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Phase Transitions: classical vs quantum

Phase transitions as a parameter is changed
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Phase Transitions: classical vs quantum

Phase transitions as a parameter is changed

m “Time" is important: equilibration, dynamics, in QM,

nonequilibrium . ..
But otherwise “time” has no direct role.

m “Time" is not a tunable parameter in experiments or simulations.
Tuning Parameters: temperature, pressure, external fields,
concentrations . ..
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Phase Transitions: classical vs quantum

Phase transitions as a parameter is changed

m “Time" is important: equilibration, dynamics, in QM,

nonequilibrium . ..
But otherwise “time” has no direct role.

m “Time" is not a tunable parameter in experiments or simulations.
Tuning Parameters: temperature, pressure, external fields,
concentrations . ..

Dynamical Quantum Phase Transitions (DQPTs)?
(Heyl, Polkovnikov, and Kehrein, PRL 2013) G
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Dynamical Quantum Phase Transitions

|
A many-body quantum system at zero temperature during its time
evolution may undergo one or more phase transitions in time. These
transitions are called DQPT.
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Dynamical Quantum Phase Transitions

|
A many-body quantum system at zero temperature during its time
evolution may undergo one or more phase transitions in time. These
transitions are called DQPT.

m No parameter of the Hamiltonian is changed.

m Not related to any quantum phase transitions of the system.
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Dynamical Quantum Phase Transitions

|
A many-body quantum system at zero temperature during its time
evolution may undergo one or more phase transitions in time. These
transitions are called DQPT.

m No parameter of the Hamiltonian is changed.

m Not related to any quantum phase transitions of the system.

Questions:

Can there be new phases and/or new phase transitions?

New? : Not the standard phases or criticality.
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The Nature of DQPTs: Real Space Renormalization Group

I —
m Exact analysis

m Scale invariance
(Lattices built recursively)

m RG in the complex plane

m Model system
m Ising (2-state system)
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Dynamical Quantum Phase Transitions

e N-particle quantum system, Hamiltonian H.  H|n) = E, |n)

o Startin state:  [1hg) = /55 >, |n) (Not an eigenstate of H)
(W is the number of states)
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Dynamical Quantum Phase Transitions

e N-particle quantum system, Hamiltonian H.  H|n) = E, |n)

o Startin state:  [1hg) = /55 >, |n) (Not an eigenstate of H)
(W is the number of states)
e Time evolution: At time t, [1h;) = e " b)) (setting h = 1)

e Loschmidt echo:
Probability of returning to the initial state:

P(t) = |L(t)]?, where L(t)= (to|v)

Loschmidt amplitude

1 .
L(t) _ W Z e—:tE,, ~ e—Nf(t)
n

‘ f(t): rate function. ‘ @ o
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DQPT

L(t) — % Zn e—itE,, ~ e—Nf(t)

m L(t) resembles the partition function but with complex Boltzmann factors.
Partition function: Z =3, e ?F,  (B: inverse temperature)
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DQPT

L(t) _ % Zn efitE,, ~ efo(t)

m L(t) resembles the partition function but with complex Boltzmann factors.
Partition function: Z =3, e ?F,  (B: inverse temperature)

= Quantity of interest is the rate function: (analogous to free energy)

Re £(t) = — Jim_ % In |L(2)]

More is different!
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DQPT

L(t) — % Zn e—itE,, ~ e—Nf(t)

m L(t) resembles the partition function but with complex Boltzmann factors.
g . . _ _ﬂE" Lo
Partition function: Z =73 e . (B: inverse temperature)
m Quantity of interest is the rate function: (analogous to free energy)

Re £(t) = — Jim_ % In |L(2)]

More is different!

Rate function f(t)

e Singular behaviour of f(t) at specific times:

transition between two macroscopic phases. time (t)
.. is | !
o No parameter changed for the transition. This is DQPT!
e Phases are characterized by the probability distributions © s

of the states.
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Transverse-field Ising Model

The Hamiltonian H = H + Hf has two parts:
(i) H tries to order the spins, and
(i) He disrupts ordering by flipping the spins.
(the ‘transverse-field’ term)

Eigenstates, eigenvalues of H for N

SEER(EISIOS ) Relevant eigenfunction of He

H|n>:En|n>, )
o) = Q) | —=(11) +[2))] -
o) = @), = oz --an), o) sz)[ﬁ(n | )],-
En = _JZ 60‘1»%’
(k)
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The Quench: Protocol

H: nearest-neighbour ferromagnetic interaction
H = H+ Hr, where ghbour e ghetic
Hr: Transverse field, disrupts ordering

m Start with large Hr, Initial state:

[0)
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The Quench: Protocol

H: nearest-neighbour ferromagnetic interaction
H = H+ Hr, where ghbour e ghetic
Hr: Transverse field, disrupts ordering

m Start with large Hr, Initial state:

[%0)
m At time t =0, set HF = 0. The
system then evolves with H.
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The Quench: Protocol

H: nearest-neighbour ferromagnetic interaction
H = H+ Hr, where ghbour e ghetic
Hr: Transverse field, disrupts ordering

m Start with large Hr, Initial state:

[%0)
m At time t =0, set HF = 0. The
system then evolves with H.

m Loschmidt echo:

L(t) = (vo|e” ™ |go), (h=1)

m The natural variable is H
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The Quench: Protocol

H: nearest-neighbour ferromagnetic interaction

H = H + Hg, where . . ]
Hr: Transverse field, disrupts ordering

m Start with large Hf, Initial state: O Ty ——
W}0> 154 —ly = ¢"/" (Quantum Evolution)

m At time t =0, set HF = 0. The
system then evolves with H.

m Loschmidt echo:

L(£) = (to|e— ™ o), (h=1)

m The natural variable is

The quantum dynamics is along the unit circle |y| = 1 in the complex
y-plane.

BJ.

Thermal problem: y = e”~: real axis from 0 to co. @ o
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H iera rCh ical Iattices Griffiths-Kaufman(1982), Derrida etal(1983)

Consider lattices constructed iteratively:

@b=1

n=0 n=1 n=2

AN
n=0 n=1 n=2

From one bond to larger lattices.

From a large lattice, on coarse graining one gets a smaller lattice:
self-similarity.
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H iel’a rCh ical Iattices Griffiths-Kaufman(1982), Derrida etal(1983)

Consider lattices constructed iteratively:

From one bond to larger lattices.

From a large lattice, on coarse graining one gets a smaller lattice:
self-similarity.

Self-similarity and Renormalization group methods
= Exact determination of
e Loschmidt amplitude: L(y).

e Zeros in the complex y-plane. © oo
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Renormalization Group (RG) Approach

m Combine micro d.f. (S) together to define an effective d.f. (S’)

Interactions among S =- interactions among S’.

eg.,|y' = R(y)| Macro properties remain invariant.
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Renormalization Group (RG) Approach

m Combine micro d.f. (S) together to define an effective d.f. (S’)

Interactions among S =- interactions among S’.

eg.,|y' = R(y)| Macro properties remain invariant.

m This coarse-graining process can be repeated indefinitely.

e Stable fixed points: determine the phases of the system.
e Unstable fixed points: the phase transitions or critical points.

Stability analysis yields the results of interest.
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Complex Dynamics: RG on the complex plane

2 b it)
L _(y +1 [ €%, (quantum)
RG:y' = R(y) = ( 2y > A { e??)  (thermal)

m Ising: b =1 (one-d) or b =2 (two-d).
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Complex Dynamics: RG on the complex plane

2 b it)
L _(y +1 [ €%, (quantum)
RG:y' = R(y) = ( 2y > A { e??)  (thermal)

m Ising: b =1 (one-d) or b =2 (two-d).

m Complex dynamics:
Flow: Track successive y’: R(y), R(R(Y)),-..,R™(y),...

A flow is generally to one of the stable fixed points | y* = R(y™) |
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Complex Dynamics: RG on the complex plane

y2-|-1>1J y—{ e™  (quantum)

S _
RG:y' = R(y) = ( 2y e??)  (thermal)

m Ising: b =1 (one-d) or b =2 (two-d).

m Complex dynamics:
Flow: Track successive y’: R(y), R(R(y)),...,R™(y),...

A flow is generally to one of the stable fixed points | y* = R(y™) |

m If the trajectories have sensitive dependence on the initial point,
these points form a special set, called the Julia set. (Zeros of L(y))

The boundary of the basins of attraction of the stable fixed points.
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Julia set and DQPT

|
m The RG transformation y’ = R(y) has a characteristic Julia set.

m Those are points that do not flow to stable fixed points.

Those are the zeros of the partition function.

The quantum dynamics is along the unit circle |y| = 1.
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Julia set and DQPT

|
m The RG transformation y’ = R(y) has a characteristic Julia set.

m Those are points that do not flow to stable fixed points.

m Those are the zeros of the partition function.

e The quantum dynamics is along the unit circle |y| = 1.

_______________________________________________________________________|]
The DQPTs correspond to the intersection of the unit circle with the
Julia set.
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Surprises in 1D!

Unitary evolution of |tq)

yi+1
5

Attraction Basins of f(y) =

Im(y)

-0.5 05 1.0 15

0.0

Re(v)

Julia Set in 1D: Fractal structure from
iterative dynamics.
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Surprises in 1D!

Unitary evolution of |tq)

y2+1
5

Attraction Basins of f(y) =

Im(y)

-0.5 05 1.0 15

0.0

Re(v)

Julia Set in 1D: Fractal structure from
iterative dynamics.

® Julia: the imaginary axis.

m Intersections: Ordered states
(transition points)

Rate Function on Unit Circle

Periodic chain
/—> —— Open chain
Orthogonality

(orthogonaiity]
.

f(t)

] B 5w 7n
° b [ L T

It

RG results for different boundary
conditions for 1D TFIM.

m No thermal counterpart of the
middle branch in one-dimension.

m Suppression of phase transition
by changing the boundary G
conditions.




Intermediate Phase and Transfer Matrix

Boundary sensitivity for DQPT

The influence of the boundary coupling J' (open: J' = 0, closed: J' = 1) reveals
how deeply the boundary affects the bulk dynamics and transitions.

f(t)

Free energy f for finite N, N = 100.
@asﬁgKa
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Intermediate Phase and Transfer Matrix

Boundary sensitivity for DQPT

The influence of the boundary coupling J' (open: J' = 0, closed: J' = 1) reveals
how deeply the boundary affects the bulk dynamics and transitions.
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Free energy f for finite N, N = 100.
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scaled: f — w for N = 100.
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Conclusion

m A quantum system during time evolution explores
the whole Hilbert space = Origin of the transition.

m Phases transitions: need not be thermal type.

m Complex dynamics, Julia set provide the framework for the phenomena.

Acknowledgment/Ref:
SMB, Phys Rev B 109, 035130 (2024)
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b = 2 Ising Case

Zeros form a self-similar fractal pattern (complex-y plane):

m There are 4 intersections.

m Time takes us around the unit circle.

m These critical points occur repeatedly.
~————

classical Curie points

R
Re(y)

There are oscillations from para to
ferro phases.
The critical points are like Curie points.

19t high-temp phase.
o low-temp phase:

N

Im(y)

poin
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