Time-independence does not limit information flow

Alexey V. Gorshkov

Joint Quantum Institute (JQI) Joint Center for Quantum Information and Computer Science (QuICS) NIST and University of Maryland

JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

"Long-Range Interactions and Dynamics in Complex Quantum Systems" NORDITA, Stockholm, Sweden July 24, 2025

- arbitrary time dependence allowed
- arbitrary time-dependent on-site terms allowed
- A(t) = Heisenberg evolution under H
- what is the shortest time t to achieve $||[A(t), B]|| \sim 1$?
- answer: $t\gtrsim r$
- bounds many things, including quantum state transfer time
 E. Lieb & D. Robinson, 1972
 Review: Chen, Lucas, Yin, Rep. Prog. Phys. 86, 116001 (2023)

- arbitrary time dependence allowed
- arbitrary time-dependent on-site terms allowed
- A(t) = Heisenberg evolution under H
- what is the shortest time t to achieve $||[A(t), B]|| \sim 1$?
- answer: $t \gtrsim r$
- bounds many things, including quantum state transfer time
 E. Lieb & D. Robinson, 1972
 Review: Chen, Lucas, Yin, Rep. Prog. Phys. 86, 116001 (2023)

- arbitrary time dependence allowed
- arbitrary time-dependent on-site terms allowed
- A(t) = Heisenberg evolution under H
- what is the shortest time t to achieve $||[A(t), B]|| \sim 1$?
- answer: $t \gtrsim r$
- bounds many things, including quantum state transfer time
 E. Lieb & D. Robinson, 1972
 Review: Chen, Lucas, Yin, Rep. Prog. Phys. 86, 116001 (2023)

Long range interactions

- AMO and other synthetic quantum systems often exhibit
- ong-range interactions = decaying with distance slower than exponential (e.g. decaying as $1/n^{\alpha}$)
- how quickly can quantum information propagate in these systems?

Examples:

 \widetilde{B}_z/J_0

- $1/r^3$: Rydberg or magnetic atoms, excitons, NV centers,
- $1/r^6$: Rydberg atoms

polar molecules Rb

 $\widetilde{B}_z J_0$

(0 1,1 0,

- $\sim 1/r^{\alpha}\,$ & other forms: ion crystals, atoms in multimode cavities Monroe or along waveguides

- arbitrary time dependence allowed
- arbitrary time-dependent on-site terms allowed
- consider all $\alpha \ge 0$
- what is the shortest time t to achieve $||[A(t),B]|| \sim 1$?
- = shortest time to send quantum information over distance r in the sense of quantum state transfer?

- arbitrary time dependence allowed
- arbitrary time-dependent on-site terms allowed
- consider all $\alpha \ge 0$
- what is the shortest time t to achieve $||[A(t), B]|| \sim 1$?
- = shortest time to send quantum information over distance r in the sense of quantum state transfer?

~ "shortest time t to send quantum info over distance r " d = dimension

~ "shortest time t to send quantum info over distance r "

d = dimension N = total number of sites(formulas shown for $N \sim r^d$)

Fastest known protocols

Shortest time t to send quantum info over distance r $1/r^{\alpha}$ interactions in d dimensions

- fastest protocols use time-dependent Hamiltonians
- can we achieve the same with a time-independent Hamiltonian?
- yes*, i.e. time-independence does not limit information flow
 *need number of local ancilla qubits for each data qubit polylogarithmic in the number of data qubits

Mooney, Yuan, Ehrenberg, Baldwin, AVG, Childs, arXiv:2505.18254

Yin, P	$^{\sf RL\ (2025)} \log^2 N$	Tran et al (l	∟ucas, AVG), PRX '21	
$\alpha =$	$t \sim \frac{1}{N^{1-\alpha/d}}$	$t \sim (\log r)^{\kappa}$	$t \sim r^{\alpha - 2d}$	$t \sim r = \infty$
	$t \gtrsim rac{\log N}{N^{1-lpha/d}}$ Guo, Tran, Childs, AVG Gong, PRA (2020)	d $t\gtrsim \log r^2$ Hastings, Koma, CMP '06	d $t\gtrsim r^{lpha-2d}$ 2 d=1: Chen, Lucas, PRL '19 d>1: Tran et al (AVG, Lucas), PRL '21	$2d + 1$ $t \gtrsim r$ Chen, Lucas, PRL '19 Kuwahara, Saito, PRX '20

Fastest known protocols

Shortest time t to send quantum info over distance r $1/r^{\alpha}$ interactions in d dimensions

- fastest protocols use time-dependent Hamiltonians
- can we achieve the same with a time-independent Hamiltonian?
- yes*, i.e. time-independence does not limit information flow
- *need number of local ancilla qubits for each data qubit polylogarithmic in the number of data qubits Mooney, Yuan, Ehrenberg, Baldwin, AVG, Childs, arXiv:2505.18254

 approach: "staticize" time-dependent protocols using a clock construction

Staticizing time-independent Hamiltonians

- Watkins, Wiebe, Roggero, Lee, arXiv:2203.11353: given a timedependent Hamiltonian, output an equivalent (up to small controllable error) time-independent Hamiltonian driven by a global clock
- to preserve locality, we replace one global clock with many local clocks (one per site)

Mooney, Yuan, Ehrenberg, Baldwin, AVG, Childs, arXiv:2505.18254

Staticizing time-independent Hamiltonians

 $H_{\{a,b\}}$

Hibici

3-qubit example of our construction:

- $H(t) = H_{\{a,b\}}(t) + H_{\{b,c\}}(t) + H_{\{a,c\}}(t)$
- for each edge e, we arbitrarily choose one of the vertices in e (call it $\rho(e)$) to control the interaction $H_e(t)$

• divide total time T into N_c small intervals $\frac{1}{2}$ of duration $\delta = T/N_c$

- each clock has N_c states |k
 angle
- clock Hamiltonian ${\bf \Delta}$ advances the clock on each site: $e^{-i{\bf \Delta}\delta}|k\rangle=|k+1\rangle$

$$\overline{H} = \mathbf{\Delta} + \sum_{k} \sum_{e} H_e(k\delta) \otimes (|k\rangle \langle k|)_{\rho(e)}$$

Mooney, Yuan, Ehrenberg, Baldwin, AVG, Childs, arXiv:2505.18254

Summary

• time-independence does not limit information flow, provided we allow for a polylogarithmic number of ancilla qubits per data qubit

Outlook

• our staticization construction applies to any piecewise-continuous Hamiltonian, including circuit-based quantum algorithms, quantum annealing protocols, entangled-state preparation (e.g. for sensing)

- would be interesting to investigate the specifics
- in some scenarios (architecture + application), it can be easier to implement Hamiltonian dynamics without time-dependent control
- our protocols incur error (which can be made arbitrarily small), but can we find a protocol that achieves perfect state transfer?
- can we reduce the local ancilla account to a constant or even to zero?

 can get rid of ancillas in the restricted setting of free-particle Hamiltonians!

Free-particle bounds and protocols

$$|0\rangle |1\rangle |2\rangle |r\rangle$$

$$|r\rangle$$

$$|T| = \sum_{i < j} h_{ij}(t) |i\rangle \langle j| + h.c. + \sum_{i} \mu_i(t) |i\rangle \langle i| |h_{ij}| \le \frac{1}{|i-j|^{\alpha}}$$

- how long does it take to evolve from |0
angle to |r
angle?

Equivalent to

$$H = \sum_{i < j} h_{ij}(t) c_i^{\dagger} c_j + h.c. + \sum_i \mu_i(t) c_i^{\dagger} c_i$$

 c_i^{\dagger} = bosonic or fermionic creation operators

• what is the shortest time t to achieve $c_0^{\dagger}(t) = c_r^{\dagger}(0)$?

Free-particle bounds and protocols

$$|0\rangle |1\rangle |2\rangle |r\rangle$$

$$H = \sum_{i < j} h_{ij}(t) |i\rangle \langle j| + h.c. + \sum_{i} \mu_i(t) |i\rangle \langle i| |h_{ij}| \le \frac{1}{|i - j|^{\alpha}}$$
Slower than with
• how long does it take to evolve from $|0\rangle$ to $|r\rangle$? Interactions.
• can we achieve the same with a time-independent Hamiltonian?
Guo, Tran, Childs, AVG, Tran et al (Gong, AVG, Lucas), Yes!
BBX (2020)

$$\begin{array}{c} t \sim \frac{1}{N^{1/2 - \alpha/d}} & t \sim \log r \\ \alpha = 0 & d/2 & d \\ t \sim \frac{1}{N^{1/2 - \alpha/d}} & t \sim 1 \\ t \gtrsim \frac{1}{N^{1/2 - \alpha/d}} & t \gtrsim 1 \\ guo, Tran, Childs, AVG, \\ Gong, PRA (2020) & t \gtrsim 1 \end{array} \begin{array}{c} n \propto N = \text{total number of sites} \\ t \sim r & n \rightarrow 0 \\ t \sim r & d + 1 \\ t \sim r & d + 1 \\ t \sim r & \alpha = \infty \\ t \gtrsim r \\ \hline \log r & t \gtrsim r \\ \hline \log r & t \gtrsim r \\ \hline ran \text{ et al (Gong, AVG, Lucas), PRX (2020)} \end{array}$$

Related prior work: Avellino, Fisher, Bose, PRA (2006); Gualdi, Kostak, Marzoli, Tombesi, PRA (2008); Hermes, Apollaro, Paganelli, Macri, PRA (2020); Lewis, Banchi, Teoh, Islam, Bose, Quantum Sci. Technol. (2023).

Time-dependent protocol for $\alpha < d/2$

- $N \sim L^d$ sites on a d-dimensional cubic lattice of linear size L
- interaction strength upper bounded by $1/r^{lpha}$
- want to evolve from |X
 angle to |Y
 angle

- takes time $\sim 1/N^{1/2-\alpha/d}$ to hop from $|X\rangle$ to $|{\rm col}\rangle$

|Y
angle • then hop from $| ext{col}
angle$ to |Y
angle

Guo, Tran, Childs, AVG, Gong, PRA (2020)

- $N \sim L^d$ sites on a d-dimensional cubic lattice of linear size L
- interaction strength upper bounded by $1/r^{lpha}$
- want to evolve from $|X\rangle$ to $|Y\rangle$

Time-dependent protocol for $d/2 < \alpha < d+1$

- $N \sim L^d$ sites on a d-dimensional cubic lattice of linear size L
- interaction strength upper bounded by $1/r^{lpha}$
- want to evolve from $|X\rangle$ to $|Y\rangle$ show for d=1

- spread to larger uniform superpositions, then reverse to |Y
angle

Tran et al (Gong, AVG, Lucas), PRX (2020)

Time-dependent protocol for $d/2 < \alpha < d+1$

- $N \sim L^d$ sites on a d-dimensional cubic lattice of linear size L
- interaction strength upper bounded by $1/r^{lpha}$
- want to evolve from |X
 angle to |Y
 angle

show for d=1

- spread to larger uniform superpositions, then reverse to |Y
 angle
- time to spread to additional 2^j sites ~ $2^{j(\alpha-1)}$

$$H \sim \frac{1}{(2^j)^{\alpha}} \sum_{i \in A, k \in B} |i\rangle \langle k| + h.c. \sim \frac{2^j}{(2^j)^{\alpha}} |A\rangle \langle B| + h.c.$$

Tran et al (Gong, AVG, Lucas), PRX (2020)

Time-dependent protocol for $d/2 < \alpha < d+1$

- $N \sim L^d$ sites on a d-dimensional cubic lattice of linear size L
- interaction strength upper bounded by $1/r^{lpha}$
- want to evolve from $|X\rangle$ to $|Y\rangle$

show for d=1

 ~ 1

 $\alpha < 1$

- spread to larger uniform superpositions, then reverse to |Y
 angle
- time to spread to additional $2^j \operatorname{sites}_{\log L} \sim 2^{j(\alpha-1)}$

• time to spread to full lattice $\sim \sum_{j=1}^{\infty} (2^{\alpha-1})^j \sim \log L$ $\alpha = 1$ Tran et al (Gong, AVG, Lucas), PRX (2020) $\sim L^{\alpha-1}$ $\alpha > 1$

- turning simultaneously all the interactions needed to spread from $|X\rangle$ and to concentrate onto $|Y\rangle$ doesn't work

Staticize the protocol for $d/2 < \alpha < d+1$

- couple X and Y weakly to the rest of the chain
- as before, 2^j sites in block j, but halfway through the chain start reducing the block size
- turn on all interactions (left half of chain: at same strength $\sim 1/(2^j)^\alpha$) between neighboring blocks j and j+1

• left half: hopping amplitude between $|\text{col } j\rangle$ and $|\text{col } j+1\rangle$:

$$\sim \frac{(2^j)^2}{\left(\sqrt{2^j}\right)^2} \frac{1}{(2^j)^{\alpha}} \sim \frac{2^j}{(2^j)^{\alpha}} = (2^{1-\alpha})^j$$

 $|X\rangle$

- X and Y coupled weakly to the "bus"
- spectrum of bus is symmetric
- tune X and Y to resonance with the zero-energy eigenstate
- need to make g small enough that coupling to off-resonant levels has negligible effect
- $\alpha=1$ particularly easy: uniform hopping
- protocol time agrees with optimal one for all $\, d/2 < lpha < d+1$

"Tunneling trick": Li, Shi, Chen, Song, Sun, PRA (2005); Plenio, Semiao, NJP (2005); Wojcik, Łuczak, Kurzynski, Grudka, Gdala, Bednarska, PRA 72, 034303 (2005), etc... Yuan, Yin, Mooney, Baldwin, Childs, AVG, arXiv:2505.18249

Summary

 time-independence does not limit information flow for free-particle Hamiltonians

Outlook

- in some scenarios (architecture + application), it can be easier to implement Hamiltonians dynamics without time-dependent control
- slower than interacting protocols but
 - do not depend on whether intermediate sites are occupied
 - utilize W ($|10...0\rangle + |01...0\rangle + \cdots + |00...1\rangle$) states instead of GHZ ($|00...0\rangle + |11...1\rangle$) states
 - W states more robust against errors in Hamiltonian Tran et al (Gong, AVG, Lucas), PRX (2020); Hong, Lucas, PRA (2021)
- we propose another time-independent protocol where hopping strength exactly follows $J_{ij} = J_0 / r_{ij}^{\alpha}$:
 - can be naturally realized with synthetic quantum matter
 - suboptimal, but provides speedup over short-range protocols

Time independence does not limit information flow. I. The free-particle case

Dong Chao Yuan Yin (Tsinghua) (Boulder)

Connor Mooney

Chris Andrew

Childs

arXiv:2505.18249

ney Baldwin Childs (→Michigan State)

Time independence does not limit information flow. II. The case with ancillas

arXiv:2505.18254

Connor Mooney

Dong Yuan (Tsinghua) Adam Chris Ehrenberg Baldwin (→Michigan State)

Optimal time-dependent protocols: Free-particle, $\alpha < d/2$

Andrew Minh Guo Tran $(\rightarrow \text{Quantinuum}) (\rightarrow \text{IBM})$

Andrew Childs

Zhe-Xuan Gong $(\rightarrow \text{Mines})$ PRA 102,010401 (2020)

Free-particle, $d/2 < \alpha < d+1$

Minh Chi-Fang Tran Chen $(\rightarrow IBM)$ (Caltech)

Optimal time-dependent protocols: Interacting, $\alpha > d$

Minh Tran $(\rightarrow IBM)$

Abhinav Deshpande

Guo Lucas $(\rightarrow IBM)$ (\rightarrow Quantinuum) (Boulder)

PRX 11,031016 (2021)

Interacting, $\alpha < d$ Yin, PRL 134, 130604 (2025).

Quantum routing through bottlenecks

Dhruv Devulapalli

Andy Lucas (Boulder)

arXiv:2505.16948

Thank you

Eldredge

Michael

Foss-Feig

Jeremy

Young

Jim Garrison Ali Hamed Yuan Su Moosavian $(\rightarrow IBM)$

Bill

 $(\rightarrow IBM)$

Nishad Maskara (Caltech/UMD/ Harvard)

 $(\rightarrow Chicago)$

Charles Clark

\$\$: DoE, AFOSR, ARO, NSF, DARPA

Paraj Fernando Fefferman Titum (→ APL) Brandão (Caltech)

> Simon Lieu \rightarrow AWS)

Dima Abanin (Geneva)

Thank you

Our other Lieb-Robinson papers: PRL 113, 030602 (2014) PRL 114, 157201 (2015) PRL 119, 050501 (2017) PRL 119, 170503 (2017) PRX 9, 031006 (2019) PRA 100, 052103 (2019) PRL 129, 150604 (2022) PRL 127, 160401(2021) PRX Quantum 4, 020349 (2023) arXiv:2110.15368

\$\$: DoE, AFOSR, ARO, NSF, DARPA

Graduate Students

Zachary Eldredge	e → DoE	Lligh
Jeremy Young →	JILA (NRC)	⊓ign Visiti
Abhinav Deshpar	nde \rightarrow Caltech	P. Nirc
Yidan Wang \rightarrow H	larvard	N. Ma
Minh Tran \rightarrow MIT	-	(→MI٦
Ani Bapat \rightarrow LBN	NL	(GAIe
Fangli Liu \rightarrow Qu	Era	Deng
And rew Guo \rightarrow S	Sandia	Yuan (
Ron Belvansky –	→ Chicago	Postdocs
Pradeen Niroula	$\rightarrow I P Morgan$	Mohammad M
		Zhe-Xuan Gon
Su-ruan Chu →	JILA	Sergey Syzran
Jake Bringewatt	\rightarrow Harvard	Parai Titum →
Adam Ehrenberg	\rightarrow IDA	laor Roettcher
Dhruv Devulapal	li	Boy Lundaron
Sharoon Austin	Jeffery Yu	
Chris Fechisin	Jeet Shah	Zhicheng Yang
Daniel Spencer	Joe losue	Chris Baldwin
Connor Mooney	Nick Li	Oles Shtanko
Zhenning Liu	Yunfei Wang	James Garriso
Alexandra Behne	Vinay Kashyap	Przemek Bieni
Twesh Upadhyay	, (2	Lucas Brady –
	Yaroslav Khark	
	Kunal Sharma	
Elizabeth Benne	NITZ	Simon Lieu →
Erfan Abbasgholi	nejad	

Thank You

School Students, Undergraduate Students, and ng Graduate Students

oula (Harvard \rightarrow UMD), J. Iosue (MIT \rightarrow UMD), K. Wang (Stanford \rightarrow Berkeley), skara (Caltech→Harvard), M. Kalinowski (Warsaw→Harvard), K. Qian T), H. Shastri (Reed), S. King (Rochester), N. Dong (Boulder), S. DeCoster ech), M. Whittman (Kansas), W. Gong (Tsinghua), T. Qian (\rightarrow MIT), I. Liang League), A. Gorti (Cornell), T. Goel (MIT), R. Gong (Mount Holyoke), W. (Peking), Jason Youm (Mont. Blair High School), Tianhao Liu (Peking), Dong (Tsinghua), Evan Zhang (Mont. Blair High School)

Dradoon Miroulo - LD Morgon			Mohammad Maghrebi → Asst. Prof. @ Michigan State			
	Su-Kuan Chu \rightarrow JILA		Zhe-Xuan Gong \rightarrow Asst. Prof. @ Colorado School of Mines			
			Sergey Syzranov \rightarrow Asst. Prof. @ UC Santa Cruz			
	Jake Bringewatt –	→ Harvaro	Paraj Titum \rightarrow Applied Physics Lab at Johns Hopkins			
	Adam Ehrenberg	→ IDA	Igor Boettcher \rightarrow Asst. Prof. @	0 U Alberta		
	Dhruv Devulapalli	Jefferv Yu	Rex Lundgren \rightarrow NSA Labora	tory for Physical Sciences		
	Chris Fechisin	Jeet Shah	Zhicheng Yang \rightarrow Asst. Prof. (@ Peking U		
	Daniel Spencer	Joe losue	Chris Baldwin \rightarrow Asst. Prof. (D Michigan State	Ali Fahimniya	
	Connor Mooney	Nick Li	Oles Shtanko \rightarrow IBM	Alex Cojocaru \rightarrow Asst. Prof. @ Edinburgh	Alex Schuckert	
	Zhenning Liu	Yunfei Wang	James Garrison \rightarrow IBM	Seth Whitsitt \rightarrow Northrop Grumman	Jacob Lin	
	Alexandra Behne	Vinay Kashyap	Przemek Bienias $\rightarrow AWS$	Kishor Bharti \rightarrow IHPC, Singapore	Sean Muleady	
Twesh Unadhyaya		4	Lucas Brady \rightarrow NASA QuAIL	Luispe García-Pintos → Los Alamos	Yuxin Wang	
Thomas Steckmann		n	Yaroslav Kharkov \rightarrow AWS	Ella Crane → MIT	Yan-Qi Wang	
		it z	Kunal Sharma → IBM	Brayden Ware \rightarrow IBM	Yifan Hong	
Enzabeli Dennewitz Frfan Abhasgholineiad			Simon Lieu $\rightarrow AWS$	Dominik Hangleiter → Berkeley	Anthony Brady	
\$\$\$: DoE, AFOSR, ARO, NSF, DARPA			, NSF, DARPA	Emil Khabiboulline	Lorcan Conlon	

Mooney, Yuan, Ehrenberg, Baldwin, AVG, Childs, arXiv:2505.18254

