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Introduction

Introduction

Chaos → Proliferation
of errors

→

Affects reliability
of output

from quantum
simulators

Disorder → unavoidable in
realistic systems

→
May effect the
performance
of the system

➣ To look at the interplay of disorder and chaos

1.PhysRevE.62.6366, Emergence of quantum chaos in the quantum computer core and how to manage it,
Georgeot, B. and Shepelyansky, D. L, 2000.
2Transmon platform for quantum computing challenged by chaotic fluctuations, Berke etal., Nature
communications,2022.
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Disorder in kicked all-to-all interacting spin chain

Disorder in kicked all-to-all interacting spin chain

The Hamiltonian of the system is given by:

H =
k

2Nτ

N∑
ℓ<ℓ′=1

(1 + ϵll′)σ
x
ℓ σ

x
ℓ′ +

p

2

∞∑
n=−∞

N∑
ℓ=1

σy
ℓ δ(t− nτ), (1)

• k ⇒ strength of interaction

• τ ⇒ is the period of delta kicks

• ϵ is a random number from a Normal distribution with standard deviation w.

For ϵll′ = 0,

[J2, Ji] = 0, where Jα =
∑N

i=1
σαi

2 , (α = x, y, z), J2 is a constant of motion
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Disorder in kicked all-to-all interacting spin chain

Kicked top - Classical limit

Classical Phase Space

Figure 1: 1 The classical phase space for different chaos parameter k. (a). k = 1
predominantly regular region,(b). k = 3 mixed phase space and (c). k = 6 fully chaotic.

1Shohini Ghose et al. “Chaos, entanglement, and decoherence in the quantum kicked top”.
Physical Review A 78.4 (2008), p. 042318.
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Disorder in kicked all-to-all interacting spin chain

➣ The initial state of our multi qubit system :

|θϕ⟩⊗N
=

(
cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩

)⊗N

(2)

Upon evolution
(ϵll′ = 0) −→ Dynamics resides in the permutation

symmetric subspace of dimension
N + 1
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Disorder in kicked all-to-all interacting spin chain

➤ ϵll′ ̸= 0 →
Permutation
symmetry is

broken

→
Dynamics traverse
the full Hilbert
space (FHS)

➤ The Floquet operator given by:

U ′ = exp(− ik

2N

N∑
l<l′=1

(1 + ϵll′)σ
x
l σ

x
l′) exp(− ip

2

N∑
l=1

σy
l ) (3)
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Linear entropy

Growth of linear entropy

The single qubit linear entropy:

S1 = 1− Tr(ρ21) (4)

For kicked top, in terms of collective angular momentum operators:

S1(n) =
1

2

[
1−

(
⟨Jx(n)⟩2 + ⟨Jy(n)⟩2 + ⟨Jz(n)⟩2

j2

)]
, (5)
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Linear entropy

Disorder vs No Disorder

➤ Disorder free case

S = S0(1− e−bn2

)

0 50 100 150 200
n

0.0

0.1

0.2

0.3

0.4

S
1
(n

)

N= 1000

S0(1− e−bn
2

)

➤ Disordered case

S = S
′

0(1− e−Dne−cn2

)

0 5 10 15 20
n

0.0

0.1

0.2

0.3

0.4

〈 S 1
〉 w

0.37(1− e−0.13ne−0.01n2

)

N= 16
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w
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D
(w
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Figure 2: Plots showing the growth of linear entropy S1(n) for the disorder free and
disordered cases respectively at k = 1.
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Linear entropy

Classical Dynamics of Near-Integrable Systems

Disorder Free Case Disordered Case

θ(t) = θ(0) + ω(I) t

For an observable f(θ), the average ⟨f⟩(t)

=
∞∑

k=−∞
fk e−

k2σ2

2
(ω′(I0)

2t2+1) e−ikω(I0)t

S1(n) has a classical limit,

Scl(n) =
1

2

(
1− [⟨Xn⟩2 + ⟨Yn⟩2 + ⟨Zn⟩2]

)
where X,Y, Z are the classical variables.

θ(t) = θ(0) + ω(I) t+ η(t)

P (η) = 1√
2πDt

e−
η2

2Dt

The average ⟨f⟩(t)

=
∞∑

k=−∞
fke

−ikω(I0)te−
k2σ2

2
(1+ω′(I0)

2t2)

e−
k2Dt

2
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Linear entropy
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Figure 3: Plot showing disorder averaged S1 with respect to time n for N = 14 at k = 1
for different disorder strengths w.

Increase in Disorder → Absence of Revivals
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Linear entropy

Overlap with permutation symmetric basis

|Ψn′

22j ⟩ = a0 |000⟩+a′1 |001⟩+a′′1 |010⟩+a′2 |011⟩+a′′′1 |100⟩+a′′2 |101⟩+a′′′2 |110⟩+

a3 |111⟩
The permutation symmetric basis set:

|000⟩ = |03⟩

|001⟩+ |010⟩+ |100⟩√
3

= |13⟩

|011⟩+ |110⟩+ |101⟩√
3

= |23⟩

|111⟩ = |33⟩
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Linear entropy

The overlap of |Ψn′

22j ⟩ onto each of the permutation symmetric basis is given
by:

⟨03|Ψn′

22j ⟩ = a0 = α1

⟨13|Ψn′

22j ⟩ =
a′1 + a′′1 + a′′′1√

3
= α2

⟨23|Ψn′

22j ⟩ =
a′2 + a′′2 + a′′′2√

3
= α3

⟨33|Ψn′

22j ⟩ = a3 = α4

The sum of the absolute value of the square of the overlap given by:

χ = |α1|2 + |α2|2 + |α3|2 + |α4|2 (6)
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Overlap with symmetric basis

Disorder free case : χ = 1
Disordered case : χ < 1

0.00 0.25 0.50 0.75 1.00
w

0.0

0.2

0.4

0.6

0.8

1.0

〈 χ〉
w

(b)

k= 1

k= 3(regular)

k= 3(chaotic)

k= 6

0 2 4
w

0.0

0.5

1.0

〈 χ〉
w

Figure 4: The plot of overlap χ with respect to disorder strength w for different values of
k for N = 14.
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Effective dimension Deff

Effective dimension Deff

Initial state in terms of Floquet eigenstates:

|θϕ⟩ =
2N∑
i=1

ci |ϕi⟩ (7)

Obtain ci → overlap of the initial state with the Floquet eigen states |ϕi⟩.
Deff is that value of i for which

∑Deff

i=1 |ci|2 = 0.999, when the coefficients
c′is are arranged in decreasing order.
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Effective dimension Deff

Disorder free case : Deff ∼ N + 1
For large disorder : Deff ∼ 2N

10-2 10-1 100

w

101

102

103

〈 D ef
f〉 w

k= 1

k= 3(regular)

k= 3(chaotic)

k= 6

Figure 5: The plot of Deff with respect to disorder strength w for different values of k for
N = 10 qubits.
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Pseudo phase space

Long time averaged linear entropy

⟨SQ⟩W,2Q =
(2Q − 1)(2N−Q − 1)

2N + 1
, (8)

0.0 0.2 0.4 0.6 0.8
w

0.42

0.44

0.46

0.48

0.50
〈 S 1〉 w

(a)

k= 6

k= 3(chaotic)

k= 3(regular)

S1(RMT)

Figure 6: The plot of ⟨S1⟩w with respect to disorder strength w for different values of k
for N = 14 and Q = 1 qubits.
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Pseudo phase space
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Figure 7: ⟨S1⟩w (columnwise) for w = 0.01, 1.0 and 6 respectively.
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Pseudo phase space

p = 4π/11
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Figure 8: Deff for k = 0.5 and k = 6 that shows a transition from N + 1 to 2N as the
strength of disorder w is increased. The system size N = 10 qubits and the initial state
is |θ, ϕ⟩ = |2.25, 1.1⟩.
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Figure 9: The spacing statistics for N = 12 at k = 0.5 for (a) small disorder w = 0.5 and
(b) large disorder w = 8.0. The dashed lines shows the spacing statistics for the Poisson
and Wigner Dyson (COE) distribution.

➣ With increase in disorder system enters a chaotic phase
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Conclusion

✓ Breaking of permutation symmetry with disorder.

✓ Dynamics from PSS to FHS

✓ Effect of disorder on entanglement growth.

✓ Dynamics taken out of symmetric subspace:

✡ Overlap χ
✡ Effective dimension Deff

✓ Saturation value of linear entropy to RMT values in full Hilbert space.

✓ Increase in disorder drives the system into a chaotic phase, as reflected in the
spectral statistics.

C.Manju, U. Divakaran, A. Lakshminarayan, arXiv:2505.24453 (2025)
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Figure 10: The growth and saturation of linear entropy both for the quantum case and
for the classical case.
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Kicked Top Model

The Hamiltonian of quantum kicked top is given by:

H =
ℏk
2jτ

J2
x + ℏpJy

∞∑
n=−∞

δ(t− nτ) (9)

where Jx, Jy, Jz are the angular momentum operators obeying
[Ji, Jj ] = iℏϵijkJk.

k ⇒ strength of the twist, chaos parameter

p ⇒ angle of turn per kick

τ ⇒ is the time between the kicks

Since [J2, Ji] = 0, square of the angular momentum operator commutes with
the Hamiltonian.

Thus J2 = j(j + 1)ℏ2 is a constant of motion. We are restricted to 2j+1
dimensional Hilbert space.
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ρ(θ, I, 0) =
1

2πσ2

∞∑
l=−∞

e−(θ+2πl)2/(2σ2)e−(I−I0)
2/(2σ2), (10)

ρ(θ, I, 0) be the initial ensemble, which evolves to ρ(θ, I, t) = ρ(θ − ω(I)t, I, 0)
For an observable f(θ),

⟨f⟩(t) = 1

2π

∫ π

−π

∫ ∞

−∞
f(θ)ρ(θ, I, t) dθ dI.

Taylor expanding ω(I) = ω(I0) + ω′(I0)(I − I0) to first order, and using Fourier
series, we get:

⟨f⟩(t) =
∞∑

k=−∞

fke
− k2σ2

2 (ω′(I0)
2t2+1)e−ikω(I0)t. (11)
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Figure 11: (a): ⟨J2⟩w/N
ζ/ν where (ζ and ν are the critical exponents) as a function of

disorder strength w at k = 1, p = π/2 and initial state |2.25, 1.1⟩ for different system
sizes. These curves cross each other at w = wc ≈ 2.11. (b): The collapse of the data
with ζ = 0.57 and ν = 0.52. (c): var(J2) with respect to disorder strength w for k = 1
that shows a peak around 2.0.
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The Floquet operator describing unitary evolution one kick to the next kick is
given by:

U = e
−ik
2j J2

xe−ipJy (12)

From Heisenberg evolution equations:

⟨Ji⟩n+1 =
〈
U†JiU

〉
n

(13)

where U is the Floquet operator.

j → ∞ ⇒ classical equations of motion for p = π/2 is given by:

Xn+1 = Zn

Yn+1 = Yn cos(kZn) +Xn sin(kZn)

Zn+1 = −Xn cos(kZn) + Yn sin(kZn)

(14)

We parametrize these equations with ϕ = tan−1( YX ) and θ = cos−1(Z)
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Classical Phase space

Figure 12: 2 The classical phase space for different chaos parameter k. (a). k = 1
predominantly regular region,(b). k = 3 mixed phase space and (c). k = 6 fully chaotic.

2Shohini Ghose et al. “Chaos, entanglement, and decoherence in the quantum kicked top”.
Physical Review A 78.4 (2008), p. 042318.
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Long time saturation for large disorder

Using Random matrix theory (RMT):
To find

〈
J2

〉
: If |ϕj⟩ are the eigenvectors of Jz, we have

Jz |ϕj⟩ = λj |ϕj⟩ , (15)

⟨ Jz⟩ = ⟨ψ| Jz |ψ⟩ =
∑
j

λj | ⟨ψ|ϕj⟩ |2 (16)

⟨ Jz⟩RMT =
∑
j

λj | ⟨ψ|ϕj⟩ |2
RMT

(17)

=
1

2N

∑
j

λj (18)

=
1

2N
Tr Jz =

1

2N
2N−1 Tr

∑
i

σz
i

2
(19)

〈
J2
z

〉
RMT

=
1

2
Tr

∑
i

σz
i
2

4
=
N

4
(20)

Similarly
〈
J2
x

〉
RMT

=
〈
J2
y

〉
RMT

= N/4, and hence
〈
J2

〉
RMT

= 3N/4.
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k2_new_withbar.pdf k4_withbar22.pdf

Figure 13: Left: The main figure shows the data corresponding to different system sizes
for k = 2 crossing each other at w = wc ∼ 0.41 whereas the inset shows the collapse of
the data with ν = 0.40 and ζ = 0.49. Right: Same as (a) but for k = 4 with
w = wc ∼ 0.17, ν = 0.3 and ζ = 0.32.
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