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ABSTRACT

The familiar languages of quantum mechanics are the differential equations of Schrédinger and the matrix
mechanics of Heisenberg. However, influenced by computer scientists, researchers have developed a new
language to help understand quantum computations provided by the quantum circuit model, which is a gener-
alization of the classical circuit model based on Boolean logical operations. We can use a quantum circuit to
depict qubits’ initialization, evolution, and measurement. Quantum circuits are useful tools independent of the
physical implementation; hence, the ease of communication.

Stabilizer circuits are a rich subset of quantum circuits that displays many interesting features of quantum
computation, such as entanglement and teleportation, and are central to quantum error correction, but are not
universal and can be simulated using an efficient algorithm. The stabilizer formalism has played a large part in
research in quantum computing theory since its development in 1996. Stabilizer circuits can be thought of as
an “easy subset” of quantum circuits, and the goal of this part is to develop an intuitive understanding of the
evolution of a quantum state through these circuits.

1. A BRIEF HISTORICAL REVIEW OF QUANTUM COMPUTATION

The principles of quantum mechanics, which govern all known natural phenomena, were discovered in 1925.
Over the past century, this foundational breakthrough has enabled a deep understanding of the physical world-
from molecules and materials to elementary particles and beyond. No equally transformative advancement in
fundamental science has occurred since. Until recently, most of what we have learned about the quantum world
has come from studying the behavior of individual particles-such as a single electron propagating as a wave
through a crystal, unaffected by barriers that would obstruct classical particles. Mastering this single-particle
physics has empowered us to explore nature in unprecedented ways and to develop technologies of the first
quantum revolution-technologies that have profoundly reshaped our lives.

We are entering a new era of quantum science-one that moves beyond individual particles to the coordinated
behavior of many. When particles such as electrons or atoms become entangled, they form complex quantum
states that cannot be understood in terms of their parts alone. These highly entangled systems exhibit behaviors
that are often intractable for classical computers and stretch the limits of existing theoretical frameworks. This
opens opportunities for discovery and innovation. Most significantly, the ability to engineer and control such
complexity paves the way for quantum computers capable of solving problems that are far beyond the reach of
today’s classical machines. We are at the threshold of the second quantum revolution.



The idea of a quantum computer emerged over 40 years ago, when researchers sought to merge the principles
of quantum mechanics with another transformative framework of the 20th century: information theory. This
convergence gave rise to a new field-quantum information science-which fundamentally reshaped our under-
standing of computation, information, and their deep ties to the physical laws. It also led to groundbreaking
applications, including radically new algorithms and communication protocols. What began as a theoretical
insight has since grown into a vibrant discipline, driving both foundational advances and the development of
powerful new technologies.

Information theory, which includes the foundations of both computer science and communications, abstracted
away the physical world so effectively that it became possible to talk about the major issues within computer
science and communications, such as the efficiency of an algorithm or the robustness of a communication
protocol, without understanding details of the physical devices used for the computation or the communication.
This ability to ignore the underlying physics proved extremely powerful and its success can be seen in the
ubiquity of the computing and communications devices around us. The abstraction away from the physical had
become such a part of the intellectual landscape that the assumptions behind it were almost forgotten. At its
heart, until recently, information sciences have been firmly rooted in classical mechanics.

Throughout the last century, quantum mechanics has played an increasingly important role in the development
of more efficient computing technologies. It underpins the operation of classical computers and communication
devices, from transistors and lasers to the latest hardware innovations that boost speed and power while re-
ducing the size of components. Until recently, however, the influence of quantum mechanics was limited to the
low-level implementation of such technologies; it had little to no impact on how computation or communication
was conceptualized or studied.

In the early 1980s, a few researchers began to realize that quantum mechanics had unexpected implications for
information processing. C.Bennett and G. Brassard, building on ideas from S. Wiesner, demonstrated that the
non-classical properties of quantum measurement could be used to establish a cryptographic key with provable
security. Around the same time, R. Feynman, Y. Manin, and others observed that certain quantum phenomena-
particularly those involving entangled particles-could not be efficiently simulated by a classical Turing machine.
This insight led to speculation that these uniquely quantum effects might be harnessed to accelerate computa-
tion, pushing it beyond the limitations of classical systems.

Quantum information processing, a field that includes quantum computing, quantum cryptography, quantum
communications, and quantum games, explores the implications of using quantum mechanics instead of classi-
cal mechanics to model information and its processing. Quantum computing is not about changing the physical
substrate on which computation is done from classical to quantum, but rather changing the notion of computa-
tion itself. The change starts at the most basic level: the fundamental unit of computation is no longer the bit,
but rather the quantum bit or qubit. Classical computers make use of quantum mechanics, but they compute
using bits, not qubits. For this reason, they are not considered quantum computers. Placing computation on a
quantum mechanical foundation led to the discovery of faster algorithms, novel cryptographic mechanisms, and
improved communication protocols.

The field of quantum information processing developed slowly in the 1980s and early 1990s as a small group
of researchers worked out a theory of quantum information and quantum information processing. D.Deutsch
developed a notion of a quantum mechanical Turing machine. D.Bernstein, V. Vazirani, and A. Yao improved
upon his model and showed that a quantum Turing machine could simulate a classical Turing machine. The
standard quantum circuit model was then defined, which led to an understanding of quantum complexity in
terms of a set of basic quantum transformations called quantum gates. These gates are theoretical constructs
that may or may not have direct analogs in the physical components of an actual quantum computer.

In the early 1990s, researchers developed the first truly quantum algorithms. Despite the probabilistic nature of
quantum mechanics, these initial algorithms produced correct answers with certainty. They improved upon clas-
sical approaches by solving, in polynomial time and with certainty, problems that classical algorithms could only
solve in polynomial time with high probability. Although the practical impact of these results was initially unclear,
they were of great theoretical significance-they offered the first concrete evidence that quantum computation
could be more powerful than classical computation for certain tasks.

These breakthroughs drew the attention of many researchers, including Peter Shor, who in 1994 astonished
the scientific community with a polynomial-time quantum algorithm for factoring integers. This was a landmark
achievement, as factoring had long been a problem of practical importance. For years, the absence of an effi-
cient classical solution led many to believe that no such algorithm existed, a belief strong enough that it formed
the foundation of cryptographic systems like RSA. While it is still unknown whether a classical polynomial-
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time factoring algorithm exists, Shor’s result demonstrated that quantum computers could potentially outperform
classical ones for a problem of real-world relevance.

While Shor’s result sparked a lot of interest, doubts as to its practical significance remained. Quantum systems
are notoriously fragile. Key properties, such as quantum entanglement, are easily disturbed by environmental in-
fluences that cause the quantum states to decohere. In addition, properties of quantum mechanics, such as the
impossibility of reliably copying an unknown quantum state, made it look unlikely that effective error-correction
techniques could ever be found. For these reasons, it seemed unlikely that reliable quantum computers could
be built. Luckily, in spite of serious and widespread doubts as to whether quantum information processing could
ever be practical, the theory itself proved to be so tantalizing that researchers continued to explore it. In 1996
Shor and R. Calderbank, and independently A. Steane, saw a way to finesse the seemingly show-stopping
problems of quantum decoherence and developed quantum error correction techniques. Today, quantum error
correction is arguably the most mature area of quantum information processing.

While to some degree the ultimate practicality of quantum computing and quantum information remains uncer-
tain, still, no known physical principles rule out the construction of a large-scale quantum computers. However
long it takes to build them-or however broad their applications-quantum information processing has already re-
shaped our understanding of quantum physics, clarifying key concepts like measurement and entanglement.
While the practical consequences of this insight are hard to predict, uniting the two most influential scientific
theories of the twentieth century-quantum mechanics and information theory-is sure to have lasting effects on
technological and intellectual progress in the twenty-first century.

2. QUANTUM CIRCUIT MODEL OF COMPUTATION

Next we discuss the quantum circuit models. A quantum circuit is often illustrated schematically by a circuit
diagram, where the wires are shown as horizontal lines and we imagine the quantum state of qubits propagating
along the wires from left to right in time. A quantum gate acting on n qubits has the input of qubits; carried to
it by n wires, and n other wires carry the output qubits away from the gate. The gates are usually shown in
rectangular blocks. We will restrict attention to unitary quantum gates (which are also reversible).

A quantum computation consists of the following actions on a set of n qubits: an initialization, a quantum
algorithm, and a final measurement. All of these steps can be captured by a quantum circuit diagram. Circuits
in electronics show connections in space. Quantum circuits show connections between qubits in space and
operations performed on them in time. Each qubit is spatially separated from the others, with time moves from
left to right.

3. STABILIZERS, PAULI GROUP, AND TABLEAU REPRESENTATION

A quantum state (technically, a “pure state”) is a unit vector in Hilbert-space describing the state of a quantum
system. A qubit is the simplest quantum system. It’s a two-level system (we label the levels |0) and |1) ), with
an amplitude for |0) and an amplitude for |1). For instance here is a circuit that makes a Bell state. The initial
state of qubits is |00) and the final state is |00) + |11).

g

Here we focus on Clifford gates, which are
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A unitary U stabilizes a pure state |¢) if Uly) = o), i.e., if [¢) is an eigenvector of U with eigenvalue +1. Note
that phase does matter here, so, if U’|[¢)) = —|¢) or U’|y) = i|y), then U’ does not stabilize |¢).



The stabilizer group of |¢), Stab (|¢)), is the set of all unitaries that stabilize a state |¢).

Exercise 1. Show that X, X» X3, Z1Z5, and Z,Z5 are three independent stabilizers of |i)) = |000) + |111). The
Stab(|v)) has 8 elements. These three stabilizers act as their generators. Find all 8 stabilizers of |¢).

A stabilizer state is a state that has n independent stabilizer unitary operations. A stabilizer state is uniquely
defined with its unitary operations. For stabilizer states we only need to look at the intersection of Stab(|«)) with
a group known as the Pauli group. For one qubit, the Pauli group is the group generated by the Pauli matrices:

10 01 0 —i 10
L R I @
Within the group, we have
Pauli matrix ‘ I ‘ X ‘ Z ‘Y

|2)

State(s) Stabilized ‘all states‘ [+) ‘ |0)

We can generalize the Pauli group of 1 qubit to P,, the Pauli group on n qubits. Elements of P, have the
following form:

bV(PLOP,®...0P,) 3)

where Py, through P, are elements of the single-qubit Pauli group {I, X,Y, Z}, and b € {1, —1,4, —i}.

Elements of P,, can also be represented using “tableaus”. These are matrices consisting of two n x n blocks
of 1s and 0s. In a tableau, each Pauli matrix is represented by two-bit strings. Each row in the matrix represents
a generator of P,. One of the bits of the two bit string is placed in the left matrix (X-block or X-matrix), and the
other in the right matrix.

Pauli matrix ‘ I ‘ X ‘ 7 ‘Y

bit-string ‘ 00 ‘ 10 ‘ 01 ‘ 11

This effectively creates the following scheme: the presence of a 1 in the i-th entry of a row indicates the
presence of a X in the i-th component of the element of P,,, and a 0 indicates the absence of an X. Similarly,
for the right block (Z-block), the presence of a 1 in the i-th entry of the row indicates the presence of a Z in the
i-th component of the element of P,,, and a 0 indicates the absence of an Z. If there is a 1 in the i-th entries of
both the left and right blocks, this indicates a Y in the i-th component of the element of P,,. For example, the
generating set {Z; X2 X314Y5, X1Y2Z3X, X5} would be represented as

01 101[10001| 2ZX,Xsl,Ys "
1101101100/ X1Y2Z3XyXs

and their product is represented as

[10110\11101} Y1 253X 4 Zs (5)

Notice that multiplying two elements together is done by simply bitwise XOR-ing the 2n-bit strings, which is
simply mod 2 addition of the digits.

4. EVOLUTION OF STABILIZER STATES IN CLIFFORD CIRCUITS

Next we discuss a theorem and a set of rules that allows us to understand how a given quantum states evolves
with a simple class of circuits. Note that Stab(|)) N P, being an intersection of two groups, is itself a group,
which we call the Pauli stabilizer group of |¢).



The Clifford group contains operators that conjugate Paulis into Paulis; its generating set consists of
{H,S,CNOT}.
A stabilizer circuit consists solely of elements from the Clifford group.

Gottesman-Knill Theorem. Let |¢)) be a n-qubit stabilizer state for which the intersection of its stabilizer
group with P,, contains 2™ elements, i.e. |Stab(|:))) N P,|= 2", then |¢) is reachable from the |0)®" state
using only the clifford gates.

Note that such |¢)) states are uniquely determined by the group Stab(|:)) N P,. As a result of this theorem,
if we know the Pauli stabilizer group of a state, we know the state itself. How useful is this representation for
algorithms? Since an n-qubit stabilizer state has a Pauli stabilizer group of size 2™, with elements that are (2n+
1)-bit strings, it may initially seem that keeping track of a Pauli stabilizer group is no easier than keeping track
of a vector of amplitudes. However, there is an easier way to keep track of a group than to just keep track of
all of its elements, namely by keeping track of its generators. For an n-qubit state, we only need n independent
generators to keep track of its Pauli stabilizer group, since n linearly independent elements will generate a group
of size 2.
A few examples will illustrate this point. Let’s just list the action of Clifford gates on various stabilizers.

To apply H to the i-th qubit:

» Swap the i-th column of the X-matrix with the i-th column of the Z-matrix.

To apply S to the i-th qubit:

« Bitwise XOR the i-th column of the X -matrix into the i-th column of the Z-matrix.

To apply CNOT with the :-th qubit as control and the j-th as target:
+ Bitwise XOR the i-th column of the X-matrix into the j-th column of the X-matrix.

» Bitwise XOR the j-th column of the Z-matrix into the i-th column of the Z-matrix.

Keeping track of the stabilizers by updating tableau is a common practice for error correction applications. It
gives the final stabilizers and the bitstrings (without sign) in the final evolved state. Here we are interested to
know the exact wavefunction after evolution under U. The final state [¢¢) is

NI+
[r) = [T —5Htres) (6)
where S; s are an independent set of stabilizers and |¢,.f) is a state that we could identify to be a stabilized
by one of the S, s. Clearly we need to deal with exponentially many terms and is not optimal; depending what
question we like to answer, there are ways around it.

Exercise 2. If Sy is a stabilizer of initial state |v,) , show that US U is a stabilizer of the final state |¢;) = Ulvy)

ZX calculus of stabilizers
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Exercise 3. Prove the stabilizer evolution relation above shown in the box above.



5. CLIFFORD CIRCUITS EXAMPLES USING TABLEAU

The Clifford group contains operators that conjugate Paulis into Paulis, and its generating set of operators
consists of { H, S, CNOT}. A stabilizer circuit consists solely of elements from the Clifford group. Here we focus
on Clifford circuits and by tracking the stabilizer states of initial state, we arrive at the final state.

&

Let’s test this all out by keeping track of the tableau for the circuit above. Since we are interested to know the
final quantum state and not the general act of this circuit, we can only focus on the effect of the circuit on a set
of generators of the stabilizer states for the given initial state. We start with the state |00), which has the tableau
representation:

00l10] &
{O 0|0 1} Zs (7)
Applying the Hadamard to the first qubit swaps the first columns of the X-matrix and Z-matrix:

10(00] X;
[O 0|0 1} Zs (8)

One could convert this back into the generators by saying that the current state is the one generated by +X;
and Z,. Indeed, these operators generate the stabilizer group for |+) |0). To apply the CNOT gate, we bitwise
XOR the first column of the X-matrix into the second column of the X-matrix, and likewise bitwise XOR the
second column of the Z-matrix into the first column of the Z-matrix :

1 1|0 0] X1X, ©)
00(1 1| ZiZs

The generators corresponding to this tableau are {X; X», Z1 Z5}, which are indeed the stabilizer generators for
a Bell pair, as expected. Finally, we apply the S-gate by bitwise XORing the first column of the X-matrix into the
first column of the Z-matrix :

(10)

1 1|1 0] Y1 X
00(1 1| ZiZs

This final tableau corresponds to the generators {Y; X», Z; Z> }, which are the stabilizers for the state |00) +4|11).
Exercise 4. Show that each circuit below gives the associated Bell pair written on top of it.

a b c d

O S S &

Exercise 5. Given the initial state |000), find a generative of the final stabilizers of the circuit below.

gl éééL

Q3
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Exercise 6. Given the initial state |000), find a generative of the final stabilizers of the circuits below. What could
good choice of |¢,.) in each case.

aQ bQ1
Q2 $éT QZéé

Q3 Q3

—_—

6. SOLUTIONS OF THE EXERCISES.

Exercise 1.
Since X, X> X3 and Z; Z, and Z, Z3 are independent, product of their projection gives the sum of all stabilizers
(I 4+ X1 X0 X3)(I + Z122)(I + ZoZs)

Exercise 2.

Soltho) = +lho) and |vy) =Ulo) —  |bg) =USolbe) —  |hy) =USoUT|y) (11)
Exercise 3.

Exercise 4.
Two independent stabilizers of the initial states are Z; and Z,.
Zy evolves to a) X; X», b) -X; X5, ¢) X; X, d) -X; Xs.
Zy evolves to a) 7175, b) Z1 75, C) -Z1Z5, d) -Z1 Zs.

A reference state (a state that is stabilized by one of the final stabilizers) is
a) [00), b) [00), c) [10), d) [10).

a. |¢p) =T+ X1 X2)(I + Z175)|00) = (I + X1 X2)[00) = |00) + |11) (12)
b [y) = (I — X1 Xa)(I + Z122)[00) = (I — X1 X2)[00) = [00) — [11) (13)
c. |p) =T+ X1 X2)(I — Z125)10) = (I + X1X2)[10) = [01) + [10) (14)
d. |g) =1 = X1 Xo)(I = 212,)[10) = (I — X1 X5)[10) = [10) — [01) (15)
Exercise 5.
[000100]21 {101010}){122)(3
Initial state | 0 0 0|0 1 0 | Z finalstate | 0 1 1|1 0 0 | Z1X>X3 (16)
000(001]| Zs 001/000]| X3
Exercise 6.

For a, starting with {71, Z5, Z5} we get {Y1X.Y3, X175, Z575}. For b, starting with {Z,, Z5, Z3} we get
{X1227Z1X2X3,X3}. Note for



Pauli operators are

01 0
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APPENDIX A. REVIEW OF SINGLE QUBIT ROTATIONS AND NOTATION

[(1) OJ’ XYZ=i, XY=iZ YZ=iX, XZX=-Z. (17)

Single qubit #-rotation around ¢-axis in the xy-plane

Ro.0) = |

—ie’

when ¢ = 0, i.e. rotation around x-axis (they can also be written in terms of Pauli X)

0
—1=X

Rx(0) = eXP( 3

_ [ cos(6/2)
—i sin(0/2)  cos(8/

cos(6/2)

—i sin(6/2)

—ieTi® sin(@/Q)} ’

?sin(6/2) cos(0/2)

(18)

2)

L (01 .
] —)RX(W)—Xﬂ—eXp<—z2X> = — L O] = —iX,

(19)
when ¢ = 7/2, i.e. rotation around y-axis (they can also be written in terms of Pauli Y)
o 0 cos(0/2) —sin(0/2) o T O Y
Ry(&)—Yg—exp<—z2Y> [sin(0/2) cos(6/2) — Ry (m) =Y, =exp —Z§Y =11 0 = —iY.
(20)
Ry (/2) = Xp /0 = exp| —i =X :1[1 _’} X,y = 2D 21)
X /2 4 \/i i1 /2 \/Q
_ _ O ol -1 o)+ 1)
Ry (m/2) = Yy/0 = exp(—z 4Y> = \/i[l 1 ] — Yz /2|0) = 7 = |+X). (22)
Hadamard is a 7 rotation around the = + z-axis :
_ Atz TXNZY VL ygH - Xy, HXoH = Zy, HYH =Y. (23
—W—GXP —257 _ﬁl—l’ 4 — Ag, 6 — 40, - 4. ( )
Single qubit ¢-rotation around z-axis,
— 7, = P |ee(=iv/2) 0 C[-i0] L
Change of Basis:
Yo =X_1/220 Xnj2, Zog=Y_rs2XoYrsa, Xo=Yr2ZgY_rsp, forve (25)
cz
Q1 T T I _ _
Q2 é? = Té = - - = élé
s &
CNOT cz e X Swap
$ B I H- _ H-P- H-oH- _ P Té?_ I _é?é
- DH- H-4 HDH- S
HXH="Z

Figure 1. some of the commonly used single and 2 qubit manipulations.
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