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Observing Radiation 
States

Fluctuations as Signals
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This issue is especially interesting for gravitational waves, which offer a 
unique window into some exotic and extreme physical regimes.

Parameters describing acoherence give information about the non-
classical  properties of radiation fields, and ultimately about their sources. 

In that context, detection of acoherence would provide a meaningful 
use of quantum gravity, which many regard as an end in itself. 



• Counting statistics 


• Ratio Test


• Homodyne and heterodyne


• HBT and active intensity interferometry


• Correlations
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Counting Statistics

Simple and Powerful
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• Set-up 


• Perturbation theory


• P Representation


• General Results
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VI(t) = λ[d(t)a† + d†(t)a]

UI = e−iλ ∫t+Δt
t [d(t)a†+d†(t)a]dt

Bar Radiation

Resonant mode; rotating wave approximation

  UI = e−i γ0Δt(a†b+b†a)

\

  Two-mode squeezing of radiation and bar!    ⇒ ∼
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P3 =
κ6
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(a†a)2 +
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a†2a2 |s⟩
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P2 =
κ4

2
⟨s |a†2a2 |s⟩

−κ6⟨s |
1
4

a†3a3 +
1
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a†2aa†a2 +
1
24
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24
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( )κ ≡ γ0ΔtPerturbative approach
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UI |α⟩ ⊗ |0⟩ = e−i γ0Δt(a†b+b†a) |α⟩ ⊗ |0⟩

= |α cos( γ0Δt)⟩ ⊗ | − iα sin( γ0Δt)⟩

Application of P representation 

ρ = ∫ d2αP(α) |α⟩⟨α |

At the end of the day, we are dealing with two coupled harmonic 
oscillators.  The   representation allows us to “integrate out the 

dynamics”:
P
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Pn = =
[sin2( γ0Δt)]n

n! ∫ d2α P(α) |α |2n e−|α|2sin2( γ0Δt)

n̄ =
∞

∑
n=0

nPn = sin2( γ0Δt)⟨a†a⟩ρ

n(n − 1) =
∞

∑
n=0

n(n − 1)Pn = [sin2( γ0Δt)]2⟨(a†)2a2⟩ρ

(Δn)2 ≈ n̄ + (γ0Δt)2Q⟨n⟩

Q ≡
⟨(ΔN̂)2⟩ρ − ⟨N̂⟩ρ

⟨N̂⟩ρ
, N̂ ≡ a†a

Mandel Q parameter

Global counting statistics 
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For observation to be practical, we need the factor  (many gravitons) 
to compensate the small coupling.  It can occur for super-Poisson 

statistics, but not sub-Poisson. 

⟨n⟩

Intuitively, we need to focus on the “balooned” directions, not the 
“squeezed” ones.
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Q = 0Coherent:

Thermal: P(α) =
1

πn̄th
e−|α|2/n̄th

n̄ = γ0Δtn̄th, (Δn)2 = n̄ + (γ0Δt)2n̄2
th, Q = n̄

(Δn)2 = n̄ Poisson

super-Poisson*

Squeezed Vacuum: |r,0⟩ =
1

cosh(r)

∞

∑
m=0

(−tanh(r))m 2m!
2mm!

|2m⟩

⟨n⟩ = sinh(r)2, n̄ = γ0Δt sinh(r)2

(Δn)2 = n̄ + (γ0Δt)2cosh(2r)sinh(r)2 Q = cosh(2r) → 2n̄
super-Poisson

*

Note: even only



Q = − 1Fock: sub-Poisson

Note:   
1. Maximally sub-Poisson  
2. Independent of n
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Coherent: R ≡
2P2P0

P2
1

= 1 R′ ≡
3P3P1

2P2
2

= 1

Fock: R = 1 −
1
n

R′ = 1 −
1

n − 1

Here, as in the global statistics, the distinction goes away for 
large  .n

Simple tests using small counts
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Thermal: R =
2P2P0

P2
1

= 2 (Independent of T!)

Squeezed Vacuum:   R → 3

R ≈
4n2

th − 8nthx2
0 cos(ϕ)sinh(2r) + 8(2nth + 1)(x2

0 − 1) cosh(2r)

2 ((2nth + 1)cosh(2r) + x2
0 − 1)2

+
3(2nth + 1)2cosh(4r) + 4nth − 8x2

0 cos(ϕ)sinh(r)cosh(r) + 2x4
0 − 8x2

0 + 5

2 ((2nth + 1)cosh(2r) + x2
0 − 1)2

Thermal, displaced (by ) and squeezed (amplitude , angle ) :x0 r ϕ
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a.k.a.  g2

 g(2)(xa, ta; xb, tb) ≡
G(2)(xa, ta; xb, tb)

|G(1)(xa, ta) | |G(1)(xb, tb) |

 G(2)(xa, ta; xb, tb) ≡ ⟨ E−(xa, t) E−(xb, t + τ) E+(xb, t + τ) E+(xa, t) ⟩

“Degree of second-order 
coherence” 

Our  parameter gives  with spatial and time arguments at the place 
and time it is measured.  This is also . 

R g(2)

Q + 1



Homodyne and 
Heterodyne

Complementary Information
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When the local oscillator is at the same (resonant) frequency as we use 
for detection, we say that we have homodyne detection.  When the local 

oscillator is at a different frequency, we say that we have heterodyne 
detection. 

We can get additional insight by using interferometry, which gives us 
access to phase information.  In these procedures, we consider that a 
local oscillator sets up a known baseline state of the bar, to which the 

signal adds.  

Homodyne operation was Weber’s original strategy, and measurement of 
position fluctuations is still probably simpler to implement than counting.
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Once we translate this into the  representation, we can turn the crank to 
evaluate quantities of interest, notably including the variance, as a 

function of the radiation state.

P

For homodyne detection, the relevant detector states are , satisfying 
 . 

|x⟩
b + b†

2
|x⟩ = x |x⟩
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⟨x2⟩D =
1
2

x2
0 + 2x2

0 sin2( γ0Δt)∫ d2αP(α) Im(α)2 =
1
2

x2
0 + 2x2

0 sin2( γ0Δt)⟨ Im(α)2⟩

⟨(Δ ̂x)2⟩ = ⟨ ̂x2⟩ − ⟨ ̂x⟩2 =
1
2

x2
0 + 2x2

0 sin2( γ0Δt)[⟨Im(α)2⟩ − ⟨Im(α)⟩2]

⟨ ̂x⟩ = 2x0 sin( γ0Δt)∫ d2αP(α)Im(α) = 2x0 sin( γ0Δt)⟨Im(α)⟩

where  = zero point lengthx0

= x2
0[ 1

2
+ sin2( γ0Δt)(⟨(Δ ̂P)2⟩ −

1
2 )]

This result makes good sense - uncertainty in impulsive momentum transfer gets 
reflected in displacement uncertainty.
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Coherent state: ⟨(Δ ̂x)2⟩ =
x2

0

2
⟨(Δ ̂P)2⟩ = 1/2 Vacuum noise only

Thermal state: Pth(α) =
1

πnth
e−|α|2/nth, ⟨(Δ ̂P)2⟩ =

2nth + 1
2

* ( = not undetectable deviation)

Fock: ⟨(Δ ̂P)2⟩ = ⟨(ΔX̂)2⟩ =
2n + 1

2

* ( = not undetectable deviation) (!)
Squeezed vacuum, :ϕ = 0

⟨(Δ ̂x)2⟩ = x2
0[{ 1

2
exp(2r) −

1
2 }sin2( γ0Δt) +

1
2 ] →

x2
0

2 [cos2( γ0Δt) + exp(2r)sin2( γ0Δt)]
* ( = not undetectable deviation) 

Squeezed vacuum, :ϕ = π

⟨(Δ ̂x)2⟩ = x2
0[{ 1

2
exp(−2r) −

1
2 }sin2( γ0Δt) +

1
2 ] →

x2
0

2 [1 − sin2( γ0Δt)]
(no detectable deviation) 
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Again, once we express the radiation mode into the  representation, we 
can turn the crank to evaluate quantities of interest, notably including the 

variance, as a function of the radiation mode state.

P

Thus, the relevant detector state is a coherent state , i.e. .|β⟩ eβb†−β*b |0⟩

In heterodyne detection, we use an external local oscillator with known 
amplitude and phase to put the detector in a coherent state..

Heterodyne, briefly
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There is also significant variance in the phase.  

For the variance in power we have

⟨(ΔJ)2⟩ ≈ 2 + 3γ0Δt⟨N̂⟩ρ + (γ0Δt)2Q⟨N̂⟩ρ = (3⟨J⟩ − 1) + (γ0Δt)2Q⟨N̂⟩ρ

⟨J⟩ ≡ ⟨b†b⟩ ≈ 1 + γ0Δt⟨N̂⟩ρ
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 One can realistically aspire to detect acoherence in gravitational radiation 
through measurements of fluctuations and noise in bar detectors.

Takeaway messages

Different protocols access different information.



HBT and Active 
Intensity Interferometry

Concept and Realization
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1 2

A B

the basic HBT setup

|     |D1A D2B + D2A D1B
2

   D1A D2B D*2A D*1B + D*1A D*2B D2A D1B



Phase noise at source cancels (1 index and 2 index). 

Phase noise in “local” propagation cancels (A index and B 
index). 

Geometry-dependent phase does not cancel, and gives - 
as you vary the distance between A and B - information 
about the distance between 1 and 2.
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In this subject it is easy to draw hasty - and wrong - 
conclusions.  Correct intuition has to build on examples 
and equations!
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A slightly more quantitative discussion 

After summing over detector final states,            
⟨IA(t) IB(t + τ)⟩ = κ⟨s | E−(xa, t) E−(xb, t + τ) E+(xb, t + τ) E+(xa, t) |s⟩

annihilation operators (positive frequency) creation operators (negative frequency) 

We expand the s into modes, as excited by the source.  This 
evaluation can involve both statistical averaging and propagation 
effects.  It can get complicated  (  “rich”), but a few general 
conclusions can be drawn simply:

E

≈



If we put  and , we have 


.   For the case of 

 independent modes (e.g., many atomic emissions) each mode 
annihilation operator gets choose, when getting back to ,  from 2 
corresponding creation operators.   In an equation:








This calculation closely embodies the red-blue intuition from “basic HBT 
set-up”.

xa = xb τ = 0

⟨I2⟩ = κ ⟨s |∑
j

a(1)†

k ∑
l

a(2)†
k ∑

m

a(2)
l ∑

j

a(1)
m ) |s⟩

N ≫ 1
|s⟩

⟨I2⟩ = κ ⟨s |∑
j

a(1)†
j a(1)

j ∑
k

a(2)†
k a(2)

k + ∑
j

a(1)†
j a(2)

j ∑
k

a(2)†
k a(1)

k |s⟩

= 2 ⟨I⟩2



At the other extreme, if we have only one relevant mode in a coherent state, 
then the creation and annihilation operators become c-numbers and 

.  In words: no fluctuations. 

How did the intuition go so wrong?   

A: By thinking in terms of photons, rather than field modes.  Some modes 
don’t behave like particles!

⟨I2⟩ = ⟨I⟩2



Going back to the multimode case: as we let  or  the cross 
( ) term is sensitive to relative phases between the (same) field 
mode at different space-time points.  That is the sort of thing that is 
discussed in the theory of coherence and diffraction in optics.  


Dephasing will eliminate the cross-term, or in other words the non-trivial 
intensity correlation.


For a finite source, e.g. a disk in the sky (= star) the rate of dephasing, as 
a function of the detector separation, encodes the size of the disk.  (This 
is how Hanbury Brown and Twiss measured the size of Sirius and several 
other bright stars.)


We do not get an image, but we do get information we can process into 
an image … 

τ ≠ 0 xa ≠ xb
1 ↔ 2



To extend intensity interferometry to non-luminous objects, we 
need to supply them with light.  

Lasers are good for that, but they supply coherent light, which 
is “too good”.  

Solution: Use several laser beams and inject phase noise. 



Concept: Make Laser Light Decohere Without Spreading 
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Realization



36 Result: ~ nm. Resolution at 1.36 km.   



Correlations in Noisy 
Bars

Another Resource
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One can not only apply the preceding analysis to each mode, but also 
study correlations … 

In reality the gravitational wave signal will not be monochromatic, and the 
bar(s) will have several low-lying modes.  
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Absence of intensity correlations is a direct consequence, and thus 
provides a test, of the coherent state hypothesis!
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