
1



2

Gravitational radiation is often treated classically, but the world is 
quantum mechanical.  

What is its quantum-mechanical state? How do we measure it? 
How do we predict it?
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The “most classical” states, as we’ll discuss, are the so-called 
coherent states.

The coherent state hypothesis is a precise form of the statement 
“gravitational radiation is classical”.  That hypothesis has sharp 

experimental consequences.

We’ll be exploring how to test the coherent state hypothesis: What 
it is, why it often holds, why we expect it sometimes to fail, and 

how to tell the difference experimentally. 



Radiation Field States

Paradigms and Properties

4



• Coherent states


• Thermal and Fock states


• Generating coherent states


• Squeezing


• Generating squeezed states


• Radiation from afar


• Wigner functions
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Coherent States

“Maximally Classical”
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H = a†a +
1
2

  ;   ; a |n⟩ = n |n − 1⟩ a† |n⟩ = n + 1 |n + 1⟩ a†a |n⟩ = n |n⟩

  ;  H =
1
2

(p2 + q2) [q, p] = i

  ;    a =
1

2
(q + ip) a† =

1

2
(q − ip)

aa† − a†a = 1

H |n⟩ = (n +
1
2

) |n⟩

a =
1

2
(q +

d
dq

)

|0⟩ = ∫ dq
e−q2/2

π 1
4

|q⟩

(Hermite polynomials emerge …)

Warm-up: harmonic oscillator gymnastics
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a |α⟩ = α |α⟩

  |α⟩ = ∑
n

e−|α|2/2 αn

n!
|n⟩ = D(α) |0⟩

D(α) = e(αa†−α*a) = e−|α|2/2eαa†e−α*a = e|α|2/2e−α*aeαa†

D(α) D(β) = eiIm(αβ*)D(α + β)

Displacement operators

  ;    D(α) D(−α) = 1 D(α)† = D(−α)

BCH formula (semi-trivial version)

If  and  ,  then 
 

[A, [A, B]] = 0 [B, [A, B]] = 0
eA+B = eA eB e− 1

2 [A,B] = eB eA e
1
2 [A,B]

Coherent states defined
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Evolution (from expression in number basis) 

e−iHt |α⟩ = e−it/2 |e−itα⟩

Wave function

  ; |α⟩ = ∫ dq e−(q−q0)2/2eip0q |q⟩ q0 = 2 Re α, p0 = 2 Im α

⟨α(t) |q |α(t)⟩ = 2 |α(0) | cos(σ − ωt)

⟨α(t) |p |α(t)⟩ = 2 |α(0) | sin(σ − ωt)

with  α(0) = |α(0) | eiσ
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P(n) = | ⟨α |n⟩ |2 = e−|α|2 |α |2n

n!

Poisson distribution in number

   ;       ⟨α |n |α⟩ = |α |2 ⟨α |n2 |α⟩ = |α |2 + |α |4

  ;    n̄2 − n̄2 = n̄
Δn
n̄

≡
n̄2 − n̄2

n̄
=

1

n̄
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Position and Momentum

⟨α | q =
a† + a

2
|α⟩ = 2 Re α ⟨α | p =

a − a†

2i
|α⟩ = 2 Im α

In the ground state  we have equal variances  
in .  The product of those uncertainties saturates the Heisenberg 

bound.  

|α = 0⟩ 1
2

q, p

We also get the same variance for   , with any .  cos ϕ q + sin ϕ p ϕ

Thus we have a “circle of uncertainty” around the origin in the 
complex  plane.  Applying displacement operators, we find 
coherent states describing a translated circle surrounding its 

central point. 

α

All this justifies the general feeling that coherent states are 
maximally classical, and the picture that follows:
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“Vacuum noise only”
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In the quantum realization of free electromagnetic fields, each mode of 
the electric field occurs as a “q” (or a p), e. g. :  

  ; Ex(z, t) = ℰ0 (a + a†) By(z, t) = ℰ0
1
i

(a − a†)

Thus, we can speak of quantum “coherent states”* of a mode, and 
discuss their observable characteristics. 

Electric (or “Electric”) field modes

*Note that the language of “coherence” is also used to describe other, 
quite distinct phenomena in optics.
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⟨n⟩ = 4.2

⟨n⟩ = 25.2

⟨n⟩ = 924.5

Electric field in coherent states (homodyne measurement)
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Wave packet evolution,  ⟨n⟩ = 25.2
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Homodyne detection principle
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Coherent State Bases

The simplest completeness relation is  
1 = ∫

d2α
π

|α⟩⟨α |

Note however that 
 

so this basis is highly over-complete. 
⟨β |α⟩ = ei Im β*α e− 1

2 |β−α|2

Coherent states have such pleasant properties that it can be very 
convenient to use them as a basis for expansions.  
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An alternative way to express density matrices (pure or not) is the 
so-called  representation.  It will be extremely useful for us! P

ρ = ∫ d2α P(ρ, α) |α ⟩⟨α |

Since the real and imaginary parts of  encode , the  
representation is a kind of phase space representation.   is real, 

but it is not necessarily positive and it can be quite singular.  

α q, p P
P

For a coherent state density matrix   we have of 
course . 

ρα = |α⟩⟨α |
P(ρα, β) = δ2(α − β)



Thermal and Fock 
States

Other Reference Cases
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Thermal “state”, temperature :    ;  T ρT =
e− H

T

Tr e− H
T

n̄ =
1

e 1
T − 1

  P(ρT, α) =
1

πn̄
e− |α |2

n̄

Fock state   ;  |n⟩ ρn = |n⟩⟨n |

P(ρn, α) =
e|α|2

n!
∂2n

∂nα∂nα*
δ(Reα)δ(Imα)



Generating Coherent 
States

Lasers, Linear GW Sources
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The main result here is that linear interaction with a classical 
source* produces coherent states of the radiation field.

*  a source for which we can ignore back-reaction.≈

Using the machinery of displacement operators, we can prove this 
in a few lines: (next slide)



1. It is legitimate to analyze mode by mode:  
A(x, t) → δ3(k − k0) (ak0

ei(k0x−ωt) + a†
k0

e−i(k0x−ωt))

0.    ;  U(tf , ti) = T exp (−i∫
f

i
dt H(t) ) H(t) = ∫ d3x A(x, t) ⋅ J(x, t)

2. Fourier: H(t) = J̃(k0 , t)(ak0
e−iωt + a†

k0
eiωt)

3. Newton (analysis): 
T exp (−i∫

τ+ϵ

τ
dt H(t) ) ≈ T exp(−iϵH(τ)) = TD(ϵeiωτJ(k0,τ))

4. Newton (synthesis): Using the algebra of displacements, the 
product over time intervals becomes - up to phases - a sum that 

converts to an integral.

5. Result: U(tf , ti) = phase × D(∫
f

i
dt J̃(k0, t) eiωt)

 From  to a coherent state!⇒ |0⟩
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Lasers operating well above threshold produce light in a quantum 
coherent state (possible involving several modes), and we should 

also anticipate this for gravitational radiation produced whenever a 
linearized theory coupled to a robust source is an appropriate 

model. 

But known sources of gravitational radiation sometimes involve 
strongly non-linear effects, and other “known” sources involve pair 

creation. Then we might expect - and will find - departures from the 
coherent state hypothesis.



Squeezing

A Classic “Non-Classicality”
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Intuition: Commuting the creation operators through the 
annihilation operators just generates phases, so (up to a phase) we 

can we can ignore time ordering.
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The next level of complexity is to bring in (exponentials of) 
expressions quadratic in creation and annihilation operators.  

Several possibilities occur naturally in applications and have been 
studied intensely, including quadrature squeezing, number 

squeezing, and 2-mode squeezing.  I’ll introduce them briefly here. 
We’ll use them a lot.
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  ; S(ξ) = exp ( 1
2

(ξ*a2 − ξa†2) ) ξ ≡ r eiθ

 S†(ξ) a S(ξ) = a cosh r − a†eiθ sinh r
S†(ξ) a† S(ξ) = a† cosh r − ae−iθ sinh r

squeezing operator
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Uncertainty Perspective

[A, B] = iC

 for all real ,  
with , 

⟨s | (Ã + iλB̃)(Ã − iλB̃) |s⟩ = ⟨s | Ã2 + λC + λ2B̃2 |s⟩ ≥ 0 λ
Ã = A − ⟨s |A |s⟩ B̃ = B − ⟨s |B |s⟩

       (*)⇒ ⟨s | Ã2 |s⟩⟨s | B̃2 |s⟩ ≥
1
4

⟨s |C |s⟩2

The canonical case is .  The bound is saturated by coherent 

states, with both factors on the left .  (This property singles out coherent states.)

A = q, B = p, C = 1
=

1
2

Squeezed states “squeeze” something in the sense that one of the factors in (*) 
becomes smaller than the square root.  Of course, that means that the other 

must be larger!  I suggest that we call them “ballooned” directions.

An interesting aspect of squeezed states is their re-arrangement of uncertainty.
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With  

 

|r, θ⟩ = S(ξ) |0⟩

⟨r, θ | q̃2 |r, θ⟩ =
1
2

(cosh2 r + sinh2 r − 2 sinh r cosh r cos θ)

⟨r, θ | p̃2 |r, θ⟩ =
1
2

(cosh2 r + sinh2 r + 2 sinh r cosh r cos θ)

For   , , so we have squeezing in 

the  direction, ballooning in the  and a minimum uncertainty product.  For  
the roles are reversed.  In general, neither  nor  squeezed and the product is non-

minimal.

θ = 0, ⟨r,0 | q̃2 |r,0⟩ =
1
2

e−r ⟨r,0 | p̃2 |r,0⟩ =
1
2

er

q q θ = π,
q̃ p̃

In the  plane, we have an error ellipse that rotates as a function of . (q, p) θ/2

“squeezing the vacuum”
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One can displace the vacuum squeezed states, according to 
.  These states have rigidly displaced error ellipses.   D(α)S(ξ) |0⟩ ≡ |α, r, θ⟩

Squeezing coherent states

Combining these ideas, we can squeeze amplitude (number) or phase: 
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wave function

Squeezed states allow for  in
 

w ≠ 1
ψ(q) = exp ( − (q − q0)2/2w2 + ip0q)

This wave function describes an eigenstate of  (or 
) . 

It is not, of course, an energy eigenstate.

q + ipw2

(1 + w2)a + (1 − w2)a†

But for the unitary operators that combine displacement and squeezing, we do map 
eigenstates of  into eigenstates of .  So we get eigenstates of a different 
harmonic oscillator.  For displacement operators, the transformed Hamiltonian is 

simply translated; under squeezing operators, its effective mass and spring constant 
generally change. 

H UHU−1
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“Non-classicality” of squeezing

In the  representation 

,  

so squeezing requires that  goes negative.

P

⟨s | q̃2 |s⟩ =
1
2 (1 + ∫ d2α P(s, α)((α + α*)2)

P(s, α)

~
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Two-mode squeezing

S(ξ) = exp (ξ*ab − ξa†b†)

|r, θ⟩ = S(ξ) |0,0⟩

S(ξ)†aS(ξ) = cosh r a − eiθ sinh r b†

S(ξ)†bS(ξ) = cosh r b − eiθ sinh r a†

|r, θ⟩ =
1

cosh r ∑
n

(−1)n einθ (tanh r)n |n, n⟩

If we observe only one mode, tracing over the other, we get a thermal distribution (!) 
with effective temperature  .  1/Teff. = 2 ln coth r



Generating  
Squeezed States

Paradigms
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• Nonlinearity and driving field


• Electro-optics 


• General relativity; BH quasinormal modes


• Pair creation


• Hawking radiation


• Cosmological 


• Theoretical (?!)


• Sudden change of Hamiltonian


• Resonant source-detector entanglement
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Radiation from Afar

Elementary Decay 
Amplitudes



It is a famous, fundamental result that despite 
being allowed by naive angular momentum 
conservation, one-photon transitions between 
0 spin states (“0-0 transitions”) are forbidden.  
This is because the candidate amplitude - 
linear in the photon polarization and using one 
unit of orbital angular momentum to make a 
scalar - vanishes by gauge invariance:    

  (no longitudinal photon).ϵ ⋅ k = 0



0-0 transitions can occur through two photon emission.  
Two famous cases are Higgs decay and  decay.   
The relevant amplitudes are: 

 , scalar 

 , pseudo-scalar (Note: consistent with Bose 
statistics.). 
Although d wave is allowed by angular momentum, in the 
scalar case, it is forbidden by transversality - we can’t 
soak up two powers of  .  

1x1  0 + 1 +  2

π0

ϵ1 ⋅ ϵ2

(ϵ1 × ϵ2) ⋅ k

k
→



More explicitly, the 2-photon final states are 
described by wave functions of the general 
form 

,  

superposed over  . 

Re (ϵ1 ⋅ ϵ*2 ) eik(r1−r2)

k



We have a similar situation in gravity.  
Spherically symmetric configurations, even if 
time-dependent, give no gravitational radiation 
classically.   
What about two-graviton radiation?  
Let’s look at the amplitudes:



The polarization of gravitons is described by a 
two-index (spin 2) tensor with additional 
conditions:  

 ,   ,  . ,   .   

As with photons, here too gauge invariance 
forbids 0  0 by single graviton emission.    

hij hij = hji hii = 0 kihij = 0

→



Very similar to the photon case, there are two 
allowed amplitudes for two-graviton emission: 

Scalar, s-wave:   

Pseudo-scalar, p-wave:    

hijh′ ij

hijh′ ikϵjklkl



In addition, 1  0 transitions can’t occur 
through one graviton emission: 

 

  

→

πihijkj = 0

πphqrϵpqskrks = 0

πphqrkpkqkr = 0
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What about two graviton emission? 

 forbidden by Bose statistics 

 forbidden, B 

 forbidden by transversality 

 forbidden, B 

 forbidden, t 

 forbidden, t 

…  

 No 1  0 through 2 graviton emission, either!

hrsh′ rs π ⋅ k

hpsh′ qs ϵpqu πu

hpsh′ qs ϵpqu πd ϵudvkv

hpsh′ qs ϵpqu πd kukd

hpsh′ qs πp kq

hpsh′ qs πrϵqrukpku

⇒ →



In the ring-down phase following a black 
hole merger, the geometry vibrates at 
characteristic (complex) frequencies in ways 
that can be read off from linear perturbation 
theory.   
These quasi-normal modes imply 
observable, and probably observed, forms of 
gravitational radiation.  
The wavelength of this radiation is typically 
much larger than the black hole size, so a 
multipole analysis should be appropriate. 



In that framework, the absence of single 
graviton radiation from a spherically symmetrical 
oscillation (Birkhoff’s theorem) is a reflection of 
the absence of 0-0 transitions. 
But two-graviton - and two-photon - processes 
can proceed.  Appropriate vertices can be read 
off from the microscopic Lagrangian.    

 

  

gFF → ∼ f(t, r)a†a†

gR → ∼ f(t, r)a†a†



The frequency of the emitted pairs is half the 
frequency of the basic oscillation. 
This process is distinct from the generation of 
combination tones, which is also very 
interesting.   

The same sort of analysis applies to ring-down 
of neutron stars, … 



Wigner Functions

Transcending Uncertainty, 
Improbably
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An older but useful and widely used phase space extension of a 
quantum wave function is the Wigner function

  Wψ(q, p) =
1

2π ∫ dx ψ*(q −
x
2

) ψ(q +
x
2

) eipx

It is real, but not necessarily positive.  It has the nice properties 
  ;  ∫ dq Wψ(q, p) = | ψ̃(p) |2 ∫ dp Wψ(q, p) = |ψ(q) |2

Here are some instructive examples:
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