Julia Sets in Quantum Evolution A Complex Dynamics Approach to Dynamical Quantum Phase Transitions

Manmeet Kaur

Ashoka University

July 26, 2025

Long-Range Interactions and Dynamics in Complex Quantum Systems Nordita, Stockholm, Sweden

Phase transitions as a parameter is changed

Phase transitions as a parameter is changed

 "Time" is important: equilibration, dynamics, in QM, nonequilibrium . . .
 But otherwise "time" has no direct role.

"Time" is not a tunable parameter in experiments or simulations.
 Tuning Parameters: temperature, pressure, external fields, concentrations . . .

Phase transitions as a parameter is changed

 "Time" is important: equilibration, dynamics, in QM, nonequilibrium ...
 But otherwise "time" has no direct role.

"Time" is not a tunable parameter in experiments or simulations.
 Tuning Parameters: temperature, pressure, external fields, concentrations . . .

Dynamical Quantum Phase Transitions (DQPTs)? (Heyl, Polkovnikov, and Kehrein, PRL 2013)

A many-body quantum system at zero temperature <u>during its time</u> <u>evolution</u> may undergo one or more phase transitions in **time**. These transitions are called DQPT.

A many-body quantum system at zero temperature <u>during its time</u> <u>evolution</u> may undergo one or more phase transitions in **time**. These transitions are called DQPT.

- No parameter of the Hamiltonian is changed.
- Not related to any quantum phase transitions of the system.

A many-body quantum system at zero temperature <u>during its time</u> <u>evolution</u> may undergo one or more phase transitions in **time**. These transitions are called DQPT.

- No parameter of the Hamiltonian is changed.
- Not related to any quantum phase transitions of the system.

Questions:

Can there be new phases and/or new phase transitions?

New? : Not the standard phases or criticality.

The Nature of DQPTs: Real Space Renormalization Group

- Exact analysis
- Scale invariance (Lattices built recursively)
- RG in the complex plane
- Model system
 - Ising (2-state system)

Dynamical Quantum Phase Transitions

- *N*-particle quantum system, Hamiltonian *H*. $H |n\rangle = E_n |n\rangle$
- Start in state: $|\psi_0\rangle = \sqrt{\frac{1}{W}\sum_n |n\rangle}$ (Not an eigenstate of *H*) (*W* is the number of states)

Dynamical Quantum Phase Transitions

- *N*-particle quantum system, Hamiltonian *H*. $H |n\rangle = E_n |n\rangle$
- Start in state: $|\psi_0\rangle = \sqrt{\frac{1}{W}\sum_n |n\rangle}$ (Not an eigenstate of H) (W is the number of states)
- Time evolution: At time t, $|\psi_t
 angle=e^{-itH}|\psi_0
 angle$ (setting $\hbar=1$)
- Loschmidt echo: Probability of returning to the initial state:

$$P(t) = |L(t)|^2$$
, where $L(t) = \langle \psi_0 | \psi_t \rangle$

Loschmidt amplitude

$$L(t) = rac{1}{\mathcal{W}} \sum_{n} e^{-itE_n} \sim e^{-Nf(t)}$$

f(t): rate function.

$$L(t) = \frac{1}{W} \sum_{n} e^{-itE_n} \sim e^{-Nf(t)}$$

• L(t) resembles the partition function but with complex Boltzmann factors. Partition function: $Z = \sum_{n} e^{-\beta E_{n}}$, (β : inverse temperature)

DQPT

$$L(t) = \frac{1}{W} \sum_{n} e^{-itE_n} \sim e^{-Nf(t)}$$

- L(t) resembles the partition function but with complex Boltzmann factors. Partition function: $Z = \sum_{n} e^{-\beta E_{n}}$, (β : inverse temperature)
- Quantity of interest is the rate function: (analogous to free energy)

$$\mathsf{Re} \ \boldsymbol{f}(t) = -\lim_{N \to \infty} \frac{1}{N} \ln |L(t)|$$

More is different!

$$L(t) = \frac{1}{W} \sum_{n} e^{-itE_n} \sim e^{-Nf(t)}$$

- L(t) resembles the partition function but with complex Boltzmann factors. Partition function: $Z = \sum_{n} e^{-\beta E_{n}}$, (β : inverse temperature)
- Quantity of interest is the rate function: (analogous to free energy)

$$\mathsf{Re}\; \pmb{f}(t) = -\lim_{N \to \infty} \frac{1}{N} \ln |L(t)|$$

More is different!

- No parameter changed for the transition.
- Phases are characterized by the **probability distributions** of the states.

Transverse-field Ising Model

The Hamiltonian $\mathcal{H} = H + H_F$ has two parts:

 (i) *H* tries to order the spins, and
 (ii) *H_F* disrupts ordering by flipping the spins. (*the 'transverse-field' term*)

Eigenstates, eigenvalues of H for N spins, ($\alpha = 1, 2, 3, \dots$)

$$H |n\rangle = E_n |n\rangle ,$$

$$|n\rangle = \bigotimes_j |\alpha\rangle_j \equiv |\alpha_1 \alpha_2 \cdots \alpha_N\rangle ,$$

$$E_n = -J \sum_{\langle jk \rangle} \delta_{\alpha_j, \alpha_k} .$$

Relevant eigenfunction of H_F

$$|\psi_0
angle = \bigotimes_j \left[rac{1}{\sqrt{2}}(|1
angle + |2
angle)
ight]_j.$$

Start with large H_F , Initial state: $|\psi_0\rangle$

- Start with large H_F , Initial state: $|\psi_0\rangle$
- At time *t* = 0, set *H_F* = 0. The system then evolves with *H*.

- Start with large H_F, Initial state: $|\psi_0\rangle$
- At time t = 0, set $H_F = 0$. The system then evolves with H.
- Loschmidt echo: $L(t) = \langle \psi_0 | e^{-itH} | \psi_0 \rangle, \ (\hbar = 1)$

• The natural variable is $y = e^{itJ}$

- Start with large H_F , Initial state: $|\psi_0\rangle$
- At time t = 0, set H_F = 0. The system then evolves with H.
- Loschmidt echo: $L(t) = \langle \psi_0 | e^{-itH} | \psi_0 \rangle, \ (\hbar = 1)$

• The natural variable is
$$y = e^{itJ}$$

The quantum dynamics is along the unit circle |y| = 1 in the complex *y*-plane.

Thermal problem: $y = e^{\beta J}$: real axis from 0 to ∞ .

Consider lattices constructed iteratively:

From one bond to larger lattices.

From a large lattice, on coarse graining one gets a smaller lattice: **self-similarity**.

Consider lattices constructed iteratively:

From one bond to larger lattices.

From a large lattice, on coarse graining one gets a smaller lattice: **self-similarity**.

Self-similarity and Renormalization group methods

- ⇒ Exact determination of
 - Loschmidt amplitude: L(y).
 - Zeros in the complex y-plane.

Renormalization Group (RG) Approach

e.g.,
$$y' = R(y)$$
. Macro properties remain invariant.

Renormalization Group (RG) Approach

e.g., y' = R(y). Macro properties remain invariant.

- This coarse-graining process can be repeated indefinitely.
 - Stable fixed points: determine the phases of the system.
 - Unstable fixed points: the phase transitions or critical points.

Stability analysis yields the results of interest.

RG:
$$y' = R(y) = \left(\frac{y^2 + 1}{2y}\right)^b$$
, $y = \begin{cases} e^{itJ}, & (quantum) \\ e^{\beta J}, & (thermal) \end{cases}$

• Ising: b = 1 (one-d) or b = 2 (two-d).

RG:
$$y' = R(y) = \left(\frac{y^2 + 1}{2y}\right)^b$$
, $y = \begin{cases} e^{itJ}, & (quantum) \\ e^{\beta J}, & (thermal) \end{cases}$

• Ising:
$$b = 1$$
 (one-d) or $b = 2$ (two-d).

Complex dynamics:

Flow: Track successive y': $R(y), R(R(y)), \ldots, R^{(n)}(y), \ldots$

A flow is generally to one of the stable fixed points $y^* = R(y^*)$.

RG:
$$y' = R(y) = \left(\frac{y^2 + 1}{2y}\right)^b$$
, $y = \begin{cases} e^{itJ}, & (quantum) \\ e^{\beta J}, & (thermal) \end{cases}$

Ising:
$$b = 1$$
 (one-d) or $b = 2$ (two-d).

Complex dynamics:

Flow: Track successive y': $R(y), R(R(y)), \ldots, R^{(n)}(y), \ldots$

A flow is generally to one of the stable fixed points $y^* = R(y^*)$.

 If the trajectories have sensitive dependence on the initial point, these points form a special set, called the Julia set. (Zeros of L(y))
 The boundary of the basins of attraction of the stable fixed points.

- The RG transformation y' = R(y) has a characteristic Julia set.
- Those are points that do not flow to stable fixed points.
- Those are the zeros of the partition function.
- The quantum dynamics is along the unit circle |y| = 1.

- The RG transformation y' = R(y) has a characteristic Julia set.
- Those are points that do not flow to stable fixed points.
- Those are the zeros of the partition function.
- The quantum dynamics is along the unit circle |y| = 1.

The DQPTs correspond to the intersection of the unit circle with the Julia set.

Surprises in 1D!

Julia Set in 1D: Fractal structure from iterative dynamics.

Surprises in 1D!

- Julia: the imaginary axis.
- Intersections: Ordered states (transition points)

- RG results for different boundary conditions for 1D TFIM.
- No thermal counterpart of the middle branch in one-dimension.
- Suppression of phase transition by changing the boundary conditions.

Boundary sensitivity for DQPT

The influence of the boundary coupling J' (open: J' = 0, closed: J' = 1) reveals how deeply the boundary affects the bulk dynamics and transitions.

Free energy f for finite N, N = 100.

Boundary sensitivity for DQPT

The influence of the boundary coupling J' (open: J' = 0, closed: J' = 1) reveals how deeply the boundary affects the bulk dynamics and transitions.

- A quantum system during time evolution explores the whole Hilbert space ⇒ Origin of the transition.
- Phases transitions: need not be thermal type.
- Complex dynamics, Julia set provide the framework for the phenomena.

Acknowledgment/Ref: SMB, Phys Rev B 109, 035130 (2024)

b = 2 Ising Case

Zeros form a self-similar fractal pattern (complex-y plane):

There are 4 intersections.

Time takes us around the unit circle.

These critical points occur repeatedly.

There are oscillations from para to ferro phases.

The critical points are like Curie points.

