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Phase Transitions: classical vs quantum

Phase transitions as a parameter is changed

“Time” is important: equilibration, dynamics, in QM,
nonequilibrium . . .
But otherwise “time” has no direct role.

“Time” is not a tunable parameter in experiments or simulations.
Tuning Parameters: temperature, pressure, external fields,
concentrations . . .

Dynamical Quantum Phase Transitions (DQPTs)?
(Heyl, Polkovnikov, and Kehrein, PRL 2013)
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Dynamical Quantum Phase Transitions

A many-body quantum system at zero temperature during its time
evolution may undergo one or more phase transitions in time. These
transitions are called DQPT.

No parameter of the Hamiltonian is changed.

Not related to any quantum phase transitions of the system.

Questions:

Can there be new phases and/or new phase transitions?

New? : Not the standard phases or criticality.
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The Nature of DQPTs: Real Space Renormalization Group

Exact analysis

Scale invariance
(Lattices built recursively)

RG in the complex plane

Model system

Ising (2-state system)
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Dynamical Quantum Phase Transitions

• N-particle quantum system, Hamiltonian H. H |n⟩ = En |n⟩

• Start in state: |ψ0⟩ =
√

1
W

∑
n |n⟩ (Not an eigenstate of H)

(W is the number of states)

• Time evolution: At time t, |ψt⟩ = e−itH |ψ0⟩ (setting ℏ = 1)

• Loschmidt echo:
Probability of returning to the initial state:

P(t) = |L(t)|2, where L(t) = ⟨ψ0|ψt⟩

Loschmidt amplitude

L(t) =
1

W
∑
n

e−itEn ∼ e−Nf (t)

f (t): rate function.
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DQPT

L(t) = 1
W

∑
n e

−itEn ∼ e−Nf (t)

L(t) resembles the partition function but with complex Boltzmann factors.
Partition function: Z =

∑
n e

−βEn , (β: inverse temperature)

Quantity of interest is the rate function: (analogous to free energy)

Re f (t) = − lim
N→∞

1

N
ln |L(t)|

More is different!

tc1 tc2
time (t)

Ra
te

 fu
nc

tio
n 

f(t
)

• Singular behaviour of f (t) at specific times:
transition between two macroscopic phases.

• No parameter changed for the transition.

• Phases are characterized by the probability distributions
of the states.

This is DQPT!
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Transverse-field Ising Model

The Hamiltonian H = H + HF has two parts:

(i) H tries to order the spins, and

(ii) HF disrupts ordering by flipping the spins.
(the ‘transverse-field’ term)

Eigenstates, eigenvalues of H for N
spins, (α = 1, 2, 3, . . . )

H |n⟩ = En |n⟩ ,

|n⟩ =
⊗
j

|α⟩j ≡ |α1α2 · · ·αN⟩ ,

En = −J
∑
⟨jk⟩

δαj ,αk .

Relevant eigenfunction of HF

|ψ0⟩ =
⊗
j

[
1√
2
(|1⟩+ |2⟩)

]
j

.
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The Quench: Protocol

H = H + HF , where

{
H: nearest-neighbour ferromagnetic interaction

HF : Transverse field, disrupts ordering

Start with large HF , Initial state:
|ψ0⟩

At time t = 0, set HF = 0. The
system then evolves with H.

Loschmidt echo:
L(t) =

〈
ψ0

∣∣e−itH
∣∣ψ0

〉
, (ℏ = 1)

The natural variable is y = e itJ
−3 −2 −1 0 1 2 3 4

Re(y)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Im
(y

)

t = 0, T→∞

Isolated zero

y = eβJ (Statistical Mechanics)

y = eitJ/h̄ (Quantum Evolution)

The quantum dynamics is along the unit circle |y | = 1 in the complex
y -plane.

Thermal problem: y = eβJ : real axis from 0 to ∞.
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Hierarchical lattices Griffiths-Kaufman(1982), Derrida etal(1983)

Consider lattices constructed iteratively:

From one bond to larger lattices.

From a large lattice, on coarse graining one gets a smaller lattice:
self-similarity.

Self-similarity and Renormalization group methods
⇒ Exact determination of

• Loschmidt amplitude: L(y).

• Zeros in the complex y -plane.
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Renormalization Group (RG) Approach

Combine micro d.f. (S) together to define an effective d.f. (S’)

Interactions among S ⇒ interactions among S’.

e.g., y ′ = R(y) . Macro properties remain invariant.

This coarse-graining process can be repeated indefinitely.

• Stable fixed points: determine the phases of the system.
• Unstable fixed points: the phase transitions or critical points.

Stability analysis yields the results of interest.
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Complex Dynamics: RG on the complex plane

RG: y ′ = R(y) =

(
y 2 + 1

2y

)b

, y =

{
e itJ , (quantum)
eβJ , (thermal)

Ising: b = 1 (one-d) or b = 2 (two-d).

Complex dynamics:
Flow: Track successive y ′: R(y),R(R(y)), . . . ,R(n)(y), . . .

A flow is generally to one of the stable fixed points y∗ = R(y∗) .

If the trajectories have sensitive dependence on the initial point,
these points form a special set, called the Julia set. (Zeros of L(y))

The boundary of the basins of attraction of the stable fixed points.
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Julia set and DQPT

The RG transformation y ′ = R(y) has a characteristic Julia set.

Those are points that do not flow to stable fixed points.

Those are the zeros of the partition function.

• The quantum dynamics is along the unit circle |y | = 1.

The DQPTs correspond to the intersection of the unit circle with the
Julia set.
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Surprises in 1D!

Unitary evolution of |ψ0⟩
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Julia Set in 1D: Fractal structure from
iterative dynamics.

Julia: the imaginary axis.

Intersections: Ordered states
(transition points)
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DQPT! DQPT!

Orthogonality

Rate Function on Unit Circle
Periodic chain
Open chain 

RG results for different boundary
conditions for 1D TFIM.

No thermal counterpart of the
middle branch in one-dimension.

Suppression of phase transition
by changing the boundary
conditions.

Julia Sets in Quantum Evolution



Surprises in 1D!

Unitary evolution of |ψ0⟩

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Re(y)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
(y

)

Attraction Basins of f(y) = y2 + 1
2y

Unit Circle |y|=1
Fixed Points

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

It
er

at
io

ns
 t

o 
y=

1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

It
er

at
io

ns
 t

o 
y=

1

Julia Set in 1D: Fractal structure from
iterative dynamics.

Julia: the imaginary axis.

Intersections: Ordered states
(transition points)

0 4 2
3
4

5
4

3
2

7
4

2
Jt

0

2

4

6

8

10

12

f(
t)

DQPT! DQPT!

Orthogonality

Rate Function on Unit Circle
Periodic chain
Open chain 

RG results for different boundary
conditions for 1D TFIM.

No thermal counterpart of the
middle branch in one-dimension.

Suppression of phase transition
by changing the boundary
conditions.

Julia Sets in Quantum Evolution



Intermediate Phase and Transfer Matrix

Boundary sensitivity for DQPT

The influence of the boundary coupling J ′ (open: J ′ = 0, closed: J ′ = 1) reveals
how deeply the boundary affects the bulk dynamics and transitions.
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Conclusion

A quantum system during time evolution explores
the whole Hilbert space =⇒ Origin of the transition.

Phases transitions: need not be thermal type.

Complex dynamics, Julia set provide the framework for the phenomena.

Acknowledgment/Ref:
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b = 2 Ising Case

Zeros form a self-similar fractal pattern (complex-y plane):
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There are 4 intersections.

Time takes us around the unit circle.

These critical points︸ ︷︷ ︸
classical Curie points

occur repeatedly.

There are oscillations from para to
ferro phases.
The critical points are like Curie points.
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