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Generalized model

Lindblad Master Eqn:

* Photon hopping between the cavities.

U(1) symmetry

Co-rotating Counter-rotating Kerr-repulsion

symmetry

Exchange symmetry*
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N = 1, λ+ = 0, κ = 0, Nonlinear JC Dimer

for the dynamical variables:

Semi-classical analysis using product state :

1) Relative phase between photons :

Each cavity is described by the nonlinear Jaynes-Cummings model

Classification of steady states : FP-F

FP-F, PST
PST

Ferro

Anti-Ferro

G.Vivek, D. Mondal, S.Sinha, Phys.Rev.E 108, 054116 (2023)
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Quantum signature and decay

Quantum self-trapping 
decays in the presence of 
photon loss
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Quantum Signature of   -oscillations and self-trapping 

Phase states:
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Self-trapping and entanglement
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N≫1, U = 0, κ ̸= 0, Open AD Dimer

STEADY STATES

Spin orientation

dissipator:with

CLASSIFICATION:
Phase diagram for 

G.Vivek, D.Mondal, S.Chakraborty, S.Sinha
Phys. Rev. Lett. 134, 113404 (2025)

Each cavity is described by the anisotropic Dicke Hamiltonian, with cavity loss
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Effects of anisotropy and dissipation

SSR FP

ASR FP
ASR FP
SSR LC

ASR LC
SSR LC

Chaos

SSR-Hopf

ASR-Hopf

Destabilization

1) 2)

3)4)

Bistability of 
limit cycles

Two Dicke transitions occur from the normal to two 
superradiant states characterised by    

Second-order transition point

Anisotropy introduces a change in the nature of 
transition from second order to first order at TP

Route to dissipative chaos

SSR

Effective Landau-Ginzberg potential 
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Self-trapping in a lossy cavity

Selftrapped limit cyclePhase diagram for ST state

Oscillations show an 
imbalance in population

Self-trapped 
steady state
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Measures of dissipative chaos

Decorrelator Lyapunov exponent

Coexistence of ST and 
chaos, leading to 
suppression of chaos in 
the system.
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Key Takeaways:
 
  Anisotropy and dissipation together enrich 
the phase diagram, enabling bistability, limit 
cycles, and chaos.

  Quantum self-trapping and persistent 
oscillations  even under photon loss.

  Light-matter systems can mimic many-body 
quantum phases, despite photons being non-
interacting in isolation.

  Engineered cavity QED systems provide a      
powerful testbed for simulating 
nonequilibrium quantum dynamics.
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