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* one-dimensional fermionic lattice system with long-ranged

power-law decaying hopping with exponent a.

Interactions activated
* systemis further subjected to dephasing noise in the bulk. through dephasing
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* Tounderstand the steady-state transport properties, the lattice chain is further connected to a
source and a drain reservoir at its two ends, and these reservoirs are maintained at chemical
potentials pyg and yp, respectively.

* In addition to the boundary reservoirs at each lattice site we attach Buttiker voltage probes with
uniform coupling strength denoted by y,. Thisis done to mimic processes where the phase

coherence of particles built during Hamiltonian evolution is lost due to inevitable surroundings

* Approach is widely employed to understand effective many-body transport



Non-equilibrium steady state transport

We are interested in studying the NESS electronic conductance to

characterize transport.

We focus here in the linear response regime and set for boundary reservoirs
Up = M, s = U + Oy, and for the probes p;=p+0dy;, i=1,2,... N.

At zero temperature, the conductance corresponding to the left to right charge

current can be exactly obtained as
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Interactions activated
through dephasing



J

Non-equilibrium steady state transport =i (Long range hopping)
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We are interested in studying the NESS electronic conductance to

characterize transport. . .
Interactions activated
through dephasing

We focus here in the linear response regime and set for boundary reservoirs
Up = M, s = U + Oy, and for the probes p;= p+0dy;, i=1,2,... N.

At zero temperature, the conductance corresponding to the left to right charge
current can be exactly obtained as

N
G(u) = YHIGIN(WI* + ¥ Y 1GNP W, (1)
m,j=1
x |G ()2, where G(@) = [@] — hs — Ti(@) — Zp(w) — Ep(w)]™’

Y (@) = —iv/2, Lp(w)|lyy = —iy /2, and Zp(w)|jj = —iyp/2

Wij = —wplGij|* Vi# j

N
Wi = y(IGa > +1Giw ) + v, Y _ |GijI?
J#i

With this expression, we can compute the NESS conductance via extensive numerics



Non-equilibrium steady state transport Vs

(Long range hopping)
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In the the context of long-range systems, a natural question e 7p |75 .yp v 7 ,',._y,,

is the behavior of system size scaling exponent & with respect
to long-range hopping exponent a.

Interactions activated
through dephasing
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Different universality classes of transport

6 =0 Ballistic \

0 <d <1 Superdiffusive

Central question: How does 0 depend on a ?

0=1 Diffusive

Sample reviews of anomalous behaviour:

Q > 1 Sub—diffusiv«aj Dhar, Adv. Phys (2008)

Landi et al, RMP (2022)




Non-equilibrium steady state transport
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Recall

N
Diffusive G(w) = VIGIn(WP + v Y 1GNP W, (1)

n, j=1
x |Gji(w)]*
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Recall g ~ F

20— 2 for 1< a< 1.5 (relatively long-ranged)
o(a) =

1 for a> 1.5 (elatively short-ranged)



What about local chemical potential profiles ?

The zero-particle NESS current from each of the probes ensures a Purkayastha, Sanyal, Dhar, MK PRB (2018)
uniqgue chemical potential value at each lattice site and is given by

We show the local chemical potential profile for two different
values of a, one within the superdiffusive regime and
one within the diffusive regime.

"
i = ps +y vp (o — ps) Y W;' IGn
-||:=

* Fora>1.5,we notice a linear shape, which is a hallmark of

0.000 4 5
; conventional diffusive transport.
—0.0021 ‘
* Fora<1.5,the shapeis nonlinear, which is a fingerprint
© —0.0041 of anomalous transport.
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The zero-particle NESS current from each of the probes ensures a

What about local chemical potential profiles ?

Purkayastha, Sanyal, Dhar, MK PRB (2018)

unique chemical potential value at each lattice site and is given by
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We show the local chemical potential profile for two different
values of a, one within the superdiffusive regime and

one within the diffusive regime.

Fora> 1.5, we notice a linear shape, which is a hallmark of
conventional diffusive transport.

* Fora<1.5,the shapeis nonlinear, which is a fingerprint

of anomalous transport.

With this detailed understanding of transport regimes when
boundary reservoirs are attached, it is natural to explore the
possible relation with the density profile evolution in the
absence of reservoirs (but retaining the

dephasing mechanism).



Time dynamics of single-particle density profile

We study the quantum dynamics of single-particle excitation for the long-range lattice setup in the absence of the boundary
reservoirs while keeping the dephasing mechanism intact.

* We modelthe lattice and this dephasing mechanism by a Lindblad quantum master equation

Dolgirev et al, PRB 2020

Special feature:
N g [Nz evolution of any n-point correlator
Y v ata N
where recall Hs = Z Z CrCr4m + CrypCr can be expressed through
operators whose order is n or less

K represents the effective coupling strength characterising dephasing

For such a setup, we are interested in studying the time dynamics of a single-particle density profile P(x, t), which is initially
localized at the middle site of the lattice.

One can obtain P(x, t ) directly following the Lindblad where one has to deal with N x N matrices (due to special feature).

An alternative route is to follow unitary quantum unraveling which records the information of wave function in each
quantum trajectory.

The unraveling is carried out by introducing classical d-correlated Gaussian noise at each lattice



Time dynamics of single-particle density profile

N

N N—m
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He)y=Hs+ > &) where recall  Fs=-)_ e |: > eferim+ Cj.+mcr:|

=1 m=1 r=1

(&) =0, and (& (1)&,(t")) =Kk 8;p8(t —1').

Pe(x, 1) = [¢E()? (single-particle density profile for a single noise realization)

N+1

wﬁ(r):@( +x,t

N+1 —i [ h(t"Hdt
T‘“’) = (0| Te o MO xp)

N\

.ol

Te_l ti£+dt h(t')dt’ ~ e—i(hsdf-l-‘\/EM(rf))
N

diagonal noise matrix

P(x,t) = Pg (x,t) > average over all quantum trajectories



Time dynamics of single-particle density profile
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] X
P(x,t)=
We can show that P(x,1) D) f( )

(Dqgt )"
n(a) = %al_l for 1<a< 15 (relatively long-ranged)
2 for a>15 (relatively short-ranged)

We can analytically calculate the scaling function also. For this we derive a fractional diffusion equation



Derivation of a fractional diffusion equation

2500 (N-1)/2 . YU [ ;
,;T = —i[?:.‘fsa:a(f)] + K Z ( ip(t); — {n“p }) where recall Hs = — Z E Z CrCram + CrypCr

i=(—N+1)/2 m=1 r=1

Let us define Dm,n (t) = (E'In(t)én (t»

T, T - Dm T t
Then 'm n t) =i.J E ( -H |”cr i ( )) + K (5111_.71 — ]-}Dmn(t)
10



Derivation of a fractional diffusion equation

dp(t) R 1 ; ~ 5 i
7R —i[Hs, p(t)] + & Z (ﬁ»z‘ﬁ(f)ﬁz‘ — E{ﬁ?aﬁ(ﬂ}) where recall ~ Hs = — Z P Z CrCraom + CrimCr
i—(—N+1)/2 m=1 =1
Let us define  Dpn(t) = (€1, (£)én(L))
d ; Dn:-, n—+l (t) - Dm—l—l H(t)
=D t) =iJ : ’ Omn — 1)D t
Then di 'm?n( } i Z ( |”a + H:( m,n } m,n( )

140

m) change the variables to 7 = k¢, and work in the strong dephasing limit 1.e., &K > J

m) introduce a parameter ¢, = qu_ :
We then get,
d :
E-Dm,n(T) :@; €1 (Dm,n—i—l(T) - Dm-f—l,n(T)) + )\m,an,n(T) )‘meﬂ = 5“"-:“ -1

== We will expand the solution D,, ,, in terms of a small parameter

=Y a=Lew)

I>1 o

Riemann-Zeta function



Derivation of a fractional diffusion equation

We first seek for a convergent solution for D, ,(T) by expanding itin powers of € as

Dy (1) = Dg?n(?') + € Dg?n(’r) + €2 Dg?n(’r) + ...

A multiple scale analysis is employed to finally arrive at
[details in supplementary material of A. Dhawan, K. Ganguly, M. K, B. K. Agarwalla, PRB(2024)]

d QJQ -Dm+f m+l(t} — -'Dm m(t}
_Dm m(t) = — : :
#Pnn® =3 e )



Derivation of a fractional diffusion equation

We first seek for a convergent solution for D, ,(T) by expanding itin powers of € as

Do (7) = Dgg?n(r) + € D%?n(’r) + €2 Dg}n{’r) + ...

A multiple scale analysis is employed to finally arrive at
[details in supplementary material of A. Dhawan, K. Ganguly, M. K, B. K. Agarwalla, PRB(2024)]

d 2.J*? -Dm+f,m+l(t} - Dmm(t}
e M
[0

This is the central equation which describes that a classical master equation for the population that satisfies a fractional diffusion equation.

nearest neighbor case (# — 00) mmp [ ==+1 becomes conventional diffusion equation with diffusion constant A = 2J?%/k

Remarkably, itis possible to find explicit scaling forms,

F,(z)., l<a<l5 1 for 1<a<1.5

7:L ~ —_ 20—1
f(‘“ (Daf)”) {G(z)’ a > 1.5 where  n(a) = % for a>1.5

Schuckert et al, PRB 2020



Fractional diffusion equation and anamolous profile
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© dk e ee /A
F(2) = — e T ek G(z) =
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—2Al'(1 — 2a)sin(mra) for 1<a< 1.5
Generalized diffusion coefficient Dy = A
= for a>1.5




Relation between the system-size scaling exponent of steady-state conductance (5) and the
exponent nassociated with the space-time collapse. Dhar, Saito, Derrida, PRE (2013)

Zaburdaev, Denisov, and Klafter, RMP (2015)

We note that the anomalous superdiffusive transport in long-range systems is often governed by Lévy flights

In our case, we find an intriguing connection with a well-known random walk model in low-dimensional systems,
i.e., Lévy walk

Specific Lévy walk case: for a single particle, each step of the walk consists in (i) choosing a time of flight T from a
given distribution @(1) and (ii) moving it at speed v over a distance x = vT in either direction, with equal probability.

The typical space-time scaling in the central region of a pulse dictated by Lévy walker is x ~ t/ where B is the
exponent associated with the time of flight distribution of a Lévy walker

If such a system is connected to boundary reservoirs, then the system size scaling of conductance is given by N8

For our setup, following the time dynamics of single-particle density profile, we find that § = 2a — 1 which
immediately gives a relation between the exponents d and a as 6 = 2a - 2.



Conclusions of Part A

A. Dhawan, K. Ganguly, M. K, B. K. Agarwalla, PRB(2024)

Studied quantum transport properties in one-dimensional long-range fermionic system subjected to dephasing noise.

Interesting interplay between the incoherent dephasing mechanism and the coherent long-range hopping results in an
anomalous behavior.

Clear departure from conventional diffusive transport is manifested both in NESS transport and in density profile
dynamics.

Density profile dynamics was shown to emerge from a fractional diffusion equation, which was derived following the
multiple scale analysis technique.

This aided in further cementing the relationship between conductance scaling exponent & and the
long-range hopping exponent a.

Recent experiments [Joshi et al, Science 2022] in interacting quantum spin chains have reported such anomalous
transport by studying unequal space-time spin-spin correlators. Our work reveals a possible intriguing connection
between such interacting quantum systems and systems subjected to dephasing noise mechanisms
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Quantum Injection of particles

Central guestion: What happens when we inject particles in a system that is (i) either itself subject
to dephasing mechanism or (ii) is itself inherently interacting

Main quantities of interest in this part of the talk are spatial density profile and the total number of
particles.
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Quantum Injection of particles

Central guestion: What happens when we inject particles in a system that is (i) either itself subject
to dephasing mechanism or (ii) is itself inherently interacting

Main quantities of interest in this part of the talk are spatial density profile and the total number of
particles.

Before proceeding to the case (i) and (ii) mentioned above, we will discuss an earlier result,
Trivedi, Gupta, Agarwalla, Dhar, Mk, Kundu, Sabhapandit (PRA 2023) on “Filling an empty
lattice by local injection of quantum particles”

Empty lattice
1 g L
N

g —_— —l) o « Setup to study quantum dynamics of filling an empty lattice of size L by
‘TJ’ connecting it locally with an equilibrium bath that injects noninteracting
bosons or fermions.
ty <
Reservoir «  We will mainly discuss the Lindblad approach

B

Krapivsky, Mallick, Sels (2019,2020)
Butz, Spohn (2010)

Many past and recent literature on “localized loss”



Empty lattice L—1 Gain of particles
g
Noom o~ b Hs =g (alai +al, ), o ~ ;
— T — ee l i—1 pss = ilpss, Hs] + U'g[2a,, pssam — {amay,, pss}]
’ +TL[2ampssal, — {al am, pss},
t < System \ \
(. 1) middle injection
point




P Empty lattice 2
SN M o

Reservoir

B

Spatial density profile

Gain of particles

L—1
Hs =g ) (a]ai +a, ), —~

1 i1 pss = il pss, Hs| + Tgl2a}, pssam — {amay,, pss}]

+ FL[Qampssa; — {ﬂjnﬂm' Pss},
System \ \

Reduced density matrix of system m stands for
middle injection
point

Loss of particles

We will write down equation for the correlation matrix  C;; = (a, a;)

dC;
dt

=ig(Ci1,j —Cijy1 +Cia,j — Cij—1)

— F’{ﬁ;m + ﬁjm)cf,j +2 Fﬂﬁmfamj

/

IM=T.FTs plus/minus stands for bosons/fermions respectively

I
ni(t) =2Tg f dt |S:(7))?
0

\

Sty =J4Qgt)-T' f die Tt
0

N2
x(r {) Ji[2gv/ 1% —17]

T+1




Interestingly, it turns out that n;(t ) can admit an interesting scaling form. To do so, let us take the limits

i 00, 100, V=—~O0()
2gt
] b o ) — In( _ J(2 — — 0201 = (32 — _ 2
fii(r)zct,(;), where () = £LHVOINI 4V —n@+y - /@ - DA v - /@ -DA-v)
2t (F—1P2wg+1)
\ . 2g 4g
S VAN T()

| 2Tt 05~ (8)
Total occupation N(t)= — 28—m(1 — ) +2(1 —232)
g .-’ .
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What happens when we inject particles in a system that is (i) either itself subject to dephasing
mechanism or (ii) is itself inherently interacting.

We will first discuss case (i)

J _ (Coherent hopping)

Local injection of

fermions »‘—‘— AAAAA —9o— — 0O

Interactions activated
through dephasing

4 L
Hg = —JZ cjc,-H + h.c
i=1

dp . r
& = —i|Hg,p] +T'q [Ecipcl — {cchp}] — ?d Z [ﬂia [”i: P]]

- - J




What happens when we inject particles in a system that is (i) either itself subject to dephasing
mechanism or (ii) is itself inherently interacting.

We will first discuss case (i)

J _ (Coherent hopping)

Local injection of

fermions »’—‘— —@— — 0O

I'c r, IT, I, I, Ir, ] T,

Interactions activated
through dephasing

4 L )
Hg = —JZ cjc,-H + h.c
i=1
d , T This equation is difficult to
d_i = —ilHs,p] +Tc [QCIPCI ~{erel. F"}] - ?d Z; [ [nis o] solve c?nalyﬁcally.
= / /
M:_'Jc_ HaC H_C. () —C + [without gain]
dt ! ( m=1,n(t) + Cm+1n(t) = Cmn-1(8) = O )) where C,,..(t) = (c] (t)en(t)) Ishiyama, Fujimoto, Sasamoto

— Fg({ilm + Elﬂ}cm?n{t] + rd (5,11?].1 — l}C’mn(t] + ZFG ‘51m51n J‘ S.l.a.‘. MQCh. (2025)




Recall

dcn;,:(t) _ —iJ(Cm—l,n(ﬂ + Cras1n(t) = a1 (t) — cm:nﬂ(t))

_ _ : where C,, .(t) = (c] (t)cn(t))
—T6(61m + 812)Conn(®) + Ta (Omm — 1)Crmn(t) + 2T S1m1n

Before attempting an analytical solution, we will present below the numerical findings.

J _ (Coherent hopping)

Local injection of

fermions —»H— —9o— — 0O
Iﬂ(}y' Fd Fd Fd Fd rd Fd Fd

Interactions activated
through dephasing



Recall

dcn;,:(t) _ —iJ(Cm—l,n(ﬂ + Cras1n(t) = a1 (t) — cm:nﬂ(t})

_ _ : where C,, .(t) = (c] (t)cn(t))
—T6(61m + 812)Conn(®) + Ta (Omm — 1)Crmn(t) + 2T S1m1n

Before attempting an analytical solution, we will present below the numerical findings.

J _ (Coherent hopping)

Local injection of

J =10, L =1000, I'y =10.0 fermions —»H— —@— — 00

8 FG Fd Fd Fd Fd Fd Fd Fd
E 103 ]

B )

2 1074 Interactions activated

8 1 through dephasing

5 10* 4

2

g = 10 Key findings from numerics

T 2l

5 10 — T =100 » There is a linear early time behaviour that dependson

'g 102 —— T =100.0 injection rate.

a g —— [3E

= ww v,/ 2rﬂtd(r 1 » There is a square-root behaviour at later times with diffusion
E 10-4 Seves constant that depends on dephasing rate but is independent of injection rate

102 107t 10t 10°  10° 107
¢ » Between these two time-scales the system goes trough a “congestion”
which almost takes the shape of a plateau.



We will now discuss some analytical results both at early and late times.
For late-times, we will use the fact that the behaviour is independent of injection rate
thereby enabling us to use a special value of injection rate that makes analytics more

feasible.

J =1.0, L =1000,

T =100

I =0.1 (SC)
T =10
—— Tg=50
—— T =100
—— T =100.0

8J2¢t
mlaq

..... gt (Tg = 1)

1073 107! 10

103 105 107




cf‘)\ J =1.0, L =1000, I'; =10.0
*  We will now discuss some analytical results both at early and late times. Q% 10°

* Forlate-times, we willuse the fact that the behaviour is independent of injection rate 107 1
thereby enabling us to use a special value of injection rate that makes analytics more 10!
feasible. = 1l —— T =0.1 (SC)
— T'e=1.0
Z 1071 — I'e=5.0
— ['¢ =10.0
Very early times: 1072+ S
10—3 - P
..... gt (g =1)

« Thisisa trivial regime where just at most one particle enters the system.

T107° 1000 100 100 100 107
« During this time-scale even the hopping rate J does not play a role. Hence, coherences also t
donot develop

*  Only the below equation for the first site matters

dC 4
dt

=Wg(l—Cy) = Cq(t)=1—e 2" mmmd (,(t) =20t (shorttime expansion)

* This linear growth has been verified with exact numerics as seen in plot above

The late time square-root behavour is analytically more tricky which we will discuss next



J =1.0, L =1000,

A\
: : : : : >
Analytical understanding of the diffusive behaviour Q% 10°]
102 i
We start with the equations for the correlation matrix i ]
T I'e =0.1 (SC)
dCm (1 _ = 107 T =10
228 7 (G n®) + Conr n®) = O s () = G (1) Z o o 50
I'¢ =10.0
- FG(51m + Jln)cm,n(t) + rd (Jm_.n - 1)Om,n(t) + 2rG 51mf51n 1072 I'e =100.0
10_3 . ZFiJFj(F 1)
..... AN o=
We will do an "adiabatic approximation”. This involves taking a large dephasing limit I'a >> .J 104 . —_— - : :
10 107t 10t 10 10> 107
t

The adiabatic approximation is about a separation of time-scales. The time scale at which the coherences relax is assumed

to be much shorter than the times-scales of the population. This leads to

1J
Fﬂ[él,m + 61,?1.) + 1Ty

Cm,:rl —

(Cm—lsﬂ + Cﬂ1+1,n - crl"r.z_:.rl—l — Cm:n+1) ('m 7é ??«)

The EOM for the diagonal terms of the correlation matrix (densities) is given by

Cﬂl,m = —1J (Cm—l._m + Cfm-l—l_.m - Clrirn,'r:':-,—l - cfnt._m—l—]) - QFGél,mCﬂt,m -+ QFGgl,m

We will simplify this equation by using the equation above it and ignore second-neighbour correlations




We finally get f
Cﬂl,_,m = 4
dcdia.g
= ACy; P
dt diag =+

Define

2]-\_22 £0171—1 — QCm + Cﬂt_f_l} , 3 E m < L—1 Cm =Cmm
% (—=Cm + Crp1) — 2T (Cr, — 1), m=1

2J 1

sz |:1+FG;"FC£ (C'm,—l — C‘rn)‘ + C:I'“m.—|—1 - Cm] , M= 2

2] (cﬂl—l - Cﬂl} ) m = L

\ I'q

2J2/(Te +Tq)

—ag — 2l a9 0 0o --.- 0 0 \

(5] —(0.‘1 + 0!2) as) o ... 0 0

0 g —2&1 Xy =" 0 0

where A=

[.] - a1 —201 o

o DY
P — [2T,0,-- ,0], \

272)T,

which gives Cung(t) = (¢* —I) AP

The main task in now to analyse the matrix A
In the weak gain limit a2 = oy

Even after this the matrix is not easy to analyse. So we go to a special case I'g =a;/2




Special case (SC) e =a1/2

Cliag(t) = (e* —I) A™'P

-2 1 0
1 -2 1
0 1 -2
0
0

0 0\
0 0
0 0

1 -2 1
1 -1/

J =1.0, L =1000, Ty =10.0

T'e =0.1 (SC)
— Te=10
— T =50
— T =100
—— T =100.0

8J2¢t
mlaq

""" 20qt (T =1)

1073 1071 100 108 10° 107



Special case (SC) lc=a1/2 21 0 0
1 -2 1 0
0 1 -2 1

1&32&'1 .

0

0

Caiag(t) = (e —I) A™'P
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In the limit > 1 we can show spatial density profile
and the total number of particles
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What happens when we inject into an interacting quantum system ?

We will study two types of interacting systems

/ \
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Since these are chaotic / non-integrable quantum systems, we would expect to see diffusive behaviour.
We now numerically look for evidence for it using TEBD algorithm.



What happens when we inject into an interacting quantum system ?

Quasi-periodic model
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We see squareroot time behaviour but we are still awaiting better data



What happens when we inject long-ranged systems that are subject to dephasing ?

N N—m
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(Long range hopping)
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Interactions activated
through dephasing

See,

Schuckert , Lovas, Knap (PRB 2020)
Dhawan, Ganguly, MK, Agarwalla (PRB 2024)
Nishikawa, Saito (2025)

Catalano et al, PRL (2025)

Key findings
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These exponents of the injection problem
seem to be the same as several long-ranged
papers in slightly different contexts



Conclusions to Part B

We studied injection of particles on lattices

Two cases (i) either itself subject to dephasing mechanism or (ii) is itself inherently interacting.
Forthe dephasing case, we provided numerical and analytical results.

Forthe interacting case, we provided TEBD results showing square-root behaviour.

We discussed long-ranged case subject to dephasing.
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