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Setup 

• one-dimensional fermionic lattice system with long-ranged 
      power-law decaying hopping with exponent α.

• system is further subjected to dephasing noise in the bulk.

• To understand the steady-state transport properties, the lattice chain is further connected to a 
source and a drain reservoir at its two ends, and these reservoirs are maintained at chemical 
potentials μS and μD, respectively.

• In addition to the boundary reservoirs at each lattice site we attach Büttiker voltage probes with 
uniform coupling strength denoted by γp.  This is done to mimic processes where the phase 
coherence of particles built during Hamiltonian evolution is lost due to inevitable surroundings

• Approach is widely employed to understand effective many-body transport



Non-equilibrium steady state transport

• We are interested in studying the NESS electronic conductance to 
      characterize transport.

• We focus here in the linear response regime and set for boundary reservoirs 
      μD = μ, μS = μ + δμ, and for the probes μi = μ + δμi,  i = 1,2, . . . ,N.

• At zero temperature, the conductance corresponding to the left to right charge
     current can be exactly obtained as
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• We are interested in studying the NESS electronic conductance to 
      characterize transport.

• We focus here in the linear response regime and set for boundary reservoirs 
      μD = μ, μS = μ + δμ, and for the probes μi = μ + δμi,  i = 1,2, . . . ,N.

• At zero temperature, the conductance corresponding to the left to right charge
     current can be exactly obtained as

where

With this expression, we can compute the NESS conductance via extensive numerics 



In the the context of long-range systems, a natural question

is the behavior of system size scaling exponent δ with respect 

to long-range hopping exponent α.

Non-equilibrium steady state transport

Different universality classes of transport

Ballistic

Super-diffusive

Diffusive

Sub-diffusive

Central question: How does δ depend on α ?

Sample reviews of anomalous behaviour:

Dhar, Adv. Phys (2008)

Landi et al, RMP (2022)



Non-equilibrium steady state transport

(relatively short-ranged)

(relatively long-ranged)

Recall

Recall



What about local chemical potential profiles ? 

The zero-particle NESS current from each of the probes ensures a 
unique chemical potential value at each lattice site and is given by 

• We show the local chemical potential profile for two different 
       values of α, one within the superdiffusive regime and 
        one within the diffusive regime. 

• For α > 1.5, we notice a linear shape, which is a hallmark of 
       conventional diffusive transport. 

• For α < 1.5, the shape is nonlinear, which is a fingerprint 
       of anomalous transport.

Purkayastha, Sanyal, Dhar, MK PRB (2018)
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The zero-particle NESS current from each of the probes ensures a 
unique chemical potential value at each lattice site and is given by 

• We show the local chemical potential profile for two different 
       values of α, one within the superdiffusive regime and 
        one within the diffusive regime. 

• For α > 1.5, we notice a linear shape, which is a hallmark of 
       conventional diffusive transport. 

• For α < 1.5, the shape is nonlinear, which is a fingerprint 
       of anomalous transport.

With this detailed understanding of transport regimes when 
boundary reservoirs are attached, it is natural to explore the 
possible relation with the density profile evolution in the 
absence of reservoirs (but retaining the
dephasing mechanism).

Purkayastha, Sanyal, Dhar, MK PRB (2018)



Time dynamics of single-particle density profile

• We study the quantum dynamics of single-particle excitation for the long-range lattice setup in the absence of the boundary 
reservoirs while keeping the dephasing mechanism intact.

•  We model the lattice and this dephasing mechanism by a Lindblad  quantum master equation

where recall 

• κ represents the effective coupling strength characterising dephasing

• For such a setup, we are interested in studying the time dynamics of a single-particle density profile P(x, t ), which is initially
      localized at the middle site of the lattice.

• One can obtain P(x, t ) directly following the Lindblad where one has to deal with N x N matrices (due to special feature). 

• An alternative route is to follow unitary quantum unraveling  which records the information of wave function in each 
quantum trajectory. 

• The unraveling is carried out by introducing classical δ-correlated Gaussian noise at each lattice

Special feature:
evolution of any n-point correlator
can be expressed through 
operators whose order is n or less

Dolgirev et al, PRB 2020



Time dynamics of single-particle density profile

where recall 

(single-particle density profile for a single noise realization)

diagonal noise matrix

average over all quantum trajectories



Time dynamics of single-particle density profile

Relatively long ranged Relatively short ranged

We can show that 

(relatively short-ranged)

(relatively long-ranged)

We can analytically calculate the scaling function also. For this we derive a fractional diffusion equation



Derivation of a fractional diffusion equation

where recall 

Let us define

Then



Derivation of a fractional diffusion equation

where recall 

Let us define

We then get, 

Riemann-Zeta function

Then



Derivation of a fractional diffusion equation

We first seek for a convergent solution for Dm,n(τ ) by expanding it in powers of ϵ as

A multiple scale analysis is employed to finally arrive at 
[details in supplementary material of A. Dhawan, K. Ganguly, M. K, B. K. Agarwalla, PRB(2024)]



Derivation of a fractional diffusion equation

We first seek for a convergent solution for Dm,n(τ ) by expanding it in powers of ϵ as

A multiple scale analysis is employed to finally arrive at 
[details in supplementary material of A. Dhawan, K. Ganguly, M. K, B. K. Agarwalla, PRB(2024)]

This is the central equation which describes that a classical master equation for the population that satisfies a fractional diffusion equation.

becomes conventional diffusion equation with diffusion constant

 

Schuckert et al, PRB 2020

Remarkably, it is possible to find explicit scaling forms, 

where



Fractional diffusion equation and anamolous profile

Relatively long ranged Relatively short ranged

where

Generalized diffusion coefficient 



Relation between the system-size scaling exponent of steady-state conductance (δ) and the 
exponent η associated with the space-time collapse.

• We note that the anomalous superdiffusive transport in long-range systems is often governed by Lévy flights

• In our case, we find an intriguing connection with a well-known random walk model in low-dimensional systems, 

i.e., Lévy walk

• Specific Lévy walk case: for a single particle, each step of the walk consists in (i) choosing a time of flight τ from a 

given distribution φ(τ) and (ii) moving it at speed v over a distance x = vτ in either direction, with equal probability.

• The typical space-time scaling in the central region of a pulse dictated by Lévy walker is x ∼ t1/β where β is the 

exponent associated with the time of flight distribution of a Lévy walker

• If such a system is connected to boundary reservoirs, then the system size scaling of conductance is given by N1−β

• For our setup, following the time dynamics of single-particle density profile, we find that β = 2α − 1 which 

immediately gives a relation between the exponents δ and α as δ = 2α − 2.

.

Dhar, Saito, Derrida, PRE (2013)
Zaburdaev, Denisov, and Klafter, RMP (2015)



Conclusions of Part A

• Studied quantum transport properties in one-dimensional long-range fermionic system subjected to dephasing noise.

• Interesting interplay between the incoherent dephasing mechanism and the coherent long-range hopping results in an 
anomalous behavior. 

• Clear departure from conventional diffusive transport is manifested both in NESS transport and in density profile 

dynamics.

• Density profile dynamics was shown to emerge from a fractional diffusion equation, which was derived following the 

multiple scale analysis technique. 

• This aided in further cementing the relationship between conductance scaling exponent δ and the
      long-range hopping exponent α.

• Recent experiments [Joshi et al, Science 2022] in interacting quantum spin chains have reported such anomalous 
transport by studying unequal space-time spin-spin correlators. Our work reveals a possible intriguing connection 

between such interacting quantum systems and systems subjected to dephasing noise mechanisms

A. Dhawan, K. Ganguly, M. K, B. K. Agarwalla, PRB(2024)



Quantum Injection of particles

Central question: What happens when we inject particles in a system that is (i) either itself subject
to dephasing mechanism or (ii) is itself inherently interacting

Main quantities of interest in this part of the talk are spatial density profile and the total number of 

particles.



Quantum Injection of particles

Central question: What happens when we inject particles in a system that is (i) either itself subject
to dephasing mechanism or (ii) is itself inherently interacting

Main quantities of interest in this part of the talk are spatial density profile and the total number of 

particles.

Before proceeding to the case (i) and (ii) mentioned above, we will discuss an earlier result,

Trivedi, Gupta, Agarwalla, Dhar, Mk, Kundu, Sabhapandit (PRA 2023) on  “Filling an empty 

lattice by local injection of quantum particles”

• Setup to study quantum dynamics of filling an empty lattice of size L by 

connecting it locally with an equilibrium bath that injects noninteracting 

bosons or fermions.

• We will mainly discuss the Lindblad approach

Krapivsky, Mallick, Sels (2019,2020)
 Butz, Spohn (2010)

Many past and recent literature on “localized loss”



System

Reduced density matrix of system Loss of particles

Gain of particles

m stands for
middle injection 
point



System

Reduced density matrix of system Loss of particles

Gain of particles

We will write down equation for the correlation matrix 

m stands for
middle injection 
point

plus/minus stands for bosons/fermions respectively

Spatial density profile



Interestingly, it turns out that ni(t ) can admit an interesting scaling form. To do so, let us take the limits

Total occupation



What happens when we inject particles in a system that is (i) either itself subject to dephasing 
mechanism or (ii) is itself inherently interacting.

We will first discuss case (i)



What happens when we inject particles in a system that is (i) either itself subject to dephasing 
mechanism or (ii) is itself inherently interacting.

We will first discuss case (i)

where

This equation is difficult to
solve analytically. 

[without gain]
Ishiyama, Fujimoto, Sasamoto 
J. Stat. Mech. (2025)



where

Recall

Before attempting an analytical solution, we will present below the numerical findings.



where

Recall

Before attempting an analytical solution, we will present below the numerical findings.

Key findings from numerics

➢ There is a linear early time behaviour that depends on 
injection rate. 

➢ There is a square-root behaviour at later times with diffusion 
constant that depends on dephasing rate but is independent of injection rate

➢ Between these two time-scales the system goes trough a “congestion”
which almost takes the shape of a plateau.   
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• We will now discuss some analytical results both at early and late times.
• For late-times, we will use the fact that the behaviour is independent of injection rate
      thereby enabling us to use a special value of injection rate that makes analytics more 
      feasible. 



• We will now discuss some analytical results both at early and late times.
• For late-times, we will use the fact that the behaviour is independent of injection rate
      thereby enabling us to use a special value of injection rate that makes analytics more 
      feasible. 

Very early times:

• This is a trivial regime where just at most one particle enters the system.

• During this time-scale even the hopping rate J does not play a role. Hence, coherences also
      donot develop 

• Only the below equation for the first site matters 

(short time expansion )

• This linear growth has been verified with exact numerics as seen in plot above

The late time square-root behavour is analytically more tricky which we will discuss next



Analytical understanding of the diffusive behaviour

We start with the equations for the correlation matrix 

We will do an “adiabatic approximation”. This involves taking a large dephasing limit

?

The adiabatic approximation is about a separation of time-scales. The time scale at which the coherences relax is assumed 
to be much shorter than the times-scales of the population. This leads to 

The EOM for the diagonal terms of the correlation matrix (densities) is given by

We will simplify this equation by using the equation above it and ignore second-neighbour correlations



We finally get
Define

where

which gives

The main task in now to analyse the matrix A

In the weak gain limit 

Even after this the matrix is not easy to analyse. So we go to a special case 



Special case (SC)



Special case (SC)

Converting summation to integration

In the limit we can show spatial density profile 

and the total number of  particles

At special case

Direct numerics and analytics match



What happens when we inject into an interacting quantum system ? 

We will study two types of interacting systems

Quasi-periodic XXZ chain

irrational number

Next nearest neighbour XXZ spin chain

Next-nearest neighbor
integrability breaking term

Since these are chaotic / non-integrable quantum systems, we would expect to see diffusive behaviour.
We now numerically look for evidence for it using TEBD algorithm. 



Quasi-periodic model

What happens when we inject into an interacting quantum system ? 

We see squareroot time behaviour but we are still awaiting better data 



What happens when we inject long-ranged systems that are subject to dephasing ? 

See,
Schuckert , Lovas, Knap (PRB 2020)
Dhawan, Ganguly, MK, Agarwalla (PRB 2024)
Nishikawa, Saito (2025)
Catalano et al, PRL (2025)

Key findings

These exponents  of the injection problem 
seem to be  the same as several long-ranged
papers  in slightly different contexts



Conclusions to Part B 

• We studied injection of particles on lattices

• Two cases  (i) either itself subject to dephasing mechanism or (ii) is itself inherently interacting.

• For the dephasing case, we provided numerical and analytical results.

• For the interacting case, we provided TEBD results showing square-root behaviour. 

• We discussed long-ranged case subject to dephasing. 
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