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We propose simple quantitative criteria, based on counting statistics in resonant harmonic detec-
tors, that probe the quantum mechanical character of radiation fields. They provide, in particular,
practical means to test the null hypothesis that a given field is “maximally classical”, i.e., accurately
described by a coherent state. We suggest circumstances in which that hypothesis plausibly fails,
notably including gravitational radiation involving non-linear or stochastic sourcing.
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I. INTRODUCTION

Assuming the validity of quantum theory, in princi-
ple all radiation fields should be described as quantum-
mechanical states (or density matrices). But alterna-
tive descriptions can often be adequate and, when they
are, easier to use. In particular, a description based on
classical physics can capture the properties of a class of
states known as coherent states, that provide an ade-
quate approximation in many situations of interest. Co-
herent states, in the relevant sense, are eigenstates of the
field amplitude operator, a . They can be shown to arise
when the radiation field is generated by linear coupling
to a classical source. Coherent states have zero quan-
tum mechanical variance (noise) for the field amplitude
operators,

⟨α|(∆a)2|α⟩ = ⟨α|(∆a†)2|α⟩ = 0. (1)

They are widely used in quantum optics, and they are
implicitly assumed whenever radiation is treated as a
classical field (formally via the optical equivalence the-
orem [1–3]).

Deviation of radiation fields from coherent states
demonstrate the inadequacy of a classical description,
and can reveal important information about the radi-
ation field and its sources. It is therefore desirable to
identify simple experimental tests that discriminate the
quantum state of the field from a coherent state. That is
our goal here.

Since the word “coherence” is often with different
meanings and different antonyms – e.g., broadly, in the
statistical characterization of disorder within classical op-
tical fields (opposite: partial coherence) or quantum den-
sity matrices (opposite: partial decoherence) – here we
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will mean by an acoherent state a state that is not a co-
herent state in the precise sense mentioned above, and by
acoherence deviation from the generic behavior of such
coherent states.

II. MEASUREMENT MODEL

We consider two resonantly coupled quantum har-
monic oscillators. The interaction Hamiltonian between
the two oscillators is assumed to be

VI(t) = ℏ
√
γ0[d(t)a

† + d†(t)a]. (2)

With the a mode representing a mode of the radiation
field and the d mode the detector, this set-up provides
a useful model for practical detection schemes.

√
γ0 is

the effective coupling constant between the radiation field
and the detector. It arises in the rotating wave, quasi-
monochromatic approximation for the mode of the field
(assumed, for simplicity, unique) at the detector’s reso-
nant frequency. For a near resonant continuous radiation
field incident on the detector, after making the rotat-
ing wave approximation and incorporating the density of
modes, γ0 can also be identified as the spontaneous emis-
sion rate of the detector [4–6] as shown in Appendix. A.
Similar considerations also arise for two-state detectors,
i.e. qubits [6].
We want to evaluate the time evolution operator for

an interval of observation, in the form

UI = e−i
√
γ0

∫ t+∆t
t

[d(t′)a†+d†(t′)a]dt′ . (3)

where [d(t′), d†(t′′)] = δ(t′ − t′′). We have absorbed
any residual time-dependence to the detector mode d(t)
in Eq. (2), and the delta function above implies that
the detector modes at different times are independent.
Going forward, it is convenient to introduce operators

b = 1√
∆t

∫ t+∆t

t
d(t′)dt′ satisfying [b, b†] = 1. Using these,
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we can write the evolution operator as

UI = e−i
√
γ0

∫ t+∆t
t

[d(t′)a†+d†(t′)a]dt′ = e−i
√
γ0∆t(ba†+b†a).

(4)
Involving the effective Hamiltonian HI∆t/ℏ ≡√
γ0∆t(a

†b + b†a) ≡ κ(a†b + b†a), we can evaluate
the probabilities Pn that the detector, initialized in its
ground state, is excited to the nth level. To order κ6, in
field state |s⟩, we find:

P0 = 1− κ2⟨s|a†a|s⟩+ κ4⟨s|1
6
a†2a2 +

1

3
(a†a)2|s⟩

− κ6⟨s| 17
360

a†aa†2a2 +
17

360
a†2a2a†a+

2

45
(a†a)3

+
1

60
a†3a3 +

1

90
a†2aa†a2|s⟩, (5)

P1 = κ2⟨s|a†a|s⟩ − κ4⟨s|1
3
(a†a)2 +

2

3
a†2a2|s⟩

+ κ6⟨s| 8
45
a†2aa†a2 +

4

45
a†2a2a†a+

4

45
a†aa†2a2

+
2

45
(a†a)3 +

1

10
a†3a3|s⟩ (6)

P2 =
κ4

2
⟨s|a†2a2|s⟩ − κ6⟨s|1

4
a†3a3 +

1

6
a†2aa†a2

+
1

24
a†2a2a†a+

1

24
a†aa†2a2|s⟩, (7)

and,

P3 =
κ6

6
⟨s|a†3a3|s⟩. (8)

In deriving these formulae we have made no assump-
tion about the commutator [a†, a].

III. EVOLUTION OF COHERENT STATES AND
P REPRESENTATION

Equations (5)-(8) can be used directly to implement
the criteria for acoherence to be discussed below for radi-
ation fields that are characterized theoretically. An alter-
native, complementary approach that is closer to proce-
dures commonly used in quantum optics is also possible,
as we now describe (also see Appendix. B).

For a coherent state |α⟩ of the field satisfying a|α⟩ =
α|α⟩ with [a, a†] = 1, and the detector in its ground state
we have

UI |α⟩ ⊗ |0⟩ = e−i
√
γ0∆t(a†b+b†a)|α⟩ ⊗ |0⟩

= e−i
√
γ0∆t(a†b+b†a)e−|α|2/2eαa

†
ei

√
γ0∆t(a†b+b†a)

× e−i
√
γ0∆t(a†b+b†a)|0⟩ ⊗ |0⟩ = e−|α|2/2e−i

√
γ0∆t(a†b+b†a)

×
(∑

n

(αa†)n

n!

)
ei

√
γ0∆t(a†b+b†a)|0⟩ ⊗ |0⟩

= e−|α|2/2
{∑

n

[αUIa
†U†

I ]
n

n!

}
|0⟩ ⊗ |0⟩. (9)

From this, using UIa
†U†

I = cos(
√
γ0∆t)a

† −
i sin(

√
γ0∆t)b

†, we find

e−i
√
γ0∆t(a†b+b†a)|α⟩ ⊗ |0⟩

= e−|α|2/2eα cos(
√
γ0∆t)a†−iα sin(

√
γ0∆t)b† |0⟩ ⊗ |0⟩,

= |α cos(
√
γ0∆t)⟩ ⊗ | − iα sin(

√
γ0∆t)⟩. (10)

A general density matrix can be expressed in the P
representation as [1–3]

ρ =

∫
d2αP (α)|α⟩⟨α|. (11)

Thus the density of the joint system after a time ∆t is
given by

UI(ρ⊗ |0⟩⟨0|)U†
I =

∫
d2αP (α)UI |α⟩⟨α| ⊗ |0⟩⟨0|U†

I

=

∫
d2αP (α)|α cos(

√
γ0∆t)⟩⟨α cos(

√
γ0∆t)|

⊗ | − iα sin(
√
γ0∆t)⟩⟨−iα sin(

√
γ0∆t)|.

(12)

We obtain that the probability, Pn is given by,

Pn = trF {⟨n|UI(ρ⊗ |0⟩⟨0|)U†
I |n⟩}

=
[sin2(

√
γ0∆t)]

n

n!

∫
d2αP (α)|α|2ne−|α|2 sin2(

√
γ0∆t).

(13)

After the approximate substitution sin2(
√
γ0∆t) → γ0∆t

this reproduces the result found in [2], with a simpler
derivation. The limit can also be arrived at using qubit
detectors, as explored in Appendix. C. The need for mod-
ification to the standard result from Ref. [2] has already
been discussed, see for example, Ref. [7].
In Appendix. B, we show how to recover the conse-

quences of Eqns. (5)-(8) from this standpoint. The gen-
eralization of Eq. (13) to finite detector efficiencies is also
discussed in Appendix. B.

IV. GLOBAL COUNTING STATISTICS

Using Eq. (13), the average occupation that would be
measured in the resonant harmonic detector is given by,

n̄ =

∞∑
n=0

nPn =
∑
n

[sin2(
√
γ0∆t)]

n

(n− 1)!

×
∫
d2βP (β)|β|2ne−|β|2 sin2(

√
γ0∆t)

= sin2(
√
γ0∆t)

∫
d2β|β|2P (β) = sin2(

√
γ0∆t)⟨a†a⟩ρ,

(14)
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and similarly

n(n− 1) =

∞∑
n=0

n(n− 1)Pn = [sin2(
√
γ0∆t)]

2⟨(a†)2a2⟩ρ.

(15)
Using this, one can write the variance as

(∆n)2 ≈ n̄+ (γ0∆t)
2Q⟨n⟩, (16)

where Q is the Mandel’s Q parameter for the density
matrix ρ, defined as the ratio,

Q =
⟨(∆N̂)2⟩ρ − ⟨N̂⟩ρ

⟨N̂⟩ρ
, (17)

with N̂ = a†a. For a coherent state, which exhibits
Poisson statistics for the counts, we have Q → 0 and
(∆n)2 = n̄. For a thermal state we have the P represen-
tation

P (α) =
1

πnth
e−|α|2/nth . (18)

leading to the super-Poissonian (variance > mean) be-
havior

n̄ = γ0∆tnth, Q = nth, (∆n)2 = n̄+(γ0∆t)
2n2th. (19)

For a squeezed vacuum state

|ψsq⟩ =
1√

cosh(r)

∞∑
m=0

(− tanh(r))m
√
2m!

2mm!
|2m⟩. (20)

we have

⟨n⟩ = sinh(r)2, n̄ = γ0∆t sinh(r)
2,

(∆n)2 = n̄+ (γ0∆t)
2 cosh(2r) sinh(r)2, Q = cosh(2r),

(21)

which is also super-Poissonian. For equal intensity of the
radiation field (same n̄), the quantum noise induced by a
highly squeezed vacuum state is approximately two times
the noise induced by a thermal state.

V. RATIO TEST

The Poissonian distribution induced by coherent states
entails rigid relations between the probabilities for mea-
suring small levels of excitation. These lead to simple
yet sharp quantitative signals for acoherence, as we now
discuss. Applying Eqn. (13) to a coherent state we find

R ≡ 2P2P0

P 2
1

= 1 (22)

and

R′ ≡ 3P3P1

2P 2
2

= 1 (23)

for coherent states.

For Fock states (i.e., number eigenstates) the P rep-
resentation is awkward, but we can use Eqns. (5)-(8).
To lowest order, we find P0 = 1, P1 = γ0∆tn, P2 =
(γ0∆t)

2n(n− 1)/2, P3 = (γ0∆t)
3n(n− 1)(n− 2)/6.

R = 1− 1

n
,

R′ = 1− 1

n− 1
(24)

For small n we are dealing with few quanta, so big devia-
tions from classical behavior are to be expected (and our
ratios can even bring in division by zero). For large n the
deviations from R = R′ = 1 approach zero. Nevertheless
these are maximally sub-Poissonian states, with Q = −1.
For thermal states, using Eq. (13), we find

P0 =
1

1 + nth[sin
2(
√
γ0∆t)]

(25)

P1 =
[sin2(

√
γ0∆t)]nth

([sin2(
√
γ0∆t)]nth + 1)2

, (26)

P2 =
([sin2(

√
γ0∆t)]nth)

2

([sin2(
√
γ0∆t)]nth + 1)3

. (27)

so that

R =
2P2P0

P 2
1

= 2. (28)

Remarkably, the ratio is independent of temperature.
For squeezed vacuum states it is again convenient to

use Eqns. (5)-(8). To lowest order, we find

R =
2P2P0

P 2
1

= 2 + coth2(r). (29)

For large squeezing, limr→∞ coth2(r) → 1 and so
2P2P0

P 2
1

→ 3.

We find that for coherent states and highly excited
Fock states, our ratio R probabilities is approximately
one, while for thermal states it is approximately two,
and for highly squeezed vacuum states it is approxi-
mately three. It also follows from observing that, using
Eqns. (5)-(8) to leading order,

R ≈ 1 +Q/⟨n⟩. (30)

This shows that for large ⟨n⟩ sub-Poissonian states with
−1 ≤ Q < 0 have R ∼ 1, making them hard to discrimi-
nate from coherent states. In Appendix D, we show how
to evaluate the relevant count rates and the ratio R for
a thermal state of average quanta nth that is both dis-
placed (in the phase space along the x direction by x0)
and squeezed (by amplitude r and phase ϕ relative to the
direction of the displacement). To leading order, we find
that,
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R ≈
4n2th − 8nthx

2
0 cos(ϕ) sinh(2r) + 8(2nth + 1)

(
x20 − 1

)
cosh(2r)

2 ((2nth + 1) cosh(2r) + x20 − 1)
2

+
3(2nth + 1)2 cosh(4r) + 4nth − 8x20 cos(ϕ) sinh(r) cosh(r) + 2x40 − 8x20 + 5

2 ((2nth + 1) cosh(2r) + x20 − 1)
2 . (31)

Here we see substantial deviation from R = 1 for a
generic Gaussian state of the radiation field. Note that
for a highly occupied field mode, 1 ≤ R ≤ 3+cosech2(r),
with equality possible at both ends.

It can be verified that, to the leading order, the ra-
tio R equals the second-order coherence function for the
radiation field. The novelty here is that it is estimated
here using only the lowest order probabilities in a res-
onant (click) detector. Many ways to access quantum
properties of radiation fields have been proposed in ex-
perimental contexts such as in quantum optics where the
detection capabilities are substantially more flexible. For
example, Mandel’s Q can be estimated straightforwardly
for quantum light from global counting statistics, using
good photodetectors, even at very low intensities. Inter-
ferometric techniques also offer an alternate approach to
estimating the second-order coherence function for quan-
tum light [2]. But the problem can be substantially
more challenging if the radiation field in question is very
weakly interacting, and when one expects to see only very
few clicks within any realistic experimental window. This
scenario is characteristic of the gravitational context and
a number of other contexts briefly reviewed in Sec. VI. In
the gravitational context, astrophysical scenarios such as
binary black hole or binary neutron star merger events
produce detectable strain amplitudes that only last at
most a few seconds as seen by our detectors. Here our
approach appears most appropriate. Here our approach
appears most appropriate.

While we primarily focus on probing the acoherence of
radiation fields for large ⟨n⟩ (which is the relevant limit
for gravitational radiation), it is evident from Eq. (30)
that our ratio test can also be used to test strict non-
classicality in terms of sub-Poissonian statistics (R < 1),
when the detector can register clicks at low intensities
(eg., in quantum optics). A comparable ratio test for
non-classicality using the width of the marginal distribu-
tions in phase-space has been discussed in Refs. [8, 9] to
probe the sub-Poissonian nature of optical fields. Tight
inequalities involving lowest order click probabilities to
probe non-classicality have also been discussed in a very
recent work [10].

VI. POSSIBLE PHYSICAL APPLICATIONS

Recent work [11] has made it plausible that resonant
detection of gravitational waves, producing small levels
of excitation, is a challenging but achievable goal. In this
context the issue of counting statistics is especially inter-

esting, since – as we have shown – it can probe essentially
quantum features of the radiation.
It can be proved that linear coupling to deterministic

(classical) sources produce coherent states of radiation
fields, but stochastic or nonlinear couplings will gener-
ally bring in acoherence. Quadratic coupling to a deter-
ministic source, for example, brings in squeezed states.
We have demonstrated that acoherence can have quan-
titatively significant effects on the small count statistics
even in cases where the underlying radiation fields have
high intensity but are weakly coupled to the detector.
Perhaps ironically, “bad” detectors, with low count rates,
reveal the effects most clearly, since they are especially
sensitive to fluctuations. Of course, it is possible to syn-
thesize bad detectors from good ones, for example by
sampling a slowly varying source in small time intervals.
Also, for long wavelength radiation, one can sample from
an array of bad detectors.
For the fundamental acoustic mode of the Weber bar

as the resonant mass detector for gravitational waves
treated quantum mechanically, the spontaneous emission
rate γ0 is given by (see Ref. [11]),

γ0 =
8GML2ω4

π4c5
, (32)

where G is the Newton’s constant, M,L are respectively
the mass and length of the Weber bar, ω is the reso-
nant frequency, and c is the speed of light. Using their
values, the spontaneous emission rate is estimated to
be rather very small ∼ 10−33s−1 for a typical resonant
bar detector for gravitational waves in the kHz range
where LIGO operates [11]. The deviation from Poisso-
nian statistics has the form ∼ (γ0∆t)

2Q⟨n⟩, where Q is
the Mandel’s parameter, and ⟨n⟩ is the number of quanta
of the radiation field in the local mode volume. The cor-
responding energy flux density at frequency ω would be
∼ (energy density)× c ∼ ⟨n⟩ℏω4/c2. For a gravitational
wave in the LIGO band, ⟨n⟩ ∼ 1036 [12]. In the in-
teraction between a LIGO band gravitational wave and
a typical bar detector for the duration of ∆t, we can
have measures of acoherence (γ0∆t)

2Q⟨n⟩. Therefore
although γ0∆t ≪ 1 for a typical bar detector, a large
Mandel’s Q ∼ O(⟨n⟩) can make deviations from a pure
coherent state of the field experimentally detectable by
comparing the global statistics, or by using the ratio test.
To make further estimates for ∆t, note that gravita-

tional waves produced by merger events are not typi-
cally monochromatic, but have a time-varying frequency
ω ≡ ω(t). Following Ref. [11], an upper bound for
∆t can be thought of as the time a gravitational wave
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spends in the resonance window of our detector, ∆tmax ≈
t[ω + ∆ω] − t[ω − ∆ω] ≈ 2∆ω/(kω11/3) where k =
48/5[GMc/(2c

3)]5/3. By requiring that the timescale
and bandwidth are constrained to be within the full
width at half maximum of the detector’s response (sinc)
function, one can estimate that the corresponding fre-
quency window (or the detector bandwidth) should at
least be 2∆ω = 8/(∆tmax). This results in the follow-
ing upper bound for ∆t for chirping gravitational waves:
∆tmax ≈ 2

√
2/k ω−11/6 [11]. Considering the event

GW150914 having Mc ∼ 30Msol. [13], we can estimate
a ∆tmax ∼ 5ms at ν = 200Hz (ω = 2πν). Note that this
very first gravitational wave signal observed by LIGO
lasted approximately 200ms, with a time-varying fre-
quency between 35Hz− 250Hz. Thus meaningful tests of
acoherence appear to be accessible on realistic timescales
using the sorts of resonant mass detectors proposed in
Ref. [11] for gravitational radiation in the LIGO band.

Gravitational radiation produced by neutron star—
neutron star merger events such as GW170817 [14]
(which was suggested as a good candidate event for
detecting a single graviton in Ref. [11]) can also be
good candidate events to see gravitational wave acoher-
ence. Binary neutron star merger events appear to have
slowly varying chirp frequencies and the gravitational
wave can be seen in LIGO for up to a duration of a
few seconds. Since they have slowly varying chirps, the
gravitational waves can be approximated as monochro-
matic waves within small time windows ∆t. Considering
Mc ∼ 1.19Msol. we can estimate ∆tmax ∼ 4ms at kHz
frequencies, and ∼ 70ms around ν = 200Hz . Thus it is
highly suggestive that several detections with a ∆t ∼ 1ms
can be made using independent resonant mass detectors
(or with rapid resetting of a single detector) to map out
the quantum statistics of absorbed gravitons using the
methods proposed here.

Since the ratio test is practically significant at low
count rates, it can be prone to additional experimen-
tal errors, in addition to the pathologies (of it being a
ratio) we already pointed out. In these contexts, the in-
ference problem can also be mapped into an interesting
hypothesis-testing problem, which can help assign a cer-
tain fidelity to the degree of acoherence estimated using
the ratio test.

The departures from coherent states in gravitational
waves might also be observable using interferometric de-
tectors [15–17]. The class of quantum states that are
expected to induce measurable quantum noise in inter-

ferometric detectors (highly squeezed vacuum states and
thermal states [15–17]) are the same ones that we pre-
dict would show quantifiable departures from coherent
states of gravitational radiation in resonant mass detec-
tors. When the gravitational radiation is in one of these
quantum states, the quantum noise is super-Poissonian,
making it potentially observable in both interferometric
and resonant detectors. Of course, use of independent
detection schemes would help to decrease both statisti-
cal and systematic uncertainties.
In the context of gravitational radiation, strongly non-

linear sources arise in the final stages of black hole
mergers and in subsequent ring-downs. Here the driv-
ing field is robust, so deviation from Poisson statistics
would implicate quantum theory. (The feasibility of de-
tecting quantum effects in gravity is much debated; see
e. g. [12, 18–22], in particular the difficulty in seeing
sub-Poissonian statistics of gravitational radiation from
global statistics was pointed out recently in [20, 21].)
Note that ring-down through quasinormal modes is ex-
pected to depend on only a few parameters of the final
state, so that one can aspire to compare and combine
statistics from distinct sources, separated in space and
time. Neutron star mergers, and possibly neutron star
- black hole mergers, will plausibly involve complex, ef-
fectively stochastic processes as the neutron stars deform
and shatter, again bringing in acoherence.
Outside these fundamental but challenging applica-

tions to gravitational radiation, the issue of acoherence
arises in many other contexts, notably including the
quantum description of single mode lasers, where it im-
pacts the feasibility of continuous variable quantum tele-
portation [23, 24]. It can also be relevant for quantum
acoustics, where substantial progress has been made in
the recent years in creating and characterizing acoherent
states of mechanical modes [25]. Several recent experi-
ments generate non-classical radiation fields in other set-
tings, notably including spontaneous emission of matter
waves from ultracold atomic assemblies [26].
Acknowledgments.— FW is supported by the U.S. De-
partment of Energy under grant Contract Number DE-
SC0012567 and by the Swedish Research Council under
Contract No. 335-2014-7424. SKM is supported in part
by the Swedish Research Council under Contract No.
335-2014-7424 and in part by theWallenberg Initiative on
Networks and Quantum Information (WINQ). We thank
Maulik Parikh and Igor Pikovski for stimulating conver-
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Appendix A: Identifying γ0 as the spontaneous emission rate of the detector

A generic interaction Hamiltonian for resonant interactions between a continuous radiation field and a resonant
detector in the interaction picture to leading order has the following form,

HI(t) = ℏg
∑
ν

[a†bei(ν−ω)t + b†ae−i(ν−ω)t], (A1)
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where g is the coupling that captures the details of the interaction and
∑

ν represents summation over field modes
near resonance to the detector. As an example, for the resonant bar detector for gravitational waves considered

in Ref. [11], g =
√

8GML2ω5

π3c5 . Our objective here is to map the resultant dynamics to a simplified single mode

approximation, satisfying,

HIt = ℏ
√
γ0t(a

†b+ b†a), (A2)

with
√
γ0 as the effective coupling, where γ0 is the spontaneous emission rate of the detector.

In order to do so, we consider the resonant detector initially in the ground state and follow the standard approach
to derive the Fermi-Golden rule transition rates. Considering the resonant detector in the first excited state, and the
field is in the vacuum state, their joint state after time t to the leading order is given by,

|ψ′(t)⟩ =
∑
ν

−igei(ν−ω)t/2 2 sin[(ω − ν)t/2]

(ω − ν)
a†ν |0⟩F b|1⟩D. (A3)

This yields the following probability of observing a single quantum of the radiation field spontaneously emitted by
the detector, given by,

Pspont. ≈
∑
ν

4g2
sin2[(ν − ω)t/2]

(ν − ω)2
= 4g2D(ω)

∫ ω+δ/2

ω−δ/2

dν
sin2[(ν − ω)t/2]

(ν − ω)2
, (A4)

where we have converted the summation to an integral using the density of field modes D(ω). For tδ >> 1, we
have [27], ∫ ω+δ/2

ω−δ/2

dν
sin2[(ν − ω)t/2]

(ν − ω)2
≈ 1

2
πt. (A5)

Hence we obtain the probability of spontaneous emission as,

Pspont. ≈ 2g2D(ω)πt. (A6)

The density of states D(ω) of plane waves per volume V for a given polarization is,∑
Ω

=

∫
dΩD(Ω) =

∫
dΩ

V Ω2

2π2c3
. (A7)

We can take the volume to be the reduced volume of a quanta of the field, V = (c/ω)3, which yields, D(ω) = 1
2π2ω .

The probability of registering a click becomes,

Pspont. ≈ 2g2D(ω)πt =
g2t

πω
= γ0t, (A8)

where γ0 is the spontaneous emission rate. Similarly, the state of the field and the detector when the detector is
initially in the ground state and the field is in an arbitrary quantum state |ψF (0)⟩ is given by,

|ψ(t)⟩ =
∑
ν

−ige−i(ν−ω)t/2 2 sin[(ν − ω)t/2]

(ν − ω)
aν |ψF (0)⟩b†|0⟩D. (A9)

The probability of registering a click in the detector is given by,

P1 ≈
∑
ν

4g2
sin2[(ν − ω)t/2]

(ν − ω)2
⟨a†νaν⟩F = 4g2D(ω)⟨a†ωaω⟩F

∫ ω+δ/2

ω−δ/2

dν
sin2[(ν − ω)t/2]

(ν − ω)2
. (A10)

Again taking the limit tδ >> 1, we obtain,

P1 ≈ 2g2D(ω)⟨a†ωaω⟩Fπt =
g2t

πω
⟨a†ωaω⟩F = γ0⟨a†ωaω⟩t, (A11)

where we have identified γ0 as the spontaneous emission rate from Eq. (A8). We can now map the dynamics to an
effective measurement model, noticing that an interaction Hamiltonian satisfying,

HIt = ℏ
√
γ0t(a

†b+ b†a), (A12)

reproduces the probabilities derived above in the single mode approximation for the field. This allows us to identify
the parameter γ0 in our effective measurement model discussed in the main text, as the spontaneous emission rate,
an intrinsic property of our detector.
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Appendix B: Exact solution to the unitary dynamics on a coherent state of the field

We are interested in computing the general result for the field modes in a coherent state,

e−i
√
γ0∆t(a†b+b†a)|α⟩|0⟩ = e−i

√
γ0∆t(a†b+b†a)e−|α|2/2eαa

†
ei

√
γ0∆t(a†b+b†a)e−i

√
γ0∆t(a†b+b†a)|0⟩|0⟩

= e−|α|2/2e−i
√
γ0∆t(a†b+b†a)

(∑
n

(αa†)n

n!

)
ei

√
γ0∆t(a†b+b†a)|0⟩|0⟩

= e−|α|2/2
{∑

n

[αe−i
√
γ0∆t(a†b+b†a)a†ei

√
γ0∆t(a†b+b†a)]n

n!

}
|0⟩|0⟩ (B1)

Above, we have used the identity that UI(a
†)nU†

I |0⟩|0⟩ = (UIa
†U†

I )
n|0⟩|0⟩. We can therefore simplify, using, UIa

†U†
I =

cos(
√
γ0∆t)a

† − i sin(
√
γ0∆t)b

† to obtain,

e−i
√
γ0∆t(a†b+b†a)|α⟩|0⟩ = e−|α|2/2eα cos(

√
γ0∆t)a†−iα sin(

√
γ0∆t)b† |0⟩|0⟩,

= |α cos(
√
γ0∆t)⟩| − iα sin(

√
γ0∆t)⟩. (B2)

We can now use the result for a coherent state of the field obtained above to compute the time evolution of an
arbitrary, but unknown quantum state of the field ρ, using the P representation for the field. In the P representation,
we may write,

ρ =

∫
d2αP (α)|α⟩⟨α|. (B3)

The state of the joint system after a time ∆t is given by,

UI(ρ⊗ |0⟩⟨0|)U†
I =

∫
d2αP (α)UI |α⟩⟨α| ⊗ |0⟩⟨0|U†

I

≈
∫
d2αP (α)|α cos(

√
γ0∆t)⟩⟨α cos(

√
γ0∆t)| ⊗ | − iα sin(

√
γ0∆t)⟩⟨−iα sin(

√
γ0∆t)|.

(B4)

We obtain that the probability, Pn is given by,

Pn = trF {⟨n|UI(ρ⊗ |0⟩⟨0|)U†
I |n⟩} =

[sin2(
√
γ0∆t)]

n

n!

∫
d2αP (α)|α|2ne−|α|2 sin2(

√
γ0∆t). (B5)

Note that the result is naturally in the normally ordered form as it is obtained using the P representation, and agrees
to its standard form given in Ref. [2] when we approximate sin2(

√
γ0∆t) ≈ γ0∆t.

Generalization to finite detector efficiencies is also straightforward by considering an additional beam-splitter cou-
pled to the detector mode with transmission and reflection amplitudes

√
η and

√
1− η respectively with one of the

beam-splitter inputs being the signal transmitted with probability η, the detector efficiency, and other port in the
vacuum that gets populated with the signal probability 1− η which will be unobserved. Following a similar approach
to above, it can be shown that the observable click probabilities at finite detector efficiency η gets modified to,

Pn =
[η sin2(

√
γ0∆t)]

n

n!

∫
d2αP (α)|α|2ne−η|α|2 sin2(

√
γ0∆t). (B6)

For a coherent state of the field, we can also series expand the exact probabilities computed above in Eq. (B5) to
the third order to find that (for κ =

√
γ0∆t),

P0 =
1

90
|α|2κ2

(
−
(
15

(
|α|2 + 2

)
|α|2 + 4

)
κ4 + 15

(
3|α|2 + 2

)
κ2 − 90

)
+ 1,

P1 =
1

90
|α|2κ2

(
−30

(
3|α|2 + 1

)
κ2 +

(
45|α|4 + 60|α|2 + 4

)
κ4 + 90

)
,

P2 =
1

6
|α|4κ4

(
3−

(
3|α|2 + 2

)
κ2

)
, (B7)

and,

P3 =
|α|6κ6

6
. (B8)
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Here we show that they agree to the probabilities computed in the main text using their normally ordered form,

P0 = ⟨s|
{
1− κ2a†a+ κ4

[
1

6
a†2a2 +

1

3
(a†a+ a†2a2)

]
(B9)

− κ6
[
17

180
(2a†2a2 + a†3a3) +

2

45
(a†a+ 3a†2a2 + a†3a3) +

1

60
(a†3a3) +

1

90
(a†2a2 + a†3a3)

]}
|s⟩,

P1= ⟨s|
{
κ2a†a− κ4

[
1

3
(a†a+ a†2a2) +

2

3
(a†2a2)

]}
|s⟩ (B10)

+ κ6
[
8

45
(a†2a2 + a†3a3) +

8

45
(2a†2a2 + a†3a3) +

2

45
(a†a+ 3a†2a2 + a†3a3) +

1

10
(a†3a3)

]}
|s⟩,

P2 = ⟨s|
{
κ4

2
a†2a2 − κ6

[
1

4
(a†3a3) +

1

6
(a†2a2 + a†3a3) +

1

12
(2a†2a2 + a†3a3)

]}
|s⟩. (B11)

P3 = ⟨s|
{
κ6

6
a†3a3

}
|s⟩. (B12)

For a coherent state |s⟩ = |α⟩, we can write,

P0 = 1− κ2|α|2 + κ4
[
1

6
|α|4 + 1

3
(|α|2 + |α|4)

]
(B13)

− κ6
[
17

180
(2|α|4 + |α|6) + 2

45
(|α|2 + 3|α|4 + |α|6) + 1

60
(|α|6) + 1

90
(|α|4 + |α|6)

]

P1= κ2|α|2 − κ4
[
1

3
(|α|2 + |α|4) + 2

3
(|α|4)

]
(B14)

+ κ6
[
8

45
(|α|4 + |α|6) + 8

45
(2|α|4 + |α|6) + 2

45
(|α|2 + 3|α|4 + |α|6) + 1

10
(|α|6)

]

P2 =
κ4

2
|α|4 − κ6

[
1

4
(|α|6) + 1

6
(|α|4 + |α|6) + 1

12
(2|α|4 + |α|6)

]
. (B15)

P3 =
κ6

6
|α|6. (B16)

Note that upon simplification, these are identical to Eqs. (B7)&(B8).

1. A useful approximation

For a general Gaussian state of the field, however, the P function is often not easy to compute. In this case, an
approximate result for the statistics is also useful. To this end, we note that the Baker-Campbell-Hausdorff (BCH)
expansion can be used. The time evolution operator can now be approximated by the BCH expansion,

exp(−iH∆t/ℏ) ≈ exp (−i
√
γ0∆tb

†a) exp (−i
√
γ0∆ta

†b) exp (γ0∆t[b
†a, a†b]/2)

= exp (−i
√
γ0∆tb

†a) exp (−i
√
γ0∆ta

†b) exp (γ0∆t(b
†b(1 + a†a)− (a†a(1 + b†b))/2).

(B17)

The approximation is that we have neglected higher order non-commuting terms from the BCH expansion. Considering
the b mode initialized in the vacuum state, the above approximation is valid for valid for γ0∆t⟨a†a⟩ ≪ 1. In this case,
we can simplify,

exp(−iH∆t/ℏ)|ψ⟩|0⟩ ≈ exp (−i
√
γ0∆tb

†a) exp (−i
√
γ0∆ta

†b) exp (−γ0∆ta†a/2)|ψ⟩|0⟩
≈ exp (−i

√
γ0∆tb

†a) exp (−γ0∆ta†a/2)|ψ⟩|0⟩

≈
∞∑

n=0

(−i
√
γ0∆t)

n

√
n!

|n⟩an exp (−γ0∆ta†a/2)|ψ⟩. (B18)
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From this, we can estimate the measurement operators for observing n−th excitation, given by,

M̂n = ⟨n| exp(−iH∆t/ℏ)|0⟩ ≈ (−i
√
γ0∆t)

n

√
n!

an exp (−γ0∆ta†a/2). (B19)

These measurement operators can also be used to describe continuous quantum measurements and generate quantum
trajectories of resonant fluorescence from harmonically trapped quantum particles, in the spirit of Refs. [4, 5]. The
probability of measuring n−th excitation is given by,

Pn = ⟨ψ|M̂†
nM̂n|ψ⟩ ≈

(γ0∆t)
n

n!
⟨ψ| exp (−γ0∆ta†a/2)(a†)nan exp (−γ0∆ta†a/2)|ψ⟩ (B20)

For a coherent state, we can use,

exp (−γ0∆ta†a/2)|α⟩ = e−
|α|2
2 (1−e−γ0∆t)|αe−γ0∆t/2⟩, (B21)

and write the above probability for an initial coherent state as,

Pn ≈ (γ0∆t)
n

n!
⟨α| exp (−γ0∆ta†a/2)(a†)nan exp (−γ0∆ta†a)/2|α⟩

=
(γ0∆te

−γ0∆t)n

n!
|α|2ne−|α|2(1−e−γ0∆t). (B22)

Note that the probability is approximately normalized. We have,∑
n

Pn =
∑
n

(γ0∆te
−γ0∆t)n

n!
|α|2ne−|α|2(1−e−γ0∆t) = e−|α|2(1−e−γ0∆t)

∑
n

(γ0∆te
−γ0∆t)n

n!
|α|2n

= e−|α|2(1−e−γ0∆t)e|α|
2γ0∆te−γ0∆t

= e−|α|2(1−e−γ0∆t−γ0∆te−γ0∆t)

≈ e−|α|2(1−1+γ0∆t−γ0∆t) = 1. (B23)

For an arbitrary density matrix, we can write,

Pn = tr{ρM̂†
nM̂n} =

∫
d2βP (β)⟨β| exp (−γ0∆ta†a/2)(a†)n

(γ0∆te
−γ0∆t)n

n!
an exp (−γ0∆ta†a/2)|β⟩

=
(γ0∆te

−γ0∆t)n

n!

∫
d2βP (β)|β|2ne−|β|2(1−e−γ0∆t). (B24)

In arriving at the above result, we have used the diagonal P representation for the density matrix in the basis of
coherent states [1, 3],

ρ =

∫
d2βP (β)|β⟩⟨β|. (B25)

Note that, owing to the approximation we made, our result in Eq. (B24) varies slightly from Ref. [2] or Eq. (B5).
However, starting from Eq. (B24) the standard result from Ref. [2] is recovered by taking the limit, e−γ0∆t ≈ 1−γ0∆t,
and γ0∆te

−γ0∆t ≈ γ0∆t, where we can approximate,

Pn ≈ (γ0∆t)
n

n!

∫
d2βP (β)|β|2ne−|β|2γ0∆t. (B26)

Returning to the approximate result Eq. (B20) in the number representation, we note that Eq. (B20) can be useful to
estimate the counting statistics and the probabilities for a generic Gaussian state which can have a P-representation
that is non-trivial. We discuss this in Appendix. D.

Appendix C: Taking the limit of a qubit detector and series of clicks

Here we consider an alternate derivation of the global statistics using a series of qubits functioning as detectors, for
pedagogical reasons. To this end we approximate the time evolution operator by series,

exp(−iH∆t/ℏ) = 1− i
√
γ0∆t(a

†b+ b†a)− γ0∆t

2
[(a†b)2 + (b†a)2 + a†bb†a+ b†aa†b] + ...

= 1− i
√
γ0∆t(a

†b+ b†a)− γ0∆t

2
[(a†b)2 + (b†a)2 + a†a(1± b†b) + b†b(1 + a†a)] + ...

(C1)
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Above we have used bb† = 1 ± b†b depending on the commutation relations. We may now consider the initial state,
|ψ⟩|0⟩, where the b mode is initialized in vacuum. Here we show two alternate but simple approaches to get to
Eq. (C11). The state evolves as,

1− i
√
γ0∆t(a

†b+ b†a)− γ0∆t

2
[(a†b)2 + (b†a)2 + a†a(1± b†b) + b†b(1 + a†a)] + ...|ψ⟩|0⟩

→ −i
√
γ0∆ta|ψ⟩|1⟩+

(
1− γ0∆t

2
a†a

)
|ψ⟩|0⟩ − γ0∆t

2
a2|ψ⟩(b†)2|0⟩. (C2)

We assume that we have a qubit detector so that (b†)2 = 0. First, note that in a single time step, the probability
of exciting a qubit when the field is in a coherent state |ψ⟩ = |α⟩ is given by P1 = ϵ|α|2, where ϵ = γ0∆t, and the
probability of not exciting the qubit is P0 = 1 − ϵ|α|2. Now if we approximate each detector events as independent
(as for small ϵ, a coherent state of the field remains the same to leading order) with probabilities P0 and 1− P0, we
arrive at Eq. (C7) from which Eq. (C11) follows.

Alternatively, for a series of detectors initialized in state |0⟩ interacting sequentially with the radiation field (each
for a brief duration ∆t only), we can write,

|ψ⟩|0⟩ → (1− γ0∆t

2
a†a)|ψ⟩|0⟩ − i

√
γ0∆ta|ψ⟩|1⟩]|0⟩

→ (1− γ0∆t

2
a†a)[(1− γ0∆t

2
a†a)|ψ⟩|0⟩ − i

√
γ0∆ta|ψ⟩|1⟩]|0⟩ − i

√
γ0∆ta[(1−

γ0∆t

2
a†a)|ψ⟩|0⟩

− i
√
γ0∆ta|ψ⟩|1⟩]|1⟩

→ ... (C3)

In a compact form, we may write the global state before measuring the qubits,

|ψ⟩|0⟩ → M̂0|ψ⟩|0⟩+ M̂1|ψ⟩|1⟩ → (M̂0|0⟩+ M̂1|1⟩)⊗2|ψ⟩ → ...

→ (M̂0|0⟩+ M̂1|1⟩)⊗N |ψ⟩

≈
N∑
j=0

√
N !√

(N − j)!j!
{(M̂0)

N−j(M̂1)
j |ψ⟩|{0}⊗(N−j){1}⊗j⟩.

(C4)

We have defined M̂0 = (1− γ0∆t
2 a†a) and M̂1 = −i

√
γ0∆ta and have neglected their commutator to the leading order.

Here the state |{0}⊗(N−j){1}⊗j⟩ represents the normalized symmetrized state of j qubit detectors excited among a
total of N detectors. We can simplify this result for a coherent state, |ψ⟩ = |α⟩,

|ψ(j,N)⟩ =
N∑
j=0

√
N !√

(N − j)!j!
(−i

√
ϵα)j(M̂0)

N−j |α⟩|{0}⊗(N−j){1}⊗j⟩. (C5)

The probability of observing j ticks in N steps is same as the probability of measuring the symmetrized state
|{0}⊗(N−j){1}⊗j⟩, given by,

p(j,N) =
N !

(N − j)!j!
(ϵ|α|2)j⟨α|(M̂†

0 )
N−j(M̂0)

N−j |α⟩ (C6)

To leading order, we can approximate,

⟨α|{(M̂†
0 )

N−j(M̂0)
N−j |α⟩ ≈ ⟨α|{(1− ϵa†a)N−j}|α⟩

≈ ⟨α|(1− (N − j)ϵa†a)|α⟩ ≈ 1− (N − j)ϵ|α|2 ≈ (1− ϵ|α|2)N−j .

We therefore have,

p(j,N) =
N !

(N − j)!j!
(ϵ|α|2)j(1− ϵ|α|2)N−j . (C7)

We define Nϵ|α|2 = λ. Then we can write,

p(j,N) =
N !

(N − j)!j!

(
λ

N

)j[
1−

(
λ

N

)]N−j

=
λj

j!

N !

(N − j)!N j

[
1−

(
λ

N

)]−j[
1−

(
λ

N

)]N
. (C8)
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In the limit N → ∞, we have,

N !

(N − j)!N j
→ 1,

[
1−

(
λ

N

)]−j

→ 1, and

[
1−

(
λ

N

)]N
→ e−λ. (C9)

Hence we obtain,

lim
N→∞

p(j,N) → λj

j!
e−λ =

(Nγ0∆t|α|2)j

j!
e−Nγ0∆t|α|2 =

(γ0T |α|2)j

j!
e−γ0T |α|2 = p(j, T ). (C10)

The average number of ticks in the duration T = N∆t is j̄ = Nγ0∆t|α|2 = γ0|α|2T . Now we can generalize
Eqs. (C6)–(C10) using the diagonal P representation for an arbitrary initial state of the field, as,

P (j, T ) =

∫
d2βP (β)

1

j!
[γ0|β|2T ]je−γ0|β|2T , (C11)

that agrees to the result in Ref. [2].

Appendix D: The ratio test for a generic Gaussian state

In order to compute the ratio test for an arbitrary quantum mechanical state, we only need to evaluate the
probability P0, as the probabilities P1 and P2 can be derived from P0 using Eq. (B20) or Eq. (B24). Here we estimate
P0 for an arbitrary Gaussian state, which can be a displaced, squeezed, thermal state. The key insight that allows us
this calculating this is that,

P0 = ⟨e−γ0∆ta†a⟩ρ =
eγ0∆t

eγ0∆t − 1
tr[ρρ

′

th], (D1)

where ρ
′

th is the thermal state with effective temperature βℏω = γ0∆t. The corresponding occupation number

n
′

th = (eγ0∆t − 1)−1. Now in order to evaluate P0 for a generic Gaussian state, we can use the Wigner representation
of thermal states and the Weyl mapping, where,

P0 =
eγ0∆t

eγ0∆t − 1
tr[ρρ

′

th] =
eγ0∆t

eγ0∆t − 1
2π

∫
Wρ(x, y)Wρ

′
th
(x, y)dxdy. (D2)

For a generic Gaussian state, the Wigner function is given by,

Wρ(x, y) =
1

2π
√

|Vρ|
e−(X⃗−X⃗0)

T .V −1
ρ .(X⃗−X⃗0)/2, (D3)

where X⃗ = {x, p} and Vρ is the covariance matrix, given by (assuming squeezing parameter ζ = reiϕ),

Vρ =
2nth + 1

2

[
− cos(ϕ) sinh(2r) + cosh(2r) − sin(ϕ) sinh(2r)

− sin(ϕ) sinh(2r) cosh(2r) + cos(ϕ) sinh(2r)

]
. (D4)

In our notation, the covariance matrix for ρ
′

th has the form,

Vρ′
th

=
2n

′

th + 1

2

[
1 0
0 1

]
. (D5)

Now what remains to be evaluated to compute P0 is the overlap integral of two Gaussian Wigner functions. It can
be evaluated to obtain (see for example, Ref. [28]),

P0 =
eγ0∆t

eγ0∆t − 1
tr[ρρ

′

th] =
eγ0∆t

eγ0∆t − 1
2π

∫
Wρ(x, y)Wρ

′
th
(x, y)dxdy

=

eγ0∆t exp

(
− 1

2X⃗
T
0 V

−1
ρ

(
V −1

ρ
′
th

+ V −1
ρ

)−1

V −1

ρ
′
th

X⃗0

)
(eγ0∆t − 1)

√
|Vρ′

th
||Vρ||V −1

ρ
′
th

+ V −1
ρ |

. (D6)
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Now, for the null test, note P1 and P2 can be computed using the relations,

P1 = −(γ0∆t)
d

d(γ0∆t)
P0, and P2 =

(γ0∆t)
2

2

[
d2

d(γ0∆t)2
+

d

d(γ0∆t)

]
P0, (D7)

which follows from Eq. (B20) or Eq. (B24). As an example, consider X⃗ = {x0, 0}. In this case, we find, to leading
order,

R ≈
4n2th − 8nthx

2
0 cos(ϕ) sinh(2r) + 8(2nth + 1)

(
x20 − 1

)
cosh(2r)

2 ((2nth + 1) cosh(2r) + x20 − 1)
2

+
3(2nth + 1)2 cosh(4r) + 4nth − 8x20 cos(ϕ) sinh(r) cosh(r) + 2x40 − 8x20 + 5

2 ((2nth + 1) cosh(2r) + x20 − 1)
2 . (D8)

We see that, for a generic Gaussian state that is highly occupied, 1 ≤ R ≤ 3+cosech2(r) approximately, demonstrating
the significant deviation of R from one possible for generic Gaussian states. Coherent states and highly squeezed states
are at opposite ends of the spectrum, with thermal states yielding R = 2.
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