Quantum simulations with superconducting qubits

pedramr@google.com, @PedramRoushan 🔰

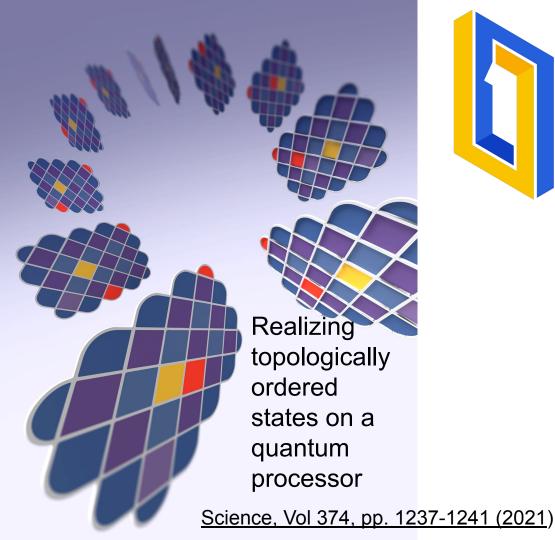
Google Quantum Al,

Realizing topologically ordered states on a quantum processor Science 374, 1237-1241 (2021)

Non-Abelian braiding of graph vertices in a superconducting processor Nature 618, 264–269 (2023)

Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories Nature 642, June 2025

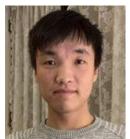
Quantum connection , Stockholm June 2025



Kevin Satzinger

Adam Smith

Michael Knap

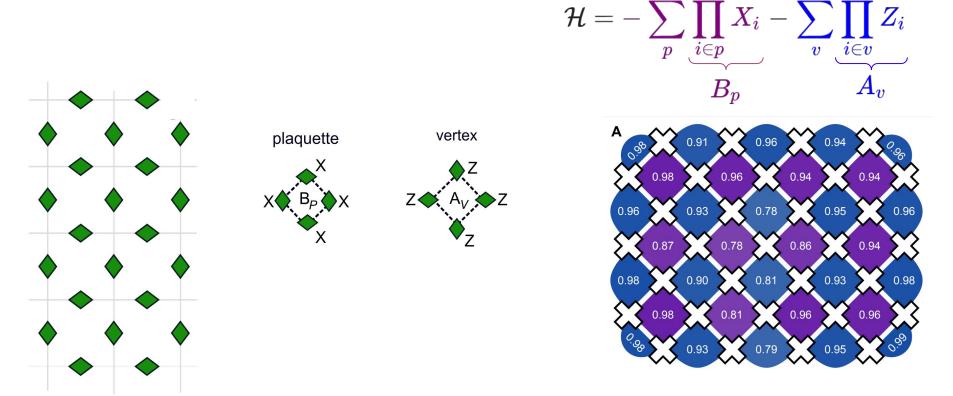


Yujie Liu

Chrstina Knapp

Frank Pollmann

Realizing topologically ordered states on a quantum processor



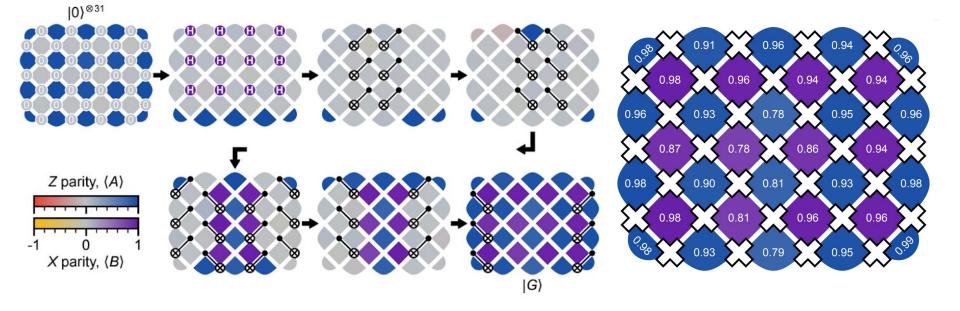
Satzinger et al. Science 374, 1237-1241 (2021)

A. Y. Kitaev, Ann. Phys. (N. Y). 303, 2 (2003).

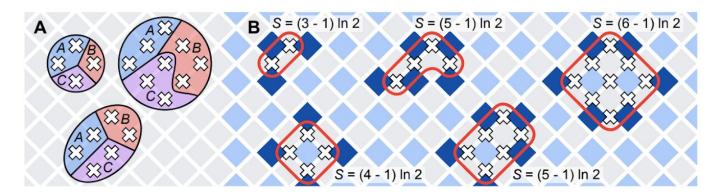
Gate sequence to create ground-states

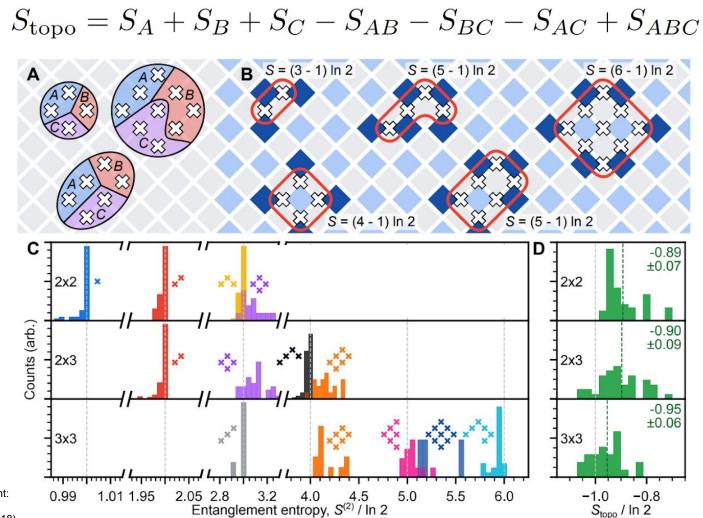
$$[B_p, A_v] = 0 \longrightarrow |G
angle \propto \prod_p \underbrace{(\mathbb{I} + B_p)}_{\text{projector}} |0
angle^{\otimes 31}$$

superposition of all plaquette configurations

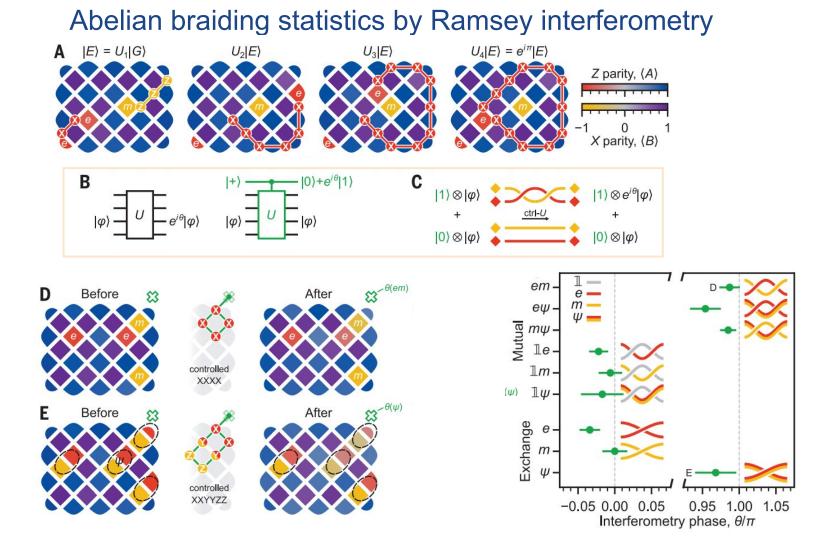


$S_{\rm topo} = S_A + S_B + S_C - S_{AB} - S_{BC} - S_{AC} + S_{ABC}$

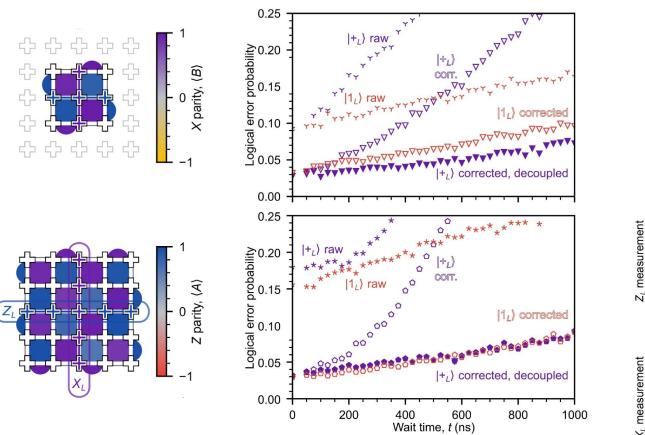


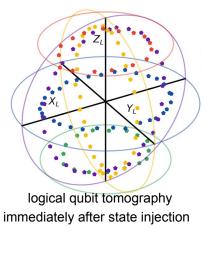


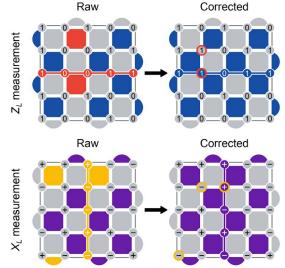
Randomized measurement: Tiff *et al.*, Science (2019), Vermersch *et al.*, PRA (2018)



Fidelity of logical states







Non-Abelian braiding of graph vertices in a superconducting processor

Nature, 618, 264–269 (2023)

Trond Andersen

Yuri Lensky

Alexis Morvan

Igor Aleiner

Cornell U.

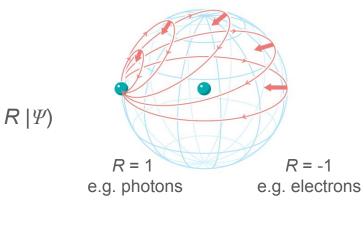
Andreas Bengtsson

Eunah Kim

Exchange statistics of indistinguishable particles

Indistinguishability of particles : a fundamental principle of quantum mechanics

3 spatial dimensions



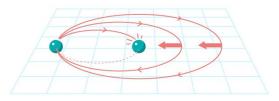
Exchanging particles twice $\rightarrow R^2 = 1$

R: exchange operator

 $\mathbb{R}^2 | \Psi \rangle$

Time

2 spatial dimensions



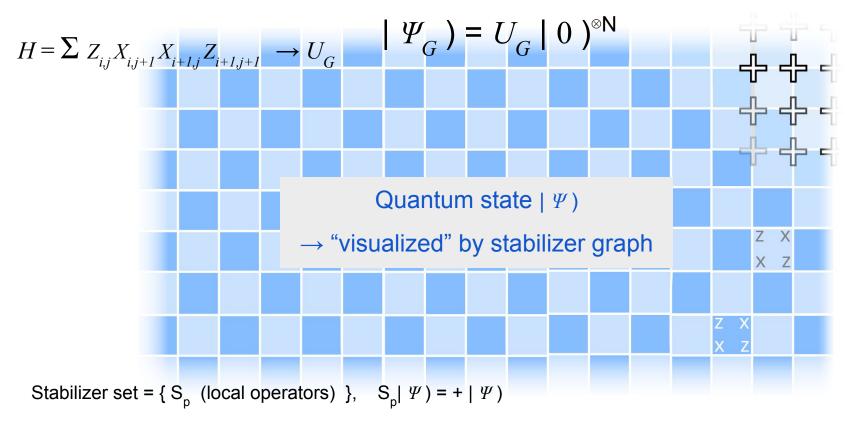
 $R = e^{i\theta}$ e.g. plaquette violations in the surface code

R is a matrix Non-Abelian anyons

 R^2 no longer has to be 1

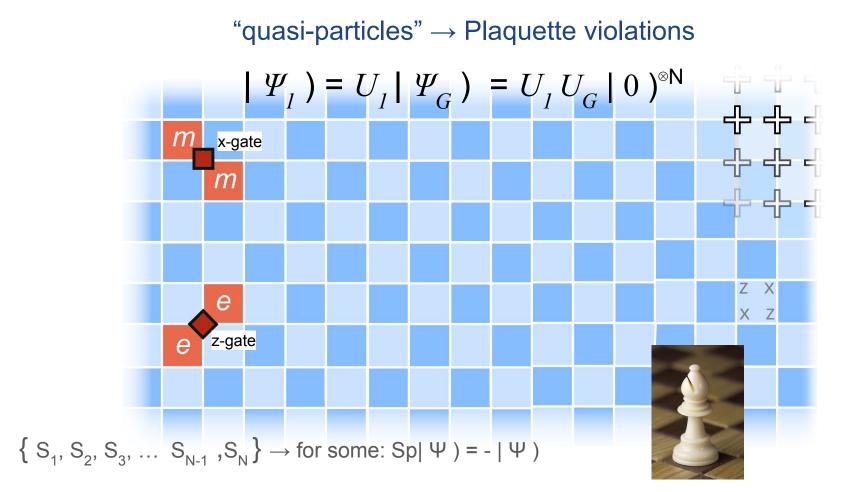
non-Abelian quasiparticles candidates: 5/2 FQH states vortices in topological SC Majorana zero modes

Non-Abelian braiding of graph vertices in a superconducting processor



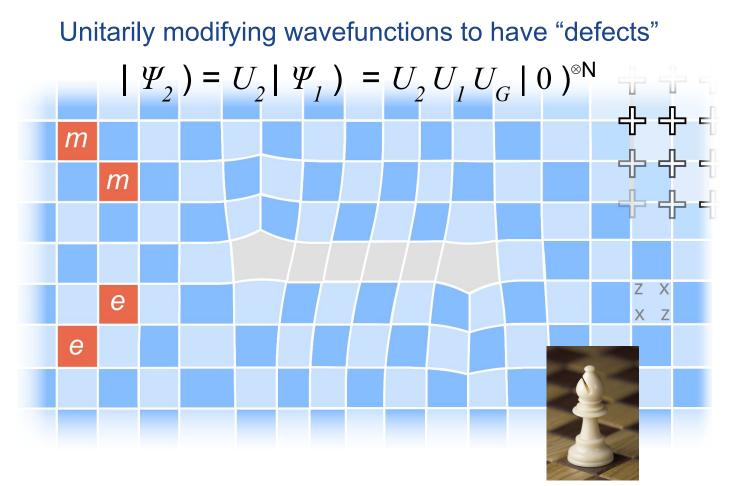
 $\left\{ \text{ } S_{1}^{}, \text{ } S_{2}^{}, \text{ } S_{3}^{}, \ldots, \text{ } S_{N-1}^{}, \text{ } S_{N}^{} \right\} \rightarrow \text{Stabilizer set}$

Andersen et al., nature 618, 264–269 (2023)

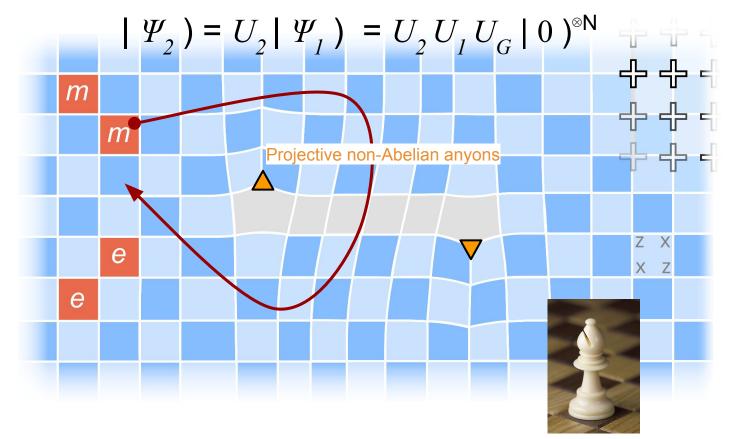


e and m on different sublattices \rightarrow can never "meet"

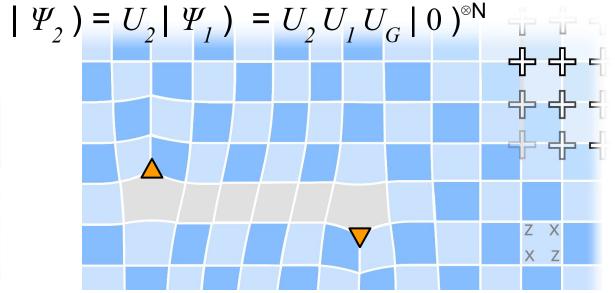
Unitarily modifying wavefunctions to have "defects"

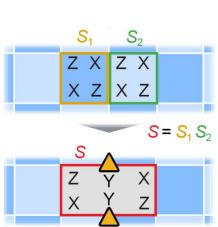


Unitarily modifying wavefunctions to have "defects"

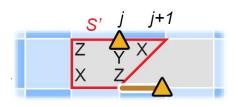


Recipe to modifying wavefunctions to have Degree-3 vertices





$$U = \exp(\pi/8 [S',S]) = \exp(i \pi/4 X_{i,j} Z_{i,j+1})$$



Move the D3Vs \triangle with 2-qubit gates \rightarrow deform the stabilizer graph !

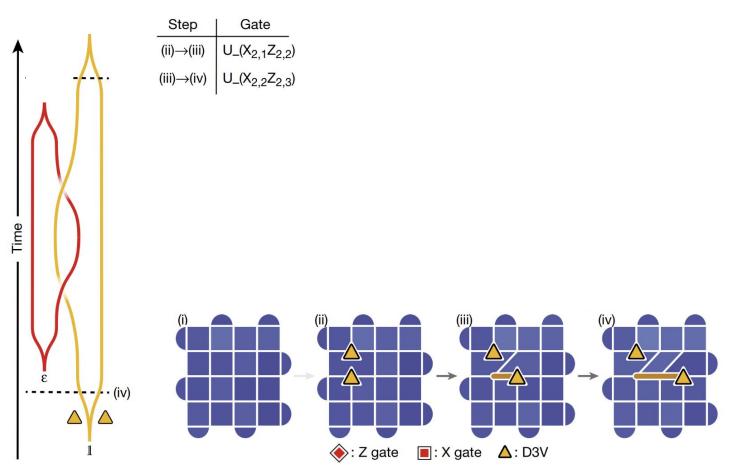
Experiments outline

- Verify fundamental fusion rules of D3Vs
 - What happens when D3Vs "collide" with each other and with fermions?
 - Do they behave as non-Abelian Ising anyons should?

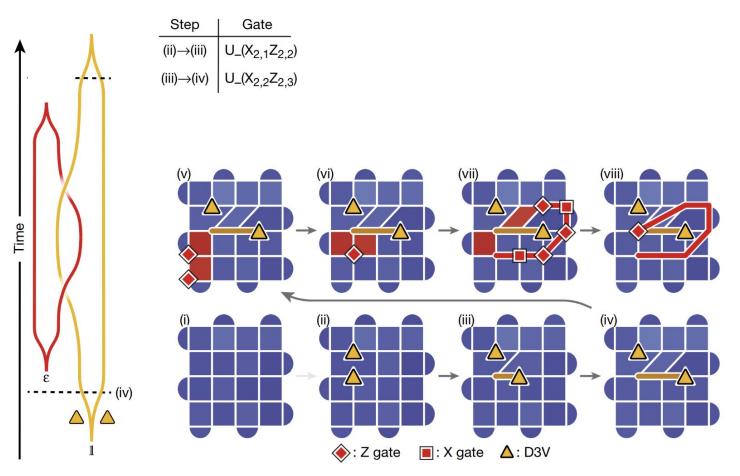
- Braid the D3Vs to realize non-Abelian exchange statistics
 - Does braiding lead to a change in observables for the first time?

- Use braiding to entangle anyons encoding logical qubits
 - How can braiding be used in quantum computing operations?

Experimentally verifying the fusion rules

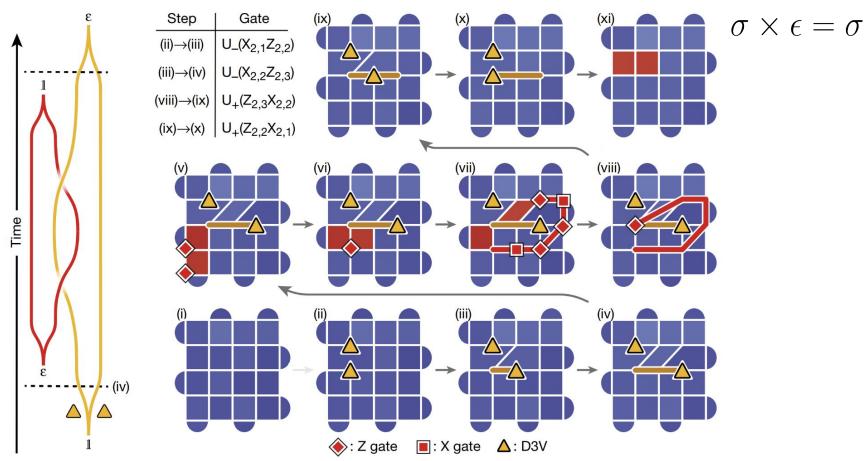


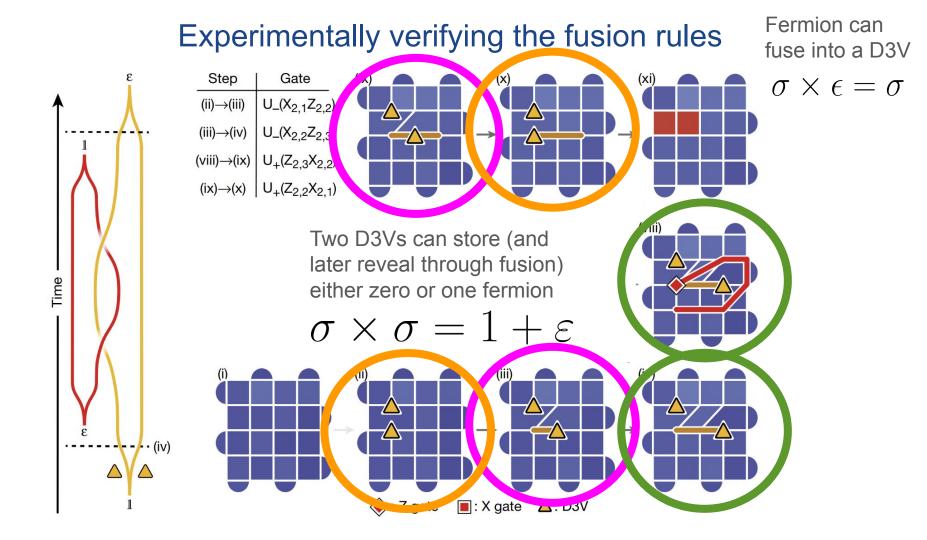
Experimentally verifying the fusion rules



Experimentally verifying the fusion rules

Fermion can fuse into a D3V

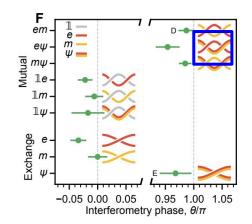


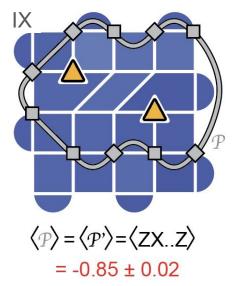


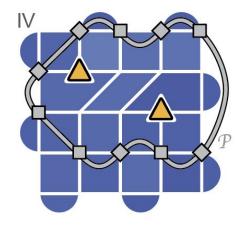
Non-local fermion measurements

When a plaquette violation is brought around a fermion, it gains a π -phase

 \rightarrow Let's measure the Pauli string that corresponds to bringing a plaquette violation around the pair of D3Vs. If there's a fermion, we should get -1.

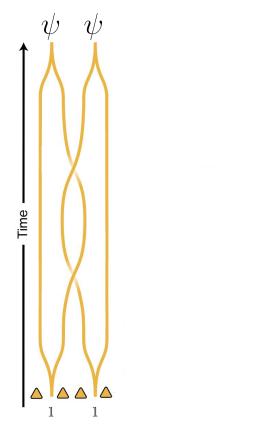






-Information (fermion number) encoded non-locally

Braiding D3Vs to realize non-Abelian exchange statistics



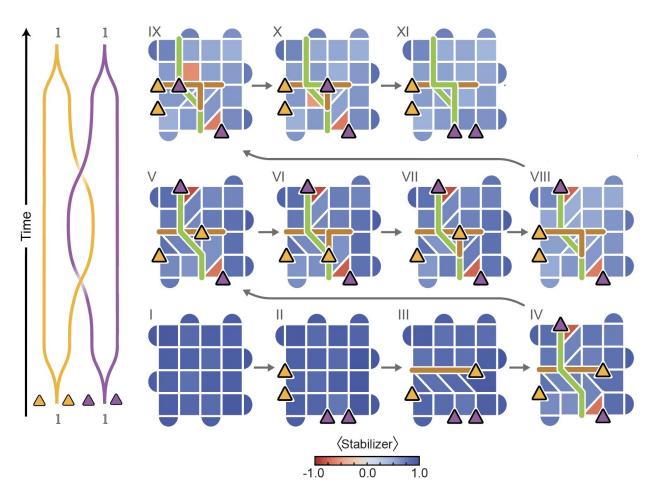
 -Braiding led to a change in local observables.

Two D3Vs can store (and later reveal through fusion) either zero or one fermion

$$\sigma \times \sigma = 1 + \psi$$

QC perspective: Braid acts as X-gate on the space spanned by |00) and |11)

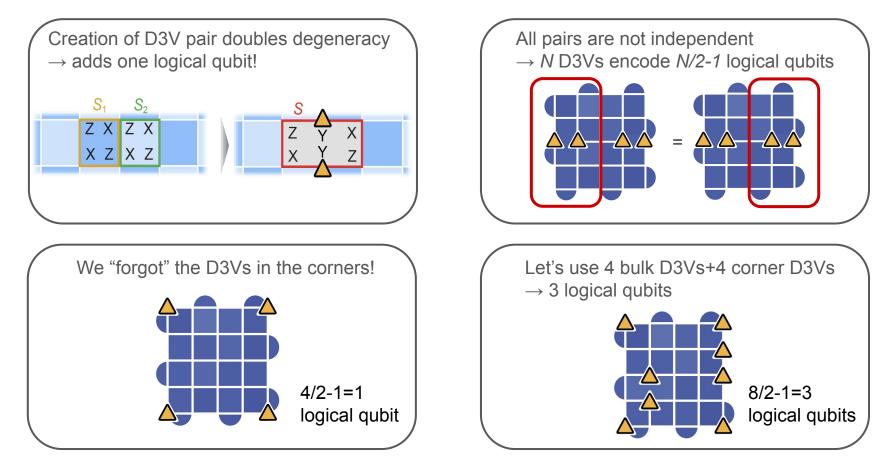
Control experiment: Braiding distinguishable D3Vs



D3Vs made distinguishable by attaching a plaquette violation $(U_{\pm} \rightarrow U_{\mp}).$

When using distinguishable particles, no fermions appear, thus a successful control experiment

Encoding logical qubits in anyon pairs



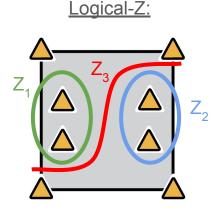
Entangling anyon-encoded logical qubits

Basis choice

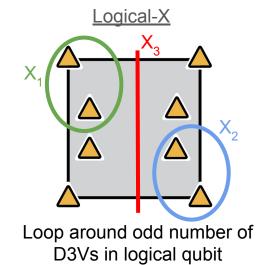
GHZ-state: $|\Psi_{GHZ}\rangle = (|111\rangle + |000\rangle)/\sqrt{2}$ - depends on basis!

Separated anyons: non-local operators, many possible choices of basis

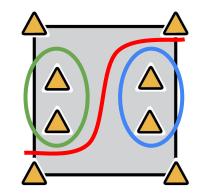
Logical operators: (non-local) Pauli strings



Loop around all D3Vs in logical qubit



Our choice:



Logical-Y

 $Y_i = iZ_iX_i$

Entangling anyon-encoded logical qubits

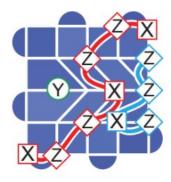
Basis choice

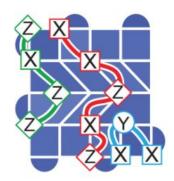
GHZ-state: $|\Psi_{GHZ}\rangle = (|111\rangle + |000\rangle)/\sqrt{2}$ - depends on basis!

Separated anyons: non-local operators, many possible choices of basis

Logical operators: (non-local) Pauli strings

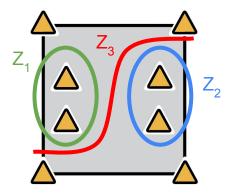
Logical-Z:



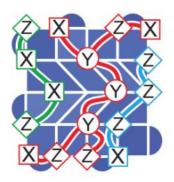


Logical-X

Our choice:

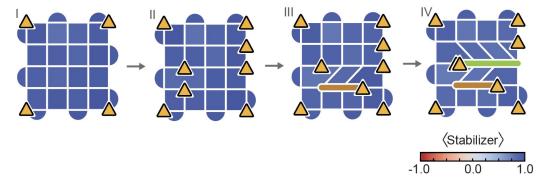


Logical-Y

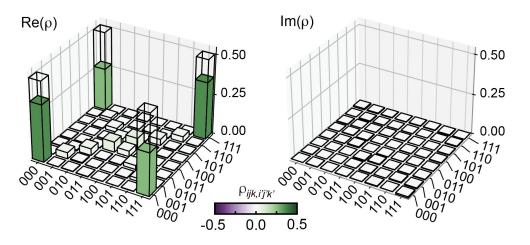


Entanglement through braiding

- -Double exchange acted as X-gate: $|00\rangle \rightarrow |11\rangle$
- -Use single exchange to achieve \sqrt{X} -gate: $|000\rangle \rightarrow (|000\rangle + |111\rangle)/\sqrt{2}$



Quantum state tomography of final state:



Fidelity: $\langle \psi_{\rm GHZ} | \rho | \psi_{\rm GHZ} \rangle = 0.62$

Purity:
$$\sqrt{\mathrm{Tr}\{\rho^2\}} = 0.65$$

Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories

Tyler Cochran

Residents

Gaurav Gyawali

External Collaborators

T. Cochran et al., Nature 642, June 2025

Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories

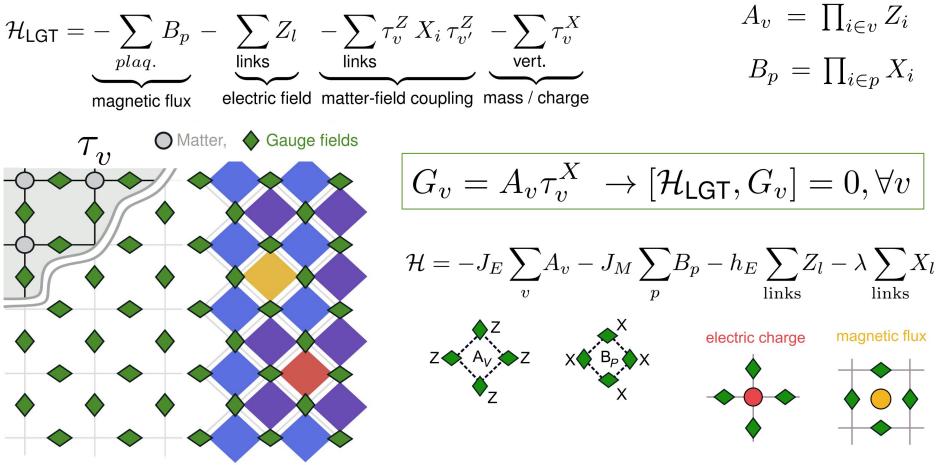
$$\mathcal{H}_{\mathsf{LGT}} = -\sum_{\substack{plaq.\\ magnetic flux}} B_p - \sum_{\substack{\text{links}\\ electric field}} Z_l - \sum_{\substack{links\\ matter-field coupling}} \tau_v^Z X_i \tau_{v'}^Z - \sum_{\substack{\text{vert.}\\ mass / charge}} \tau_v^X B_p = \prod_{i \in v} X_i$$

$$B_p = \prod_{i \in v} X_i$$

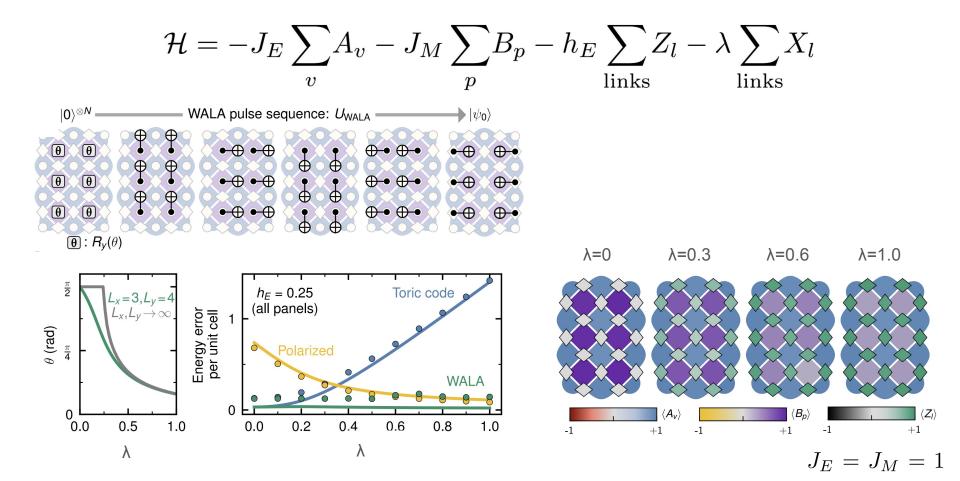
$$T_v \quad \textcircled{O} \text{Matter,} \quad \clubsuit \text{ Gauge fields}$$

$$G_v = A_v \tau_v^X \rightarrow [\mathcal{H}_{\mathsf{LGT}}, G_v] = 0, \forall v$$

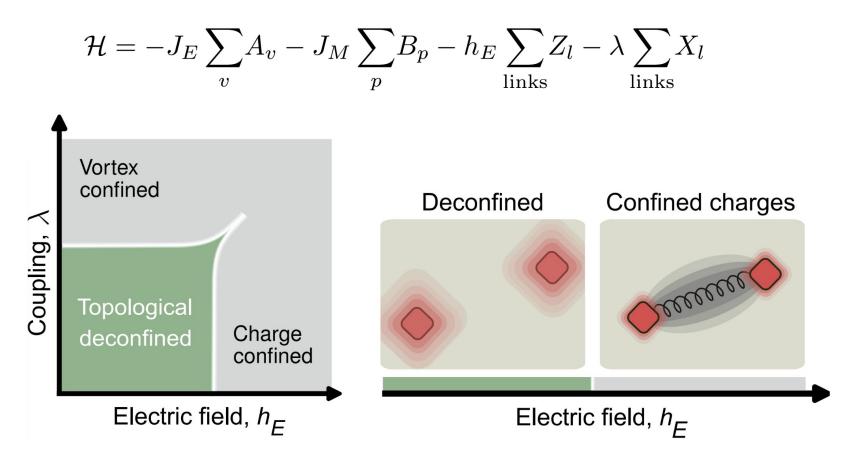
Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories



Weight Adjustable Loop Ansatz (WALA) ground state



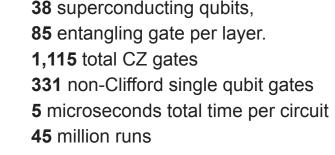
Phase diagram of the LGT

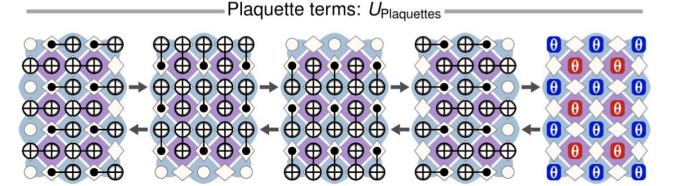


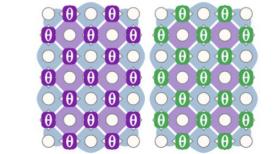
E. Fradkin and S. H. Shenker, PRD (1979), S. Trebst et al., PRL(2007), J. Vidal et al., PRB (2009).

Dynamics: Trotterization, $U = \exp(iHdt)$

— Field terms: U_{Fields} —







Gauge qubit

 $R_Z(-2h_Edt)$

 $R_X(-2 \lambda dt)$

 $(\theta R_Z(-2J_Edt))$

 $(0) R_Z(-2J_M dt)$

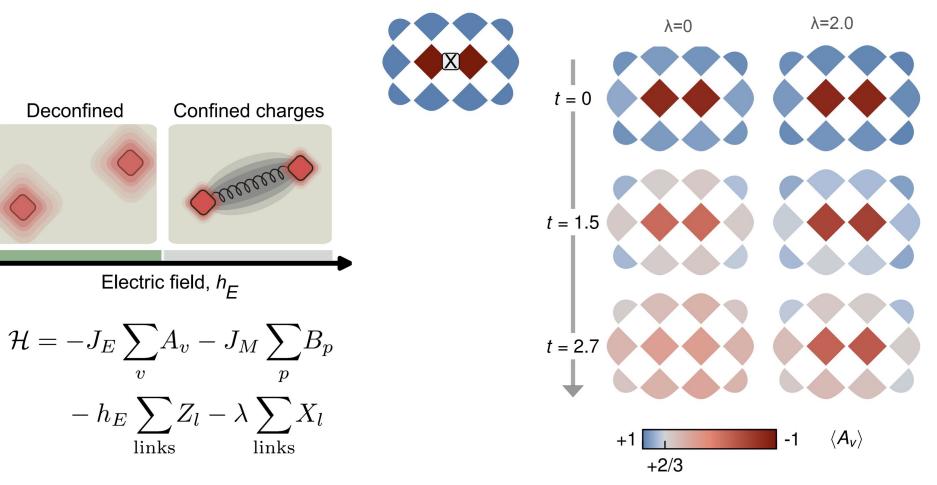
-(H)-

┨╂┠

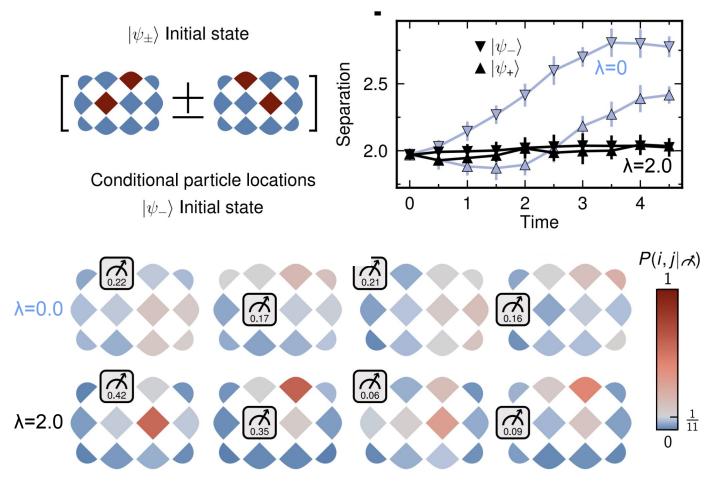
θ

θ

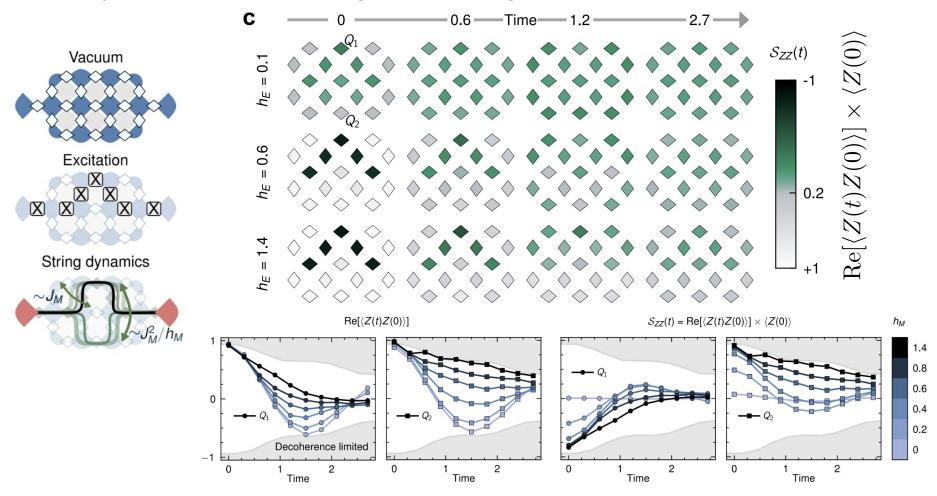
Confinement of electric excitations



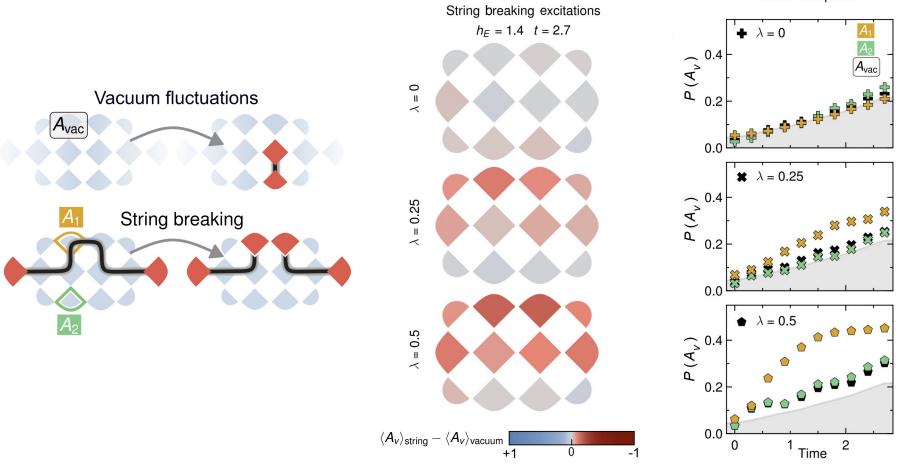
Confinement of electric excitations



Dynamics of the string connecting two fixed electric particles



Dynamics of the string connecting two fixed electric particles



Local occupation