

The real Ising quantum Otto engine

Stockholm, 25-07-2025

Giulia Piccitto (University of Catania)

Outline&Purpose

- Role of many body interactions?
- Critical enhancement?

New J. Phys. 24 103023 (2022)

The real Ising quantum Otto engine

- Q2: What about real transformations?
 - Can real engines produce work?
 - Can we optimize power?

Physical Review B 109 (22), 224309

Outline&Purpose

New J. Phys. 24 (2022) 103023

New Journal of Physics

The open access journal at the forefront of physics

https://doi.org/10.1088/1367-2630/ac963b

Published in partnership with: Deutsche Physikalische Gesellschaft and the Institute of Physics

Q1: Can it produce work?

- Role of many body interactions?
- Critical enhancement?

New J. Phys. 24 103023 (2022)

PAPER

The Ising critical quantum Otto engine

Giulia Piccitto¹, Michele Campisi² and Davide Rossini^{1,*}

¹ Dipartimento di Fisica dell'Università di Pisa and INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy

- ² NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
- * Author to whom any correspondence should be addressed.

E-mail: davide.rossini@unipi.it

A-B: adiabatic compression

- B-C: isochoric heating up
- C-D: adiabatic expansion
- D-A: isochoric cooling down

A-B: adiabatic compression

- B-C: isochoric heating up
- C-D: adiabatic expansion
- D-A: isochoric cooling down

1. Termodynamics

Internal energy: $E \equiv \langle H \rangle$ 1st td law: $dE = \delta Q - \delta W$

Absorbed heat	$\delta Q > 0$
Performed work	$\delta W > 0$

Work: Energy exchanged with an external source

Heat: Energy exchanged with a thermal source

2. Cycle

A-B: adiabatic compression

- B-C: isochoric heating up
- C-D: adiabatic expansion
- D-A: isochoric cooling down

1. Termodynamics

Internal energy: $E \equiv \langle H \rangle$ 1st td law: $dE = \delta Q - \delta W$

Absorbed heat	$\delta Q > 0$
Performed work	$\delta W > 0$

Work: Energy exchanged with an external source Heat: Energy exchanged with a thermal source

2. Cycle

A-B: adiabatic compression

- B-C: isochoric heating up
- C-D: adiabatic expansion
- D-A: isochoric cooling down

Working medium: quantum Ising chain Bath: continuum of fermionic harmonic oscillators at finite T Adiabatic processes: Hamiltonian evolution (only work) Isocoric processes: Incoherent evolution (only heat)

Working medium: quantum Ising chain

$$\hat{H}(t) = -J \sum_{j}^{N-1} \hat{\sigma}_{j}^{x} \hat{\sigma}_{j+1}^{x} - h(t) \sum_{j} \hat{\sigma}_{j}^{z}$$

- Free fermions: exactly solvable
- Gaussian eigenstates: polinomial scaling
- Critical system: gap closure $h_c = J = 1$

Working medium: quantum Ising chain

$$\hat{H}(t) = -J \sum_{j}^{N-1} \hat{\sigma}_{j}^{x} \hat{\sigma}_{j+1}^{x} - h(t) \sum_{j} \hat{\sigma}_{j}^{z}$$

- Free fermions: exactly solvable
- Gaussian eigenstates: polinomial scaling
- Critical system: gap closure $h_c = J = 1$

Bath: continuum of N_{B} fermionic harmonic oscillators at finite T

$$\hat{H}_{\rm env} = \sum_{n=1}^{N_B} \int \mathrm{d}k \,\epsilon_n(k) \,\hat{c}_n^{\dagger}(k) \,\hat{c}_n(k)$$

We assume:

- The baths state to be thermal at temperature T
- Constant density of state \mathcal{J}

Working medium: quantum Ising chain

$$\hat{H}(t) = -J \sum_{j}^{N-1} \hat{\sigma}_{j}^{x} \hat{\sigma}_{j+1}^{x} - h(t) \sum_{j} \hat{\sigma}_{j}^{z}$$

- Free fermions: exactly solvable
- Gaussian eigenstates: polinomial scaling
- Critical system: gap closure $h_c = J = 1$

Adiabatic processes: Hamiltonian evolution (only work) $dE = \delta Q - \delta W$

$$h(t) = h_i + vt$$

(Which velocity? Quantum adiabaticity?)

$$W_{i \to f} = \langle H(t_i) \rangle_{t_i} - \langle H(t_f) \rangle_{t_f}$$

Bath: continuum of N_{B} fermionic harmonic oscillators at finite T

$$\hat{H}_{\rm env} = \sum_{n=1}^{N_B} \int \mathrm{d}k \,\epsilon_n(k) \,\hat{c}_n^{\dagger}(k) \,\hat{c}_n(k)$$

We assume:

- The baths state to be thermal at temperature T
- Constant density of state ${\mathcal J}$

Working medium: quantum Ising chain

$$\hat{H}(t) = -J \sum_{j}^{N-1} \hat{\sigma}_{j}^{x} \hat{\sigma}_{j+1}^{x} - h(t) \sum_{j} \hat{\sigma}_{j}^{z}$$

- Free fermions: exactly solvable
- Gaussian eigenstates: polinomial scaling
- Critical system: gap closure $h_c = J = 1$

Adiabatic processes: Hamiltonian evolution (only work) $dE = \delta Q - \delta W$

$$h(t) = h_i + vt$$

(Which velocity? Quantum adiabaticity?)

$$W_{i \to f} = \langle H(t_i) \rangle_{t_i} - \langle H(t_f) \rangle_{t_f}$$

Bath: continuum of N_{B} fermionic harmonic oscillators at finite T

$$\hat{H}_{\rm env} = \sum_{n=1}^{N_B} \int \mathrm{d}k \,\epsilon_n(k) \,\hat{c}_n^{\dagger}(k) \,\hat{c}_n(k)$$

We assume:

The baths state to be thermal at temperature T

- Constant density of state ${\mathcal I}$

Isocoric processes: Incoherent evolution (only heat) $dE = \delta Q - \delta \mathbf{W}$

$$\partial_t \rho_{\rm sys}(t) = -i[\hat{H}_{\rm sys}, \rho_{\rm sys}] + \mathcal{D}[\rho_{\rm sys}]$$

$$Q = \langle H \rangle_{T_2} - \langle H \rangle_{T_1}$$

$$\partial_t \rho_{\rm sys}(t) = -i[\hat{H}_{\rm sys}, \rho_{\rm sys}] + \mathcal{D}[\rho_{\rm sys}]$$

Bath: continuum of N_{B} fermionic harmonic oscillators at finite T

$$\hat{H}_{\rm env} = \sum_{n=1}^{N_B} \int \mathrm{d}k \,\epsilon_n(k) \,\hat{c}_n^{\dagger}(k) \,\hat{c}_n(k)$$

We assume:

The baths state to be thermal at temperature T

• Constant density of state \mathcal{J}

Isocoric processes: Incoherent evolution (only heat) $dE = \delta Q - \delta \mathcal{W}$

$$\partial_t \rho_{\rm sys}(t) = -i[\hat{H}_{\rm sys}, \rho_{\rm sys}] + \mathcal{D}[\rho_{\rm sys}]$$

$$Q = \langle H \rangle_{T_2} - \langle H \rangle_{T_1}$$

$$\partial_t \rho_{\rm sys}(t) = -i[\hat{H}_{\rm sys}, \rho_{\rm sys}] + \mathcal{D}[\rho_{\rm sys}]$$

Local Lindblad ops do not describe thermalization

Bath: continuum of N_{B} fermionic harmonic oscillators at finite T

$$\hat{H}_{\rm env} = \sum_{n=1}^{N_B} \int \mathrm{d}k \,\epsilon_n(k) \,\hat{c}_n^{\dagger}(k) \,\hat{c}_n(k)$$

We assume:

- The baths state to be thermal at temperature T
- Constant density of state ${\cal J}$

Isocoric processes: Incoherent evolution (only heat) $dE = \delta Q - \delta \mathcal{K}$

$$\partial_t \rho_{\rm sys}(t) = -i[\hat{H}_{\rm sys}, \rho_{\rm sys}] + \mathcal{D}[\rho_{\rm sys}]$$

$$Q = \langle H \rangle_{T_2} - \langle H \rangle_{T_1}$$

$$\partial_t \rho_{\rm sys}(t) = -i[\hat{H}_{\rm sys}, \rho_{\rm sys}] + \mathcal{D}[\rho_{\rm sys}]$$

Local Lindblad ops do not describe thermalization

We can write non-local Lindblad operators¹ (in the Hamiltonian eigenbasis) that simulates thermalization

Bath: continuum of N_{B} fermionic harmonic oscillators at finite T

$$\hat{H}_{\rm env} = \sum_{n=1}^{N_B} \int \mathrm{d}k \,\epsilon_n(k) \,\hat{c}_n^{\dagger}(k) \,\hat{c}_n(k)$$

We assume:

The baths state to be thermal at temperature T

- Constant density of state ${\mathcal J}$

Isocoric processes: Incoherent evolution (only heat) $dE = \delta Q - \delta \mathcal{W}$

$$\partial_t \rho_{\rm sys}(t) = -i[\hat{H}_{\rm sys}, \rho_{\rm sys}] + \mathcal{D}[\rho_{\rm sys}]$$

$$Q = \langle H \rangle_{T_2} - \langle H \rangle_{T_1}$$

$$\partial_t \rho_{\rm sys}(t) = -i[\hat{H}_{\rm sys}, \rho_{\rm sys}] + \mathcal{D}[\rho_{\rm sys}]$$

Local Lindblad ops do not describe thermalization

We can write non-local Lindblad operators¹ (in the Hamiltonian eigenbasis) that simulates thermalization

$$\rho(t) = \rho_T \left(1 - e^{-2\mathcal{J}t} \right) + \rho(t = 0) e^{-2\mathcal{J}t}$$
. Thermal state
. Bath density of states

$$\rho(t=0) \qquad \qquad \rho_T$$

¹D'Abbruzzo et al., Phys. Rev. A 103, 052209 (2021)

Bath: continuum of N_{B} fermionic harmonic oscillators at finite T

$$\hat{H}_{\rm env} = \sum_{n=1}^{N_B} \int \mathrm{d}k \,\epsilon_n(k) \,\hat{c}_n^{\dagger}(k) \,\hat{c}_n(k)$$

We assume:

The baths state to be thermal at temperature T

- Constant density of state ${\mathcal J}$

Isocoric processes: Incoherent evolution (only heat) $dE = \delta Q - \delta \mathcal{W}$

$$\partial_t \rho_{\rm sys}(t) = -i[\hat{H}_{\rm sys}, \rho_{\rm sys}] + \mathcal{D}[\rho_{\rm sys}]$$

$$Q = \langle H \rangle_{T_2} - \langle H \rangle_{T_1}$$

The Ising quantum Otto cycle

- A-B: Forward Hamiltonian evolution
- B-C: Hot isochoric
- C-D: Backward Hamiltonian evolution
- D-A: Cold isochoric

The Ising quantum Otto cycle

V

V

F

F

F

V

F

Lots of parameters:

- System size
- Initial transverse field
- Quench amplitude
- Quench velocity
- Hot bath temperature
- Cold bath temperature
- Thermalization time

- A-B: Forward Hamiltonian evolution
- B-C: Hot isochoric
- C-D: Backward Hamiltonian evolution
- D-A: Cold isochoric

F: Fixed V: Varying

Zoology: can it be useful?

Solfanelli et al. Phys. Rev. B, 101 054513 (2020)

Zoology: can it be useful?

Solfanelli et al. Phys. Rev. B, 101 054513 (2020)

System size

Quench amplitude

Hot temperature

System size

Quench amplitude

Hot temperature

System size

Quench amplitude

2.0

Checking parameters #1

Work and efficiency

Work and efficiency

Two peaks structure:

- Paramagnetic $h_i > 1$
- Critical $h_i < 1$

Work and efficiency

Two peaks structure:

- Paramagnetic $h_i > 1$
- Critical $h_i < 1$

Paramagnetic: (in general) more performant but linear with the system size

Critical: hyperscaling with the system size

The role of criticality

Nat. Commun. 7 11895 (2016)

Critical enhancement

The divergence of the fluctuations at the critical point can lead to an enanchement of the performances

 $\Pi = W/\delta\eta$ $\delta\eta = \eta_C - \eta$

(how much work with an efficiency close to the Carnot one)

The role of criticality

Nat. Commun. 7 11895 (2016)

Critical enhancement $\Pi/N \sim N^{\alpha > 0}$

The divergence of the fluctuations at the critical point can lead to an enanchement of the performances

```
\Pi = W/\delta\eta\delta\eta = \eta_C - \eta
```

(how much work with an efficiency close to the Carnot one)

Critical enhancement

Nat. Commun. 7 11895 (2016)

Critical enhancement $\Pi/N \sim N^{\alpha > 0}$

The divergence of the fluctuations at the critical point can lead to an enanchement of the performances

```
\Pi = W/\delta\eta\delta\eta = \eta_C - \eta
```

(how much work with an efficiency close to the Carnot one)

Critical enhancement

Critical enhancement

Pros:

- It actually exists
- N-body engine > N single-body engine
- Better "cold performances" (small T gradient)

Cons:

- Maybe paramagnetic is better
- Quantum adiabatic trouble
- Fluctuations?

- Non perfect thermalization reduce temperature gradient
- Non perfect adiabatic dissipates energy in the excited eigenstates

Extracted work is smaller than from ideal engines!

1. Non perfect thermalization

2. Fast quenches

- Non perfect thermalization reduce temperature gradient
- Non perfect adiabatic dissipates energy in the excited eigenstates

Extracted work is smaller than from ideal engines!

1. Non perfect thermalization

2. Fast quenches

Outline&Purpose

PHYSICAL REVIEW B 109, 224309 (2024)

Editors' Suggestion

Many-body quantum heat engines based on free fermion systems

Vincenzo Roberto Arezzo ,¹ Davide Rossini ,² and Giulia Piccitto ³ ¹SISSA, Via Bonomea 265, I-34135 Trieste, Italy ²Dipartimento di Fisica dell'Università di Pisa and INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy ³Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria 6, I-95128, Catania, Italy

(Received 18 March 2024; revised 22 May 2024; accepted 28 May 2024; published 20 June 2024)

- Q2: What about real transformations?
 - Can real engines produce work?
 - Can we optimize power?

Working medium: quantum Ising chain (or any free fermions chain)

 $D_{i,j} = J \ \delta_{j,i+1} \qquad O_{i,j} = h(t) \ \delta_{ij}$

Working medium: quantum Ising chain (or any free fermions chain)

 $D_{i,j} = J \ \delta_{j,i+1} \qquad O_{i,j} = h(t) \ \delta_{ij}$

Diagonalizing free fermion chains:

$$H = \Psi^{\dagger} \mathbb{H} \Psi + \operatorname{Tr}[D] \qquad \Psi = (c_1, \dots, c_N, c_1^{\dagger}, \dots, c_N^{\dagger})^T$$
$$\mathbb{H} = \frac{1}{2} \begin{pmatrix} D & O \\ -O^* & -D^* \end{pmatrix}$$
$$H = \sum_{k>0} \omega_k(\lambda) \left(b_k^{\dagger} b_k - \frac{1}{2} \right) \qquad \Phi = (b_1, \dots, b_N, b_1^{\dagger}, \dots, b_N^{\dagger})^T$$
$$\mathbb{U} = \begin{pmatrix} \mathbb{U} & \mathbb{V} \\ \mathbb{V}^* & \mathbb{U}^* \end{pmatrix}$$

Working medium: quantum Ising chain (or any free fermions chain)

$$D_{i,j} = J \ \delta_{j,i+1} \qquad O_{i,j} = h(t) \ \delta_{ij}$$

Diagonalizing free fermion chains:

$$H = \Psi^{\dagger} \mathbb{H} \Psi + \operatorname{Tr}[D] \qquad \Psi = (c_1, \dots, c_N, c_1^{\dagger}, \dots, c_N^{\dagger})^T$$
$$\mathbb{H} = \frac{1}{2} \begin{pmatrix} D & O \\ -O^* & -D^* \end{pmatrix}$$
$$H = \sum_{k>0} \omega_k(\lambda) \left(b_k^{\dagger} b_k - \frac{1}{2} \right) \qquad \Phi = (b_1, \dots, b_N, b_1^{\dagger}, \dots, b_N^{\dagger})^T$$
$$\mathbb{U} = \begin{pmatrix} \mathbb{U} & \mathbb{V} \\ \mathbb{V}^* & \mathbb{U}^* \end{pmatrix}$$

• New thermal fermions $Tr[b_k^{\dagger}b_k \rho] = [1 + e^{-\beta \omega_k(\lambda)}]^{-1} \equiv f[\beta, \omega_k(\lambda)]$

• Work of the system (performed > 0)

$$W = \langle H(\lambda_i) \rangle_{\rho(\lambda_i)} - \langle H(\lambda_f) \rangle_{\tilde{\rho}(\lambda_i)}$$

$$= \sum_k [\omega_k(\lambda_i) - \omega_k(\lambda_f)] \left\{ f[\beta, \omega_k(\lambda_i)] - \frac{1}{2} \right\}$$

• Heat exchanged (absorbed > 0) $Q = \langle H \rangle_{\rho_f} - \langle H \rangle_{\rho_i} = \sum_k \omega_k \left[f(\beta_2, \omega_k) - f(\beta_1, \omega_k) \right]$

Working medium: quantum Ising chain (or any free fermions chain)

$$D_{i,j} = J \ \delta_{j,i+1} \qquad O_{i,j} = h(t) \ \delta_{ij}$$

$$\hat{H}(t) = -J \sum_{j}^{N-1} \hat{\sigma}_{j}^{x} \hat{\sigma}_{j+1}^{x} - h(t) \sum_{j} \hat{\sigma}_{j}^{z} \qquad \longrightarrow \qquad H = \sum_{i,j} D_{i,j} c_{i}^{\dagger} c_{j} + \frac{1}{2} (O_{i,j} c_{i}^{\dagger} c_{j}^{\dagger} + \text{H.c.})$$

We only need two-point correlations!

- New thermal fermions $Tr[b_k^{\dagger}b_k \rho] = [1 + e^{-\beta \omega_k(\lambda)}]^{-1} \equiv f[\beta, \omega_k(\lambda)]$
- Work of the system (performed > 0) $W = \langle H(\lambda_i) \rangle_{\rho(\lambda_i)} - \langle H(\lambda_f) \rangle_{\tilde{\rho}(\lambda_i)}$ $= \sum_k [\omega_k(\lambda_i) - \omega_k(\lambda_f)] \left\{ f[\beta, \omega_k(\lambda_i)] - \frac{1}{2} \right\}$
- Heat exchanged (absorbed > 0) $Q = \langle H \rangle_{\rho_f} - \langle H \rangle_{\rho_i} = \sum_k \omega_k \left[f(\beta_2, \omega_k) - f(\beta_1, \omega_k) \right]$

Physical Review B 109 (22), 224309

What about real engines?

 $T_{\rm cvcle} = \delta + \gamma$

0: Ideal
$$\delta, \gamma \to \infty$$

1: Non perfect thermalization $\delta \to \infty$, $\gamma < \infty$

2: Non perfect adiabatic $\gamma \to \infty$, $\delta < \infty$

3: Nothing perfect $\delta, \gamma < \infty$

1. Non perfect thermalization

 $\delta \to \infty, \quad \gamma < \infty$

$$\mathbb{\Theta}_{c(h)} = \operatorname{diag}\{f[\beta_{c(h)}, \omega_k(\lambda_{i(f)})]\}_{k=1,\dots,N}$$
$$\mathbb{P}_{c(h)}^{[n]} = \operatorname{diag}\{\operatorname{Tr}[b_k^{\dagger}b_k\,\tilde{\rho}_{c(h)}^{[n]}]\}_{k=1,\dots,N}$$

Iterative equation

$$\begin{split} \mathbb{\Gamma}_c^{[n]} &= (\mathbb{O}_c + e^{-\gamma} \mathbb{O}_h)(1 - e^{-\gamma}) + \mathbb{\Gamma}_c^{[n-1]} e^{-2\gamma} \\ \mathbb{\Gamma}_h^{[n]} &= (\mathbb{O}_h + e^{-\gamma} \mathbb{O}_c)(1 - e^{-\gamma}) + \mathbb{\Gamma}_h^{[n-1]} e^{-2\gamma} \end{split}$$

1. Non perfect thermalization

 $\delta \to \infty, \quad \gamma < \infty$

Iterative equation

$$\begin{split} \mathbb{F}_c^{[n]} &= (\mathbb{O}_c + e^{-\gamma} \mathbb{O}_h)(1 - e^{-\gamma}) + \mathbb{F}_c^{[n-1]} e^{-2\gamma} \\ \mathbb{F}_h^{[n]} &= (\mathbb{O}_h + e^{-\gamma} \mathbb{O}_c)(1 - e^{-\gamma}) + \mathbb{F}_h^{[n-1]} e^{-2\gamma} \end{split}$$

whose stationary solution is

$$\begin{split} \mathbb{\Gamma}_{c}^{\infty} &= h(\gamma)(\mathbb{\Theta}_{c} + e^{-\gamma}\mathbb{\Theta}_{h}) \\ \mathbb{\Gamma}_{h}^{\infty} &= h(\gamma)(\mathbb{\Theta}_{h} + e^{-\gamma}\mathbb{\Theta}_{c}) \end{split} h(\gamma) = (1 + e^{-\gamma})^{-1} \end{split}$$

1. Non perfect thermalization

 $\delta \to \infty, \quad \gamma < \infty$

$$\begin{split} & \mathbb{\Theta}_{c(h)} = \operatorname{diag}\{f[\beta_{c(h)}, \omega_k(\lambda_{i(f)})]\}_{k=1,\dots,N} \\ & \mathbb{F}_{c(h)}^{[n]} = \operatorname{diag}\{\operatorname{Tr}[b_k^{\dagger}b_k\,\tilde{\rho}_{c(h)}^{[n]}]\}_{k=1,\dots,N} \end{split}$$

Iterative equation

$$\begin{split} \mathbb{F}_c^{[n]} &= (\mathbb{O}_c + e^{-\gamma} \mathbb{O}_h)(1 - e^{-\gamma}) + \mathbb{F}_c^{[n-1]} e^{-2\gamma} \\ \mathbb{F}_h^{[n]} &= (\mathbb{O}_h + e^{-\gamma} \mathbb{O}_c)(1 - e^{-\gamma}) + \mathbb{F}_h^{[n-1]} e^{-2\gamma} \end{split}$$

whose stationary solution is

$$\begin{split} \mathbb{\Gamma}_{c}^{\infty} &= h(\gamma)(\mathbb{\Theta}_{c} + e^{-\gamma}\mathbb{\Theta}_{h}) \\ \mathbb{\Gamma}_{h}^{\infty} &= h(\gamma)(\mathbb{\Theta}_{h} + e^{-\gamma}\mathbb{\Theta}_{c}) \end{split} h(\gamma) = (1 + e^{-\gamma})^{-1} \end{split}$$

Power becomes

$$\mathcal{P}^{\text{n-th}}(\delta,\gamma) \equiv \frac{W^{\text{n-th}}}{\delta+\gamma} = p(\delta,\gamma) W^{\text{id}}$$

2. Non perfect adiabatic $\gamma \rightarrow \infty$, $\delta < \infty$

Work of a real adiabatic process

$$W = \sum_{k} [\omega_{k}(\lambda_{i}) - \tilde{\omega}_{k}(\lambda_{f})] \left\{ f[\beta, \omega_{k}(\lambda_{i})] - \frac{1}{2} \right\}$$

2. Non perfect adiabatic $\gamma \rightarrow \infty$, $\delta < \infty$

Work of a real adiabatic process

2. Non perfect adiabatic $\gamma \rightarrow \infty$, $\delta < \infty$

Work of a real adiabatic process

$$= \sum_{i,j} \operatorname{Tr}[\Phi_i^{\dagger} \widetilde{\mathbb{H}}_{ij} \Phi_j \rho_1]$$
$$= \sum_k \widetilde{\omega}_k \left\{ f[\beta, \omega_k(\lambda_i)] - \frac{1}{2} \right\}$$

. ...

2. Non perfect adiabatic $\gamma \rightarrow \infty, \quad \delta < \infty$

Work of a real adiabatic process

$$W = \sum_{k} [\omega_{k}(\lambda_{i}) - \tilde{\omega}_{k}(\lambda_{f})] \left\{ f[\beta, \omega_{k}(\lambda_{i})] - \frac{1}{2} \right\}$$

Numerically we find $\tilde{\omega}_k < \omega_k(\lambda_f)$

2. Non perfect adiabatic $\gamma \rightarrow \infty, \quad \delta < \infty$

Work of a real adiabatic process

$$W = \sum_{k} [\omega_{k}(\lambda_{i}) - \tilde{\omega}_{k}(\lambda_{f})] \left\{ f[\beta, \omega_{k}(\lambda_{i})] - \frac{1}{2} \right\}$$

Numerically we find $\tilde{\omega}_k < \omega_k(\lambda_f)$

2. Non perfect adiabatic $\gamma \rightarrow \infty, \quad \delta < \infty$

Work of a real adiabatic process

$$W = \sum_{k} [\omega_{k}(\lambda_{i}) - \tilde{\omega}_{k}(\lambda_{f})] \left\{ f[\beta, \omega_{k}(\lambda_{i})] - \frac{1}{2} \right\}$$

Numerically we find $\tilde{\omega}_k < \omega_k(\lambda_f)$

This becomes cycle dependent

$$W = \sum_{k} [\omega_{k}(\lambda_{i}) - \tilde{\omega}_{k}(\lambda_{f})] \left\{ \boxed{f[\beta, \omega_{k}(\lambda_{i})]} - \frac{1}{2} \right\}$$

This becomes cycle dependent

$$W = \sum_{k} [\omega_{k}(\lambda_{i}) - \tilde{\omega}_{k}(\lambda_{f})] \left\{ \boxed{f[\beta, \omega_{k}(\lambda_{i})]} - \frac{1}{2} \right\}$$

Iterative equations for the two point correlators

$$\left(\mathbb{A}_{i}^{[n]}\right)_{jl} = \langle \Phi_{j} \Phi_{l}^{\dagger} \rangle_{\rho_{i}^{[n]}} \qquad \left(\mathbb{A}_{i,T}^{[n]}\right)_{jl} = \langle \Phi_{j} \Phi_{l}^{\dagger} \rangle_{\rho_{i}^{[n]}(T)}$$

This becomes cycle dependent

$$W = \sum_{k} [\omega_{k}(\lambda_{i}) - \tilde{\omega}_{k}(\lambda_{f})] \left\{ \boxed{f[\beta, \omega_{k}(\lambda_{i})]} - \frac{1}{2} \right\}$$

Iterative equations for the two point correlators

$$\begin{split} \left(\mathbb{A}_{i}^{[n]} \right)_{jl} &= \langle \Phi_{j} \Phi_{l}^{\dagger} \rangle_{\rho_{i}^{[n]}} \qquad \left(\mathbb{A}_{i,T}^{[n]} \right)_{jl} &= \langle \Phi_{j} \Phi_{l}^{\dagger} \rangle_{\rho_{i}^{[n]}(T)} \\ \\ \mathbb{A}_{1,T}^{[n]} &= \mathbb{Q} \mathbb{A}_{1}^{[n-1]} \mathbb{Q}^{\dagger}, \\ \\ \mathbb{A}_{2}^{[n]} &= \mathbb{Q}_{h} (1 - e^{-\gamma}) + \mathbb{A}_{1,T}^{[n]} e^{-\gamma}, \\ \\ \mathbb{A}_{2,T}^{[n]} &= \mathbb{Q}' \mathbb{A}_{2}^{[n]} \mathbb{Q}'^{\dagger}, \end{split}$$

$$\mathbb{A}_{1}^{[n]} = \mathbb{Q}_{c}(1 - e^{-\gamma}) + \mathbb{A}_{2,T}^{[n]}e^{-\gamma}.$$

A

$$\mathbb{A}_{1,T}^{\infty} = \sum_{k=0}^{\infty} e^{-2k\gamma} [(\mathbb{Q}\mathbb{Q}')^k \mathbb{Q}\mathbb{K}_1 \mathbb{Q}^{\dagger} (\mathbb{Q}'^{\dagger}\mathbb{Q}^{\dagger})^k]$$

$$\wedge_{1,T}^{\infty} = \sum_{k=0}^{\infty} e^{-2k\gamma} [(\mathbb{Q}\mathbb{Q}')^{k} \mathbb{Q}\mathbb{K}_{1}\mathbb{Q}^{\dagger} (\mathbb{Q}'^{\dagger}\mathbb{Q}^{\dagger})^{k}]$$

We can consider the first k elements only

2. Nothing perfect

 $\delta,\gamma<\infty$

$$\wedge_{1,T}^{\infty} = \sum_{k=0}^{\infty} e^{-2k\gamma} [(\mathbb{Q}\mathbb{Q}')^{k} \mathbb{Q}\mathbb{K}_{1}\mathbb{Q}^{\dagger} (\mathbb{Q}'^{\dagger}\mathbb{Q}^{\dagger})^{k}]$$

We can consider the first k elements only

Conclusions

What we learned:

- The Ising quantum Otto engine can be useful (refrigerator, heat engine)
- The absolute performances are maximized with the "classical" work extraction mechanism
- However to have the best scaling with the system size we need to go close to criticality
- Sometimes criticality maximizes also the absolute performances
- Real engines can also be useful
- It is not easy to find the optimal working point

What we have to learn:

- Power?
- Different engines (e.g. Carnot)?
- Some shortcuts to adiabaticity?
- Is this behavior universal? If yes, can we say something more? (Spoiler: extremely non trivial)
- What about fluctuations?
- What about non thermal engines?

Conclusions

What we learned:

- The Ising quantum Otto engine can be useful (refrigerator, heat engine)
- The absolute performances are maximized with the "classical" work extraction mechanism
- However to have the best scaling with the system size we need to go close to criticality
- Sometimes criticality maximizes also the absolute performances
- Real engines can also be useful
- It is not easy to find the optimal working point

What we have to learn:

- Power?
- Different engines (e.g. Carnot)?
- Some shortcuts to adiabaticity?
- Is this behavior universal? If yes, can we say something more? (Spoiler: extremely non trivial)
- What about fluctuations?
- What about non thermal engines?

Thank you for the attention