption rate for single gravitons (γs for the 0 → 1

transition) can be estimated for the fundamental acoustic mode of resonant mass detectors to

be [6],

γ0 =
8GML2ω4

π4c5
, ⟨a†a⟩ = h20c

5

32πℏGω2
, and γs = γ0⟨a†a⟩ =

h20ML2ω2

4π5ℏ
, (1)

where G is Newton’s constant, M, L are the mass and length of the resonant mass detector, and c

is the speed of sound, and h0 is the amplitude of the incoming gravitational radiation field. Here

ω is the resonant frequency of the bar detector, ω = πvs/L for the fundamental acoustic mode of a

Weber bar, where vs is the speed of sound for the material used. Hence the stimulated absorption

rate can be re-expressed in terms of material parameters as γs =
h2
0Mv2s
4π3ℏ .

When one estimates for typical Weber bars as was done in Ref. [6], γ0 ∼ 10−33Hz. This can

be compared to the spontaneous emission rate for single gravitons from a single Hydrogen atom,

that is approximately 10−40Hz [11–13]. In comparison, the resonant frequencies for such bars can

also be in the kilohertz range, where we know that gravitational waves exist with observable strain

amplitudes h0 ∼ 10−22 to 10−21. For ω/(2π) in range 100Hz to 200Hz, this represents ⟨a†a⟩ ∼ 1036

gravitons [13]. Therefore, a stimulated absorption probability γs∆t ∼ γ0⟨a†a⟩∆t of order unity

can be achieved in practice within the millisecond timescales (∆t ∼ 1ms) that are relevant to the

experiment [6, 14].

The product γ0∆t represents the graviton-to-phonon conversion efficiency. It is a very small

number, but gets compensated by the number of gravitons in the incoming radiation field, making

it feasible to observe quantum jumps induced in resonant mass detectors. For click detectors that
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monitor quantum jumps stimulated by the gravitational radiation, the signal is already at the level

of γ0∆t⟨a†a⟩ as discussed. Our previous work has shown that the observable excess noise in counts

is equal to (γ0∆t)
2Q⟨a†a⟩, where Q is the Mandel’s Q parameter [7]. Thus, if the gravitational

radiation field is in a quantum mechanical state for which Q ∼ O(⟨a†a⟩), then the excess noise

becomes observable too. We showed that a variety of plausibly relevant states, including squeezed

and thermal states, have that feature.

One objective of this present work is to show that even when Mandel’s Q is bounded, as

such is the case for sub-Poissonian states having −1 ≤ Q < 0, the quantum mechanical noise

characteristics can be amplified by choosing appropriate quantum phase measurement strategies

which complement click detectors. We will show in the upcoming sections that the excess quantum

noise observable in phase-quadrature measurements can be of the same order as γ0∆t⟨a†a⟩. This

linear dependence on the excess noise in γ0∆t for quadrature measurements is also not surprising,

as the variances of X̂ and P̂ have the same number (two) of creation and annihilation operators

as the number operator, a†a. Therefore, the noise in quadrature measurements can be of the same

order of magnitude as the signal in number (click) measurements. To further substantiate this,

note that for quadrature measurements, the signal is actually proportional to
√
γ0∆t, the square

root of the graviton-to-phonon conversion efficiency.

More generally, we demonstrate that measurement of complementary quantum noise characteris-

tics gives additional insight into the character of radiation fields, and can bring to light additional

phenomena – specifically, violations of the coherent state hypothesis – that transcend classical

physics.

II. FRAMEWORK

For later use let us briefly recall some essential results from [7]. Given the rotating wave

and single mode approximations, the problem of resonant detection of radiation fields involves the

interaction Hamiltonian obeying,

HI∆t = ℏ
√
γ0∆t(a

†b+ b†a). (2)

The mode b is the detector (acoustic mode of the resonant mass detector), the mode a represents the

gravitational radiation field in the single mode approximation, and γ0 is the spontaneous emission

rate of the detector for the field quantum (graviton). With this model, we revisit the graviton

counting statistics framework developed in Ref. [7] to set the stage for the complementary phase
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detection strategies that follow. A generic quantum state of the field ρ, and vacuum of the detector

|0⟩⟨0| evolve as [7],

e−
i
ℏH∆tρ⊗ |0⟩⟨0|e

i
ℏH∆t

=

∫
d2αP (α)|α cos(

√
γ0∆t)⟩⟨α cos(

√
γ0∆t)| ⊗ | − iα sin(

√
γ0∆t)⟩⟨−iα sin(

√
γ0∆t)|, (3)

where we have used the Sudarshan-Glauber diagonal P representation for the arbitrary state of

the radiation field, ρ [8, 15]:

ρ =

∫
d2αP (α)|α⟩⟨α|. (4)

For click detections, we obtain the following probability, Pn for registering n clicks, given by [7],

Pn = trF {⟨n|UI(ρ⊗ |0⟩⟨0|)U †
I |n⟩}

=
[sin2(

√
γ0∆t)]

n

n!

∫
d2αP (α)|α|2ne−|α|2 sin2(

√
γ0∆t).

(5)

From this, one can estimate that the average number of clicks is given by,

n̄ =
∞∑
n=0

nPn = sin2(
√
γ0∆t)⟨a†a⟩ ≈ γ0∆t⟨a†a⟩, (6)

and the variance,

(∆n)2 ≈ n̄+ (γ0∆t)
2Q⟨a†a⟩, (7)

where Q is the Mandel’s Q parameter defined as,

Q =
⟨(∆N̂)2⟩ − ⟨N̂⟩

⟨N̂⟩
, (8)

where N̂ = a†a. Another helpful test statistic relevant at low count rates is the ratio [7],

R =
2P2P0

P 2
1

≈ 1 +Q/⟨N̂⟩. (9)

For a coherent state, Q = 0, and it can be noted that the observable detector variance (∆n)2 = n̄

for the resonant detector. We also see that R = 1 for coherent states. However, certain quantum

mechanical states would show observable departures from a coherent state based on the global

statistics or the ratio test. We see that if γ0∆t⟨a†a⟩ is of order unity (which is satisfied by appro-

priate resonant bar detectors even for gravitational radiation having energy densities comparable

to the LIGO-band gravitational waves [6]), as well as if the Mandel’s Q parameter is of order ⟨a†a⟩,
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then such departures will become visible as excess quantum noise in the resonant detector [7].

Our earlier work pointed out that thermal states, and highly squeezed vacuum states which are

super-Poissonian, show observable deviations from coherent states based on the above acoherence

criteria proposed for click detectors [7]. However, the class of states that are difficult to discrim-

inate with the above criteria are sub-Poissonian states, for which the Mandel Q is bounded such

that −1 ≤ Q < 0.

The smaller variance of sub-Poissonian nature for measurements in the number basis implies

that appropriate quantum measurements of phase would reveal the excess noise in these quantum

states in the “phase” observable. In this present work, we explore phase-sensitive (homodyne) and

phase-preserving (heterodyne) measurements to capture the excess phase noise. Through this, our

goal is to propose additional tests of acoherence, that are complementary to our earlier work [7],

while also probing a regime (sub-Poissonian noise) that is considered by many as the highest

standard for verifying the quantum nature of radiation fields in practice.

III. PHASE SENSITIVE QUANTUM MEASUREMENTS (HOMODYNE DETECTION)

We first consider the case of phase-sensitive quantum measurements, also known as homodyne

detection. For homodyne detection, the objective is to measure along one direction (given phase)

in the phase-space. This can be achieved by using a local oscillator as a phase reference to the

signal at the same frequency. While an arbitrary direction can be chosen, we pick this direction as

the x̂ direction for simplicity, where the measurement operators are simply the projectors, |x⟩⟨x|

on the detector, for the observable x̂ = x0(b + b†)/
√
2 : x̂|x⟩ = x|x⟩. We obtain the following

probabilities for observing a given quadrature x, given by,

PD(x) = TrF ⟨xD|e−
i
ℏH∆tρ⊗ |0⟩⟨0|e

i
ℏH∆t|xD⟩

=
1√
πx0

∫
d2αP (α)e

− [x−
√
2x0Im(α) sin(

√
γ0∆t)]2

x20 , (10)

where x0 ∝
√
ℏ is the zero-point length of the detector mode. Here, we have also made use of the

relation, Re[−iα sin(
√
γ0∆t)] = Im(α) sin(

√
γ0∆t). We find that,

⟨x̂⟩ =
√
2x0 sin(

√
γ0∆t)

∫
d2αP (α)Im(α) =

√
2x0 sin(

√
γ0∆t)⟨Im(α)⟩. (11)

Similarly, we have,

⟨x̂2⟩ = 1

2
x20 + 2x20 sin

2(
√
γ0∆t)

∫
d2αP (α)Im(α)2 =

1

2
x20 + 2x20 sin

2(
√
γ0∆t)⟨Im(α)2⟩. (12)
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We obtain that the variance is given by,

⟨(∆x̂)2⟩ = ⟨x̂2⟩ − ⟨x̂⟩2 = 1

2
x20 + 2x20 sin

2(
√
γ0∆t)[⟨Im(α)2⟩ − ⟨Im(α)⟩2]

= x20

[
1

2
+ sin2(

√
γ0∆t)

(
⟨(∆P̂ )2⟩ − 1

2

)]
. (13)

We have made use of the result,

2[⟨Im(α)2⟩ − ⟨Im(α)⟩2] = ⟨(∆P̂ )2⟩ − 1

2
, (14)

where P̂ = (a − a†)/(i
√
2), X̂ = (a + a†)/

√
2 are the quadratures of the field represented in

dimensionless units (see Appendix. A). We can now estimate the observable quantum noise for

different quantum states of the radiation field. First we estimate the noise observable for a coherent

state ρ = |α⟩⟨α| for which ⟨(∆P̂ )2⟩ = 1/2. We find that,

⟨(∆x̂)2⟩ = x20
2
. (15)

For a thermal state of the gravitational radiation with average thermal quanta nth, the P function,

and the momentum variance are given by,

Pth(α) =
1

πnth
e−|α|2/nth , ⟨(∆P̂ )2⟩ = 2nth + 1

2
. (16)

We obtain,

⟨(∆x̂)2⟩ = 1

2
x20 + 2x20 sin

2(
√
γ0∆t)[⟨Im(α)2⟩ − ⟨Im(α)⟩2]

=
1

2
x20 + 2x20 sin

2(
√
γ0∆t)

nth
2

= x20

[
nth sin

2(
√
γ0∆t) +

1

2

]
. (17)

If the number of thermal gravitons are of the same order that the resonant detector would register

a click: ⟨a†a⟩ sin2(
√
γ0∆t) ≈ γ0∆t⟨a†a⟩ ∼ O(1), we see that the quantum noise of gravitons in the

thermal state also show a similar order of magnitude difference in the excess noise in homodyne

measurements. For Weber bars used as click detectors for gravitons as proposed in Ref. [6], stim-

ulated absorption probability γ0⟨a†a⟩∆t of order unity can be achieved for gravitational radiation

with energy densities comparable to the LIGO band. Hence it appears that such tests are feasible

within reasonable time windows (∆t ∼ 1ms). While click detection strategy was proposed only

recently, homodyne detection has the added advantage that it is similar in spirit to how Weber’s

classical detection strategy would have worked.

We can also generalize our results for a generic Gaussian state (a displaced, squeezed, thermal

state. See Appendix. A),

⟨(∆x̂)2⟩ = x20

[{
2nth + 1

2
[cosh(2r) + sinh(2r) cos(ϕ)]− 1

2

}
sin2(

√
γ0∆t) +

1

2

]
. (18)
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Consider gravitational radiation in a squeezed vacuum state: nth = 0 and ϕ = 0. In this case, we

get,

⟨(∆x̂)2⟩ = x20

[{
1

2
exp(2r)− 1

2

}
sin2(

√
γ0∆t) +

1

2

]
→ x20

2

[
cos2(

√
γ0∆t) + exp(2r) sin2(

√
γ0∆t)

]
,

(19)

which again suggests that excess quantum noise along the other quadrature is observable, since

exp(2r) sin2(
√
γ0∆t) ∼ exp(2r)γ0∆t ∼ O(1) for large squeezing such that ⟨a†a⟩ = sinh(r)2 ∼

exp(2r) ∼ 1036, which corresponds to number of gravitons with energy densities comparable to

LIGO band gravitational waves.

In the special case ϕ = π one obtains,

⟨(∆x̂)2⟩ = x20

[{
1

2
exp(−2r)− 1

2

}
sin2(

√
γ0∆t) +

1

2

]
, (20)

Then in the limit r → ∞ we find

⟨(∆x̂)2⟩ = x20

[{
1

2
exp(−2r)− 1

2

}
sin2(

√
γ0∆t) +

1

2

]
→ x20

2

[
1− sin2(

√
γ0∆t)

]
, (21)

Here noise below vacuum noise is difficult to measure, since γ0∆t alone is very small. This difficulty

was also pointed out recently in [9, 10].

It is interesting to see what results we find for a Fock (number) state that is maximally sub-

Poissonian. For a number state |n⟩ we know that,

⟨(∆P̂ )2⟩ = ⟨(∆X̂)2⟩ = 2n+ 1

2
. (22)

Hence, we obtain that,

⟨(∆x̂)2⟩ = x20

[
1

2
+ sin2(

√
γ0∆t)n

]
. (23)

If the number of gravitons making up the gravitational radiation in this context has energy densities

comparable to that of LIGO band gravitational waves (n ∼ 1036), we can have n sin2(
√
γ0∆t) ≈

nγ0∆t of order unity for typical Weber bar detectors. This suggests that for our phase-sensitive

quantum measurement strategy, the deviation in the excess noise produced when compared to a

coherent state of the radiation field can be of order unity. This should be compared to statistical

noise in direct click detection, which does not discriminate between Fock and coherent states [7].

While our tests are based on the excess quantum noise produced (i.e., in the second moment),

it can be noted that the average signal also exhibit complementary features depending on the

quantum state of the radiation field, and the detection strategy used [16].
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IV. HETERODYNE DETECTION

Heterodyne detection corresponds to projecting the field on to the coherent state basis, described

by measurement operators,

Kβ =
1√
π
|β⟩⟨β|. (24)

The factor of π comes from the overcompleteness of coherent states. For the interaction Hamiltonian

we have considered, the probability of measuring a given coherent state |β⟩ is given by,

PD(β) =
1

π
TrF ⟨βD|e−

i
ℏH∆tρ⊗ |0⟩⟨0|e

i
ℏH∆t|βD⟩

=
1

π

∫
d2αP (α)e−|β+iα sin(

√
γ0∆t)|2 . (25)

A. Statistics of quadratures

From PD(β) given in Eq. (25), we can estimate the moments of measured quadrature outcomes,

⟨Re(β)⟩ =
∫
d2βRe(β)

1

π

∫
d2αP (α)e−|β+iα sin(

√
γ0∆t)|2

= sin(
√
γ0∆t)

∫
d2αP (α)Im(α) = sin(

√
γ0∆t)⟨Im(α)⟩.

⟨Re(β)2⟩ = 1

2
+ sin2(

√
γ0∆t)

∫
d2αP (α)Im(α)2 =

1

2
+ sin2(

√
γ0∆t)⟨Im(α)2⟩.

⟨Im(β)⟩ =
∫
d2βRe(β)

1

π

∫
d2αP (α)e−|β+iα sin(

√
γ0∆t)|2

= − sin(
√
γ0∆t)

∫
d2αP (α)Re(α) = − sin(

√
γ0∆t)⟨Re(α)⟩.

⟨Im(β)2⟩ = 1

2
+ sin2(

√
γ0∆t)

∫
d2αP (α)Re(α)2 =

1

2
+ sin2(

√
γ0∆t)⟨Re(α)2⟩. (26)

These results yield the following estimates for the variances,

⟨(∆Re(β))2⟩ = 1

2
+ sin2(

√
γ0∆t)[⟨Im(α)2⟩ − ⟨Im(α)⟩2]

=
1

2

{
1 + sin2(

√
γ0∆t)

[
⟨(∆P̂ )2⟩ − 1

2

]}
, (27)

and

⟨(∆Im(β))2⟩ = 1

2
+ sin2(

√
γ0∆t)[⟨Re(α)2⟩ − ⟨Re(α)⟩2]

=
1

2

{
1 + sin2(

√
γ0∆t)

[
⟨(∆X̂)2⟩ − 1

2

]}
. (28)
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As an example, we consider a squeezed state with ϕ = 0 and nth = 0. In this case, ⟨(∆P̂ )2⟩ → e2r/2,

and ⟨(∆X̂)2⟩ → e−2r/2. In the limit of large squeezing (r → ∞) we find that,

⟨(∆Im(β))2⟩ = 1

2

{
1 + sin2(

√
γ0∆t)

[
⟨(∆X̂)2⟩ − 1

2

]}
=

1

2

{
1 + sin2(

√
γ0∆t)

[
e−2r

2
− 1

2

]}
→ 1

2
cos2(

√
γ0∆t) ≈

1

2
, (29)

and the last equality holds since γ0∆t ≪ 1. However we can consider the noise observable in the

conjugate signal. For r ≫ 1, we find,

⟨(∆Re(β))2⟩ = 1

2

{
1 + sin2(

√
γ0∆t)

[
⟨(∆P̂ )2⟩ − 1

2

]}
=

1

2

{
1 + sin2(

√
γ0∆t)

[
e2r

2
− 1

2

]}
→

[
1

2
cos2(

√
γ0∆t) +

e2r

4
sin2(

√
γ0∆t)

]
. (30)

This again suggests that a large squeezing can make the excess noise of gravitons visible as noise

in one of the quadratures. However, note that the excess noise observable in each quadrature of

heterodyne is a factor of two smaller than that observable in the homodyne signal (in units where

we set x0 = 1).

Next we also consider the detector response to heterodyne quadrature measurements for a

maximally sub-Poissonian number state of the radiation field. We obtain,

⟨(∆Re(β))2⟩ = 1

2
+ sin2(

√
γ0∆t)[⟨Im(α)2⟩ − ⟨Im(α)⟩2]

=
1

2

{
1 + sin2(

√
γ0∆t)

[
⟨(∆P̂ )2⟩ − 1

2

]}
=

1

2

{
1 + sin2(

√
γ0∆t)n

}
(31)

and

⟨(∆Im(β))2⟩ = 1

2
+ sin2(

√
γ0∆t)[⟨Re(α)2⟩ − ⟨Re(α)⟩2]

=
1

2

{
1 + sin2(

√
γ0∆t)

[
⟨(∆X̂)2⟩ − 1

2

]}
=

1

2

{
1 + sin2(

√
γ0∆t)n

}
(32)

We arrive at the same conclusion as before. The noise characteristics in the heterodyne signal

for a Fock state are similar to those of a thermal state, a factor of two smaller when compared

to homodyne. Nevertheless, as is evident, both homodyne and heterodyne detection strategies

can discriminate a Fock state from a coherent state, while click detectors cannot. Given that

click detectors can discriminate a thermal state from a coherent state, these different (phase and
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number) quantum measurement strategies can be combined to definitively test the acoherence of

gravitational radiaiton through the methods we have discussed here.

Finally, we note that the measurements of power fluctuations in the heterodyne signal tells a

different story, that is comparable to click detectors. In Sec. IVB, we show that measuring het-

erodyne power fluctuations does not allow to discriminate the number state from a coherent state,

while thermal states are discriminable. This also suggests that combining different measurement

strategies, it is possible to map out the quantum states of the radiation field, including that for

gravitational radiation using bar detectors.

B. Statistics of power in the heterodyne signal

We first estimate the moments of the heterodyne power, which we define as, Ĵ = b†b. For the

average, we obtain,

⟨Ĵ⟩ = ⟨b†b⟩D =

∫
d2βPD(β)|β|2 =

1

π

∫
d2αP (α)

∫
d2β|β|2e−|β+iα sin(

√
γ0∆t)|2

=

∫
d2αP (α)[1 + sin2(

√
γ0∆t)|α|2] = 1 + sin2(

√
γ0∆t)⟨a†a⟩. (33)

Similarly, we can write the variance as,

⟨(∆Ĵ)2⟩ = ⟨(b†b)2⟩ − ⟨b†b⟩2 = ⟨b†b⟩+ ⟨(b†)2b2⟩ − ⟨b†b⟩2

= ⟨|β|2⟩D + ⟨|β|4⟩D − ⟨|β|2⟩2D

=

∫
d2βPD(β)[|β|2 + |β|4 − ⟨|β|2⟩2]

=
1

π

∫
d2αP (α)

∫
d2βe−|β+iα sin(

√
γ0∆t)|2 [|β|2 + |β|4 − ⟨|β|2⟩2]. (34)

We evaluated the first term above already, and the third term is simply the square of the first

integral since it is integrating a constant (squared average). The second term gives,

1

π

∫
d2αP (α)

∫
d2βe−|β+iα sin(

√
γ0∆t)|2 |β|4 =

∫
d2αP (α)[2 + 4|α|2 sin2(

√
γ0∆t) + |α|4 sin4(

√
γ0∆t)]

= 2 + 4 sin2(
√
γ0∆t)⟨a†a⟩+ sin4(

√
γ0∆t)⟨(a†)2a2⟩. (35)

We can substitute this back, and find,

⟨(∆Ĵ)2⟩ = 1

π

∫
d2αP (α)

∫
d2βe−|β+iα sin(

√
γ0∆t)|2 [|β|2 + |β|4 − ⟨|β|2⟩2]

= 2 + 3 sin2(
√
γ0∆t)⟨a†a⟩+ sin4(

√
γ0∆t)[⟨(a†)2a2⟩ − ⟨a†a⟩2]

= 2 + 3 sin2(
√
γ0∆t)⟨a†a⟩+ sin4(

√
γ0∆t)[⟨(a†a)2 − a†a⟩ − ⟨a†a⟩2]

= 2 + 3 sin2(
√
γ0∆t)⟨N̂⟩+ sin4(

√
γ0∆t)[⟨(∆N̂)2⟩ − ⟨N̂⟩]

= 2 + 3 sin2(
√
γ0∆t)⟨N̂⟩+ sin4(

√
γ0∆t)Q⟨N̂⟩, (36)
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where N̂ = a†a. For γ0∆t≪ 1, we can write sin2(
√
γ0∆t) ≈ γ0∆t. In this case, we have,

⟨Ĵ⟩ ≈ 1+ γ0∆t⟨N̂⟩, and, ⟨(∆Ĵ)2⟩ ≈ 2+ 3γ0∆t⟨N̂⟩+ (γ0∆t)
2Q⟨N̂⟩ = (3⟨Ĵ⟩ − 1) + (γ0∆t)

2Q⟨N̂⟩.

(37)

We see that super-Poissonian states which have a large Q can make the noise of the radiation

field measurable in heterodyne power fluctuations too. In the gravitational context, we have

⟨N̂⟩ sin2(
√
γ0∆t) ≈ γ0∆t⟨N̂⟩ ∼ O(1) for Weber bars (γ0 ∼ 10−33Hz), and for intense (⟨N̂⟩ ∼ 1036)

gravitational radiation with energy densities comparable to LIGO band graviational waves, within

reasonable time windows (∆t ∼ 1ms). For Q ∼ O(⟨N̂⟩), we will also be operating in a regime

where (γ0∆t)
2Q⟨N̂⟩ is substantial. Hence the excess quantum noise of gravitons in these states

will manifest as excess noise in the power of the heterodyne signal. However, as shown above,

the noise characteristics, although differ in form from what a number detector could measure as

described in Ref. [7], have a similar nature.

Finally, note that above we defined the heterodyne power fluctuations based on the operator

Ĵ = b†b. Alternatively one could think of a classical signal j = |β|2 and estimate its fluctuations,

(∆j)2 = ⟨j2⟩−⟨j⟩2. Note the measured fluctuations will therefore be different. We obtain that mean

is same as before, ⟨j⟩ ≈ 1+γ0∆t⟨a†a⟩, and that the variance ⟨(∆j)2⟩ = (2⟨j⟩−1)+(γ0∆t)
2Q⟨a†a⟩.

V. CONCLUSION

We have compared different quantum measurement strategies: the measurements of quantum

jumps (clicks), and diffusive quantum phase measurements, and discussed how they can be comple-

mentary for probing the quantum mechanical character of gravitational radiation using resonant

mass detectors. The feasibility of such tests is justified by recent observations that resonant mass

detectors allow us to have stimulated absorption probabilities that are of order unity for gravita-

tional radiation with chirp frequencies and energy densities comparable to the LIGO band [6, 14].

Our analysis suggests that the excess quantum mechanical noise in different quantum mechanical

states of the radiation field must manifest in a complementary manner when subjected to different

(number or phase) quantum measurement detection strategies. In particular, the sub-Poissonian

quantum character in gravitational radiation, if it exists, may also be observable as excess noise

in a phase-sensitive measurement, while it may remain elusive to click detectors. Our proposed

tests can therefore be used to definitively address the question of whether gravitational radiation

reveals its quantum character when measured. Transduction of the signal to smaller masses may

also be possible [17], which may further enhance the feasibility of the tests proposed here.
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Sources for gravitational radiation with quantum mechanical characteristics are also likely to

exist in nature. Indeed, quantum effects such as squeezing require nonlinearities at the source,

and general relativity is an inherently nonlinear theory. Single- and multi-mode squeezing of

gravitational radiation has been proposed in some contexts. For instance, cosmological expansion

is one paradigm that is expected to squeeze primordial gravitational radiation [18, 19]. The simplest

of such multi-mode scenarios we could consider is pair-creation in the gravitational context where

gravitons are produced in pairs via interactions of the type,

VI ∼ −ig(aka−k − a†ka
†
−k). (38)

Above g can be thought of as the pump or source mode in the semiclassical approximation, analo-

gous to the pump mode in parametric down conversion. The resultant quantum state of gravitons

will be the two-mode squeezed vacuum state,

|ψ⟩ = exp (−iVIt)|0⟩k|0⟩−k =
∑
k

[tanh(gt)]n

cosh(gt)
|n⟩k|n⟩−k. (39)

We can use this quantum state to predict the results for a ratio test that is possible with a click

detector. Assume that our detector only has access to one of the modes from the pair, say, with wave

vector k. To the leading order, we find the following click probabilities, P0 ≈ 1, P1 = γ0∆t⟨a†kak⟩,

and P2 ≈ (γ0∆t)
2⟨(a†k)

2a2k⟩/2. Since ⟨a
†
kak⟩ = sinh2(gt) and ⟨(a†k)

2a2k⟩ = sinh4(gt) for the quantum

state |ψ⟩, we obtain the ratio R = 2P0P2/P
2
1 = 2. The result is different from the coherent state

result (R = 1), and is equivalent to the result expected for a thermal state with average quanta

nth = sinh2(gt). It is not surprising, as tracing out one of the modes from a two-mode squeezed

vacuum state results in a thermal state for the other mode.

While a systematic analysis of nonlinearities involved can be substantially more challenging close

to the merger, it has also been suggested that head-on collisions of black holes may also generate

acoherent quantum mechanical states of this nature [20]. Hence, it is highly suggestive that the non-

classical features of the gravitational radiation can be probed in near-future resonant bar detector-

based measurements using the methods we have proposed here. The quantum noise characteristics

observable in ground-based resonant mass detectors could reveal important information about

various quantum mechanical effects that are relevant at the sources of gravitational radiation and

in propagation, thereby offering a new quantum mechanical window into the observable universe.
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Appendix A: Summary of useful results

Using dimensionless representation for X̂ and P̂ :

X̂ =
1√
2
(a+ a†), P̂ =

1√
2i
(a− a†), (A1)

we obtain, ⟨α|X̂|α⟩ =
√
2Re(α) and ⟨α|X̂2|α⟩ = Re(α2) + |α|2 + 1/2 = 2Re(α)2 + 1/2. Similarly,

⟨α|P̂ |α⟩ =
√
2Im(α) and ⟨α|P̂ 2|α⟩ = −Re(α2) + |α|2 + 1/2 = 2Im(α)2 + 1/2. We can use these

results to estimate the position and momentum variances in the P representation for an arbitrary

density matrix:

ρ =

∫
d2αP (α)|α⟩⟨α|. (A2)

From this we find,

⟨(∆X̂)2⟩ = 1

2
+ 2

∫
d2αP (α)Re(α)2 − 2

[ ∫
d2αP (α)Re(α)

]2
=

1

2
+ 2⟨(∆Re(α))2⟩,

⟨(∆P̂ )2⟩ = 1

2
+ 2

∫
d2αP (α)Im(α)2 − 2

[ ∫
d2αP (α)Im(α)

]2
=

1

2
+ 2⟨(∆Im(α))2⟩. (A3)

This yields,

⟨(∆Im(α))2⟩ = 1

2

[
⟨(∆P̂ )2⟩ − 1

2

]
, and

⟨(∆Re(α))2⟩ = 1

2

[
⟨(∆X̂)2⟩ − 1

2

]
. (A4)

For a generic Gaussian state, we can use,

⟨(∆P̂ )2⟩ = 2nth + 1

2
[cosh(2r) + sinh(2r) cos(ϕ)], (A5)

and

⟨(∆X̂)2⟩ = 2nth + 1

2
[cosh(2r)− sinh(2r) cos(ϕ)]. (A6)



14

It is easy to see that the above results are true for a coherent state and a thermal state. As for a

non-trivial check, we may use the following P function used for a squeezed vacuum state [22, 23],

P (α) = [eORδ(αR)][e
−OI δ(αI)], (A7)

where,

Or =
1− e2r

8e2r
∂2

∂α2
R

, (A8)

and

OI =
1− e2r

8

∂2

∂α2
I

. (A9)

We have also denoted Re/Im(α)= αR/I . From this, we can estimate the mean, and the variances.

Note that, for the above P function, we can easily verify that the mean is equal to zero. For the

variance,∫
d2αα2

RP (α) =

∫
dαR(αR)

2[eORδ(αR)] =

∫
dαRδ(αR)[e

OR(αR)
2] =

1− e2r

4e2r
. (A10)

similarly,∫
d2αα2

IP (α) =

∫
dαI(αI)

2[e−OI δ(αI)] =

∫
dαIδ(αI)[e

−OI (αI)
2] =

e2r − 1

4
. (A11)

From these we find,

⟨(∆X̂)2⟩ = 1

2
+ 2⟨(∆Re(α))2⟩ = e−2r/2, (A12)

and

⟨(∆P̂ )2⟩ = 1

2
+ 2⟨(∆Im(α))2⟩ = e2r/2. (A13)

The result matches explicitly.
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