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Realizing topologically ordered states on a quantum processor

A. Y. Kitaev, Ann. Phys. (N. Y). 303, 2 (2003). Satzinger et al.                    374, 1237-1241 (2021)



Gate sequence to create ground-states

superposition of all 
plaquette configurations

projector
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Randomized measurement: 
Tiff et al., Science (2019), 
Vermersch et al., PRA (2018)
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Abelian braiding statistics by Ramsey interferometry



Fidelity of logical states

 logical qubit tomography 
immediately after state injection 
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Exchange statistics of indistinguishable particles 

R = 1
 e.g. photons

R = -1
e.g. electrons

R = eiθ

e.g. plaquette violations 
in the surface code

R is a matrix
Non-Abelian anyons 

Exchanging particles twice → R2 = 1 R2 no longer has to be 1

3 spatial dimensions 2 spatial dimensions

|Ψ)

R |Ψ)

R2 |Ψ) Indistinguishability of particles : a fundamental principle of quantum mechanics

R: exchange operator
non-Abelian quasiparticles candidates: 

5/2 FQH states
vortices in topological SC

Majorana zero modes 



Quantum state | Ψ ) 

→ “visualized” by stabilizer graph 

H = Σ Zi,j Xi,j+1 Xi+1,j Zi+1,j+1   → UG 

{ S1, S2, S3, … , SN-1,SN } → Stabilizer set

| ΨG ) = UG | 0 )⊗N

Stabilizer set = { Sp   (local operators)  },   Sp| Ψ ) = + | Ψ )

Non-Abelian braiding of graph vertices in a superconducting processor

Andersen et al. , nature 618, 264–269 (2023)



“quasi-particles” → Plaquette violations

e and m on different sublattices→ can never “meet” 

x-gate

z-gate

{ S1, S2, S3, …  SN-1 ,SN } → for some: Sp| Ψ ) = - | Ψ )

| Ψ1 ) = U1 | ΨG )  = U1 UG | 0 )⊗N



Unitarily modifying wavefunctions to have “defects”

| Ψ2 ) = U2 | Ψ1 )  = U2 U1 UG | 0 )⊗N



Unitarily modifying wavefunctions to have “defects”

| Ψ2 ) = U2 | Ψ1 )  = U2 U1 UG | 0 )⊗N

Projective non-Abelian anyons



Move the D3Vs        with 2-qubit gates 
 → deform the stabilizer graph !

Recipe to modifying wavefunctions to have Degree-3 vertices

| Ψ2 ) = U2 | Ψ1 )  = U2 U1 UG | 0 )⊗N



Experiments outline

● Verify fundamental fusion rules of D3Vs
○ What happens when D3Vs “collide” with each other and with fermions?
○ Do they behave as non-Abelian Ising anyons should?

● Use braiding to entangle anyons encoding logical qubits
○ How can braiding be used in quantum computing operations?

● Braid the D3Vs to realize non-Abelian exchange statistics
○ Does braiding lead to a change in observables for the first time?



Experimentally verifying the fusion rules



Experimentally verifying the fusion rules



Experimentally verifying the fusion rules Fermion can 
fuse into a D3V



Experimentally verifying the fusion rules Fermion can 
fuse into a D3V

Two D3Vs can store (and 
later reveal through fusion) 
either zero or one fermion



Non-local fermion measurements

When a plaquette violation is brought around a fermion, it gains a π-phase

-Information (fermion number) 
encoded non-locally

→Let’s measure the Pauli string that corresponds to bringing a plaquette 
violation around the pair of D3Vs. If there’s a fermion, we should get -1. 

IX



Braiding D3Vs to realize non-Abelian exchange statistics

QC perspective:
Braid acts as X-gate on the space 
spanned by |00) and |11)

-Braiding led to a change in local 
observables.

??

Two D3Vs can store (and 
later reveal through fusion) 
either zero or one fermion



Control experiment: Braiding distinguishable D3Vs

D3Vs made distinguishable by 
attaching a plaquette violation 
(U±→U

∓
). 

When using distinguishable 
particles, no fermions appear, 
thus a successful control 
experiment

??



We “forgot” the D3Vs in the corners!

Encoding logical qubits in anyon pairs 
Creation of D3V pair doubles degeneracy
→ adds one logical qubit!

Let’s use 4 bulk D3Vs+4 corner D3Vs
→ 3 logical qubits

=

All pairs are not independent 
→ N D3Vs encode N/2-1 logical qubits 

4/2-1=1
logical qubit

8/2-1=3
logical qubits



Entangling anyon-encoded logical qubits
Basis choice

GHZ-state:                                             -  depends on basis!

Separated anyons: non-local operators, many possible choices of basis

Our choice:

Z1
Z2

Z3

X1

X2

X3

Logical-X

Yi=iZiXi

Logical-YLogical-Z:

Z1
Z2

Z3

Logical operators: (non-local) Pauli strings

Loop around all 
D3Vs in logical qubit

Loop around odd number of 
D3Vs in logical qubit



Entangling anyon-encoded logical qubits
Basis choice

GHZ-state:                                             -  depends on basis!

Separated anyons: non-local operators, many possible choices of basis

Our choice:

Z1
Z2

Z3

Logical operators: (non-local) Pauli strings

Logical-X Logical-YLogical-Z:



Entanglement through braiding

Quantum state tomography of final state:

\langle 

\psi_{\mathrm{GHZ}}|\rho|\psi_{\

mathrm{GHZ}}\rangle=0.62

Fidelity:

Purity:

-Double exchange acted as X-gate:

-Use single exchange to achieve √X-gate: 



Visualizing Dynamics of Charges 
and Strings in (2+1)D Lattice 

Gauge Theories

T. Cochran et al., Nature 642, June 2025 
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Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge 
Theories



Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge 
Theories



Weight Adjustable Loop Ansatz (WALA) ground state

λ=0 λ=0.3 λ=0.6 λ=1.0 

λ λ 



Phase diagram of the LGT

 E. Fradkin and S. H. Shenker, PRD (1979),   S. Trebst et al., PRL(2007),   J. Vidal et al., PRB (2009).



33

38 superconducting qubits, 
85 entangling gate per layer. 
1,115 total CZ gates 
331 non-Clifford single qubit gates
5 microseconds total time per circuit 
45 million runs 

Dynamics: Trotterization,  U= exp(i H dt)



Confinement of electric excitations
λ=0 λ=2.0 



Confinement of electric excitations

λ=0 

λ=2.0 

λ=0.0 

λ=2.0 



Dynamics of the string connecting two fixed electric particles



Dynamics of the string connecting two fixed electric particles


